PCR and Omics Based Techniques to Study the Diversity, Ecology and Biology of Anaerobic Fungi: Insights, Challenges and Opportunities
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
28993761
PubMed Central
PMC5622200
DOI
10.3389/fmicb.2017.01657
Knihovny.cz E-zdroje
- Klíčová slova
- (meta) transcriptomics, Neocallimastigomycota, anaerobic fungi, genomics, metabolomics, phylogeny, proteomics, rumen,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Anaerobic fungi (phylum Neocallimastigomycota) are common inhabitants of the digestive tract of mammalian herbivores, and in the rumen, can account for up to 20% of the microbial biomass. Anaerobic fungi play a primary role in the degradation of lignocellulosic plant material. They also have a syntrophic interaction with methanogenic archaea, which increases their fiber degradation activity. To date, nine anaerobic fungal genera have been described, with further novel taxonomic groupings known to exist based on culture-independent molecular surveys. However, the true extent of their diversity may be even more extensively underestimated as anaerobic fungi continue being discovered in yet unexplored gut and non-gut environments. Additionally many studies are now known to have used primers that provide incomplete coverage of the Neocallimastigomycota. For ecological studies the internal transcribed spacer 1 region (ITS1) has been the taxonomic marker of choice, but due to various limitations the large subunit rRNA (LSU) is now being increasingly used. How the continued expansion of our knowledge regarding anaerobic fungal diversity will impact on our understanding of their biology and ecological role remains unclear; particularly as it is becoming apparent that anaerobic fungi display niche differentiation. As a consequence, there is a need to move beyond the broad generalization of anaerobic fungi as fiber-degraders, and explore the fundamental differences that underpin their ability to exist in distinct ecological niches. Application of genomics, transcriptomics, proteomics and metabolomics to their study in pure/mixed cultures and environmental samples will be invaluable in this process. To date the genomes and transcriptomes of several characterized anaerobic fungal isolates have been successfully generated. In contrast, the application of proteomics and metabolomics to anaerobic fungal analysis is still in its infancy. A central problem for all analyses, however, is the limited functional annotation of anaerobic fungal sequence data. There is therefore an urgent need to expand information held within publicly available reference databases. Once this challenge is overcome, along with improved sample collection and extraction, the application of these techniques will be key in furthering our understanding of the ecological role and impact of anaerobic fungi in the wide range of environments they inhabit.
Bioenergy Group Agharkar Research InstitutePune India
Dairy Microbiology Division ICAR National Dairy Research InstituteKarnal India
Department of Agricultural Science Korea National Open UniversitySeoul South Korea
Grasslands Research Centre AgResearch Ltd Palmerston North New Zealand
Institute of Animal Physiology and Genetics Czech Academy of SciencesPrague Czechia
Laboratory of Gastrointestinal Microbiology Nanjing Agricultural UniversityNanjing China
Laboratory of Microbiology Wageningen University and ResearchWageningen Netherlands
Lethbridge Research and Development Centre Agriculture and Agri Food CanadaLethbridge AB Canada
Zobrazit více v PubMed
Abarenkov K., Nilsson R. H., Larsson K.-H., Alexander I. J., Eberhardt U., Erland S., et al. . (2010). The UNITE database for molecular identification of fungi – recent updates and future perspectives. New Phytol. 186, 281–285. 10.1111/j.1469-8137.2009.03160.x PubMed DOI
Abdelnur P. V., Caldana C., Martins M. C. (2014). Metabolomics applied in bioenergy. Chem. Biol. Technol. Agric. 1:22 10.1186/s40538-014-0022-0 DOI
Aebersord R. H., Leavitt J., Saavedra R. A., Hood L. E., Kent S. B. H. (1987). Internal amino acid sequence analysis of proteins separated by one- or two-dimensional gel electrophoresis after in situ protease digestion on nitrocellulose. Proc. Natl. Acad. Sci. U.S.A. 84, 6970–6974. 10.1073/pnas.84.20.6970 PubMed DOI PMC
Ariyawansa H. A., Hyde K. D., Jayasiri S. C., Buyck B., Chethana K. W. T., Dai D. Q., et al. (2015). Fungal Diversity Notes 111–252 - Taxonomic and phylogenetic contributions to fungal taxa. Fungal Divers. 75, 27–274. 10.1007/s13225-015-0346-5 DOI
Bauchop T., Mountfort D. O. (1981). Cellulose fermentation by a rumen anaerobic fungus in both the absence and the presence of rumen methanogens. Appl. Environ. Microbiol. 42, 1103–1110. PubMed PMC
Belila A., El-Chakhtoura J., Saikaly P. E., van Loosdrecht M. C., Vrouwenvelder J. S. (2017). Eukaryotic community diversity and spatial variation during drinking water production (by seawater desalination) and distribution in a full-scale network. Environ. Sci. Wat. Res. 3, 92–105. 10.1039/C6EW00265J DOI
Benson D. A., Cavanaugh M., Clark K., Karsch-Mizrachi I., Lipman D. J., Ostell J., et al. . (2013). GenBank. Nucleic Acids Res. 41, D36–D42. 10.1093/nar/gks1195 PubMed DOI PMC
Bernalier A., Fonty G., Bonnemoy F., Gouet P. (1992). Degradation and fermentation of cellulose by the rumen anaerobic fungi in axenic cultures or in association with cellulolytic bacteria. Curr. Microbiol. 25, 143–148. 10.1007/BF01571022 PubMed DOI
Bernalier A., Fonty G., Gouet P. (1991). Cellulose degradation by two rumen anaerobic fungi in monoculture or in coculture with rumen bacteria. Anim. Feed Sci. Tech. 32, 131–136. 10.1016/0377-8401(91)90016-L PubMed DOI
Bernalier A., Fonty G., Bonnemoy F., Gouet P. (1993). Effect of Eubacterium limosum, a ruminal hydrogenotrophic bacterium, on the degradation and fermentation of cellulose by 3 species of rumen anaerobic fungi. Reprod. Nutr. Dev. 33, 577–584. 10.1051/rnd:19930609 PubMed DOI
Borneman W. S., Akin D., Ljungdahl L. (1989). Fermentation products and plant cell wall-degrading enzymes produced by monocentric and polycentric anaerobic ruminal fungi. Appl. Environ. Microbiol. 55, 1066–1073. PubMed PMC
Bowman B. H., Taylor J. W., Brownlee A. G., Lee J., Lu S. D., White T. (1992). Molecular evolution of the fungi: relationship of the Basidiomycetes, Ascomycetes, and Chytridiomycetes. Mol. Biol. Evol. 9, 285–296. PubMed
Boxma B., Voncken F., Jannink S., Van Alen T., Akhmanova A., Van Weelden S. W., et al. . (2004). The anaerobic chytridiomycete fungus Piromyces sp. E2 produces ethanol via pyruvate: formate lyase and an alcohol dehydrogenase E. Mol. Microbiol. 51, 1389–1399. 10.1046/j.1365-2958.2003.03912.x PubMed DOI
Brookman J., Mennim G., Trinci A., Theodorou M., Tuckwell D. (2000). Identification and characterization of anaerobic gut fungi using molecular methodologies based on ribosomal ITS1 and 18S rRNA. Microbiology 146, 393–403. 10.1099/00221287-146-2-393 PubMed DOI
Brulc J. M., Antonopoulos D. A., Berg Miller M. E., Wilson M. K., Yannarell A. C., Dinsdale E. A., et al. . (2009). Gene-centric metagenomics of the fiber-adherent bovine rumen microbiome reveals forage specific glycoside hydrolases. Proc. Natl. Acad. Sci. U.S.A. 106, 1948–1953. 10.1073/pnas.0806191105 PubMed DOI PMC
Buchheim M. A., Keller A., Koetschan C., Förster F., Merget B., Wolf M. (2011a). Internal transcribed spacer 2 (nu ITS2 rRNA) sequence-structure phylogenetics: towards an automated reconstruction of the green algal tree of life. PLoS ONE 6:e16931. 10.1371/journal.pone.0016931 PubMed DOI PMC
Buchheim M. A., Sutherland D. M., Schleicher T., Förster F., Wolf M. (2011b). Phylogeny of Oedogoniales, Chaetophorales and Chaetopeltidales (Chlorophyceae): inferences from sequence-structure analysis of ITS2. Ann. Bot. 109, 109–116. 10.1093/aob/mcr275 PubMed DOI PMC
Calkins S., Elledge N. C., Hanafy R. A., Elshahed M. S., Youssef N. (2016). A fast and reliable procedure for spore collection from anaerobic fungi: application for RNA uptake and long-term storage of isolates. J. Microbio. Meth. 127, 206–213. 10.1016/j.mimet.2016.05.019 PubMed DOI
Callaghan T. M. (2014). Developing Tools for the Identification and Taxonomic Placement of the Neocallimastigales. Ph.D. Thesis. Aberystwyth University, Wales.
Callaghan T. M., Podmirseg S. M., Hohlweck D., Edwards J. E., Puniya A. K., Dagar S. S., et al. (2015). Buwchfawromyces eastonii gen. nov., sp. nov.: a new anaerobic fungus (Neocallimastigomycota) isolated from buffalo faeces. MycoKeys 9, 11–28. 10.3897/mycokeys.9.9032 DOI
Caporaso J. G., Kuczynski J., Stombaugh J., Bittinger K., Bushman F. D., Costello E. K., et al. . (2010). QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336. 10.1038/nmeth.f.303 PubMed DOI PMC
Chen H., Li X. L., Ljungdahl L. G. (1995). A cyclophilin from the polycentric anaerobic rumen fungus Orpinomyces sp. strain PC-2 is highly homologous to vertebrate cyclophilin B. Proc. Natl. Acad. Sci. U.S.A. 92, 2587–2591. 10.1073/pnas.92.7.2587 PubMed DOI PMC
Cheng Y. F., Edwards J. E., Allison G. G., Zhu W. Y., Theodorou M. K. (2009). Diversity and activity of enriched ruminal cultures of anaerobic fungi and methanogens grown together on lignocellulose in consecutive batch culture. Bioresour. Technol. 100, 4821–4828. 10.1016/j.biortech.2009.04.031 PubMed DOI
Cheng Y. F., Jin W., Mao S. Y., Zhu W.-Y. (2013). Production of citrate by anaerobic fungi in the presence of co-culture methanogens as revealed by 1H NMR spectrometry. Asian Austral. J. Anim. 26, 1416–1423. 10.5713/ajas.2013.13134 PubMed DOI PMC
Coleman A. (2003). ITS2 is a double-edged tool for eukaryote evolutionary comparisons. Trends Genet. 19, 370–375. 10.1016/S0168-9525(03)00118-5 PubMed DOI
Comtet-Marre S., Parisot N., Lepercq P., Chaucheyras-Durand F., Mosoni P., Peyretaillade E., et al. . (2017). Metatranscriptomics Reveals the Active Bacterial and Eukaryotic Fibrolytic Communities in the Rumen of Dairy Cow Fed a Mixed Diet. Front. Microbiol. 8:67. 10.3389/fmicb.2017.00067 PubMed DOI PMC
Couger M. B., Youssef N. H., Struchtemeyer C. G., Liggenstoffer A. S., Elshahed M. S. (2015). Transcriptomic analysis of lignocellulosic biomass degradation by the anaerobic fungus isolate Orpinomyces sp. Strain C1A. Biotechnol. Biofuels 8:208 10.1186/s13068-015-0390-0 PubMed DOI PMC
Dagar S. S., Kumar S., Mudgil P., Singh R., Puniya A. K. (2011). D1/D2 domain of large subunit rDNA for differentiation of Orpinomyces spp. Appl. Environ. Microbiol. 77, 6722–6725. 10.1128/AEM.05441-11 PubMed DOI PMC
Dagar S. S., Kumar S., Pitta D. W., Edwards J., Callaghan T., Griffith G., et al. (2014). Large-subunit rDNA based differentiation of anaerobic rumen fungi using restriction fragment length polymorphism, in Linking Animal Science and Animal Agriculture: Meeting the Global Demands of 2050 92, ADSA-ASAS-CSAS Joint Annual Meeting (Kansas City, MO: ), 340.
Dagar S. S., Kumar S., Griffith G. W., Edwards J. E., Callaghan T. M., Singh R., et al. . (2015). A new anaerobic fungus (Oontomyces anksri gen. nov., sp. nov.) from the digestive tract of the Indian camel (Camelus dromedarius). Fungal Biol. U.K. 119, 731–737. 10.1016/j.funbio.2015.04.005 PubMed DOI
Dai X., Tian Y., Li J., Su X., Wang X., Zhao S., et al. . (2014). Metatranscriptomic analyses of plant cell wall polysaccharide degradation by microorganisms in cow rumen. Appl. Environ. Microbiol. 81, 1375–1386. 10.1128/AEM.03682-14 PubMed DOI PMC
Davies D. R., Theodorou M. K., Lawrence M. I. G., Trinci A. P. J. (1993). Distribution of anaerobic fungi in the digestive tract of cattle and their survival in feces. J. Gen. Microbiol. 139, 1395–1400. 10.1099/00221287-139-6-1395 PubMed DOI
Denman S. E., Mcsweeney C. S. (2006). Development of a real-time PCR assay for monitoring anaerobic fungal and cellulolytic bacterial populations within the rumen. FEMS Microbiol. Ecol. 58, 572–582. 10.1111/j.1574-6941.2006.00190.x PubMed DOI
Denman S., Nicholson M., Brookman J., Theodorou M., Mcsweeney C. (2008). Detection and monitoring of anaerobic rumen fungi using an ARISA method. Lett. Appl. Microbiol. 47, 492–499. 10.1111/j.1472-765X.2008.02449.x PubMed DOI
Detheridge A. P., Brand G., Fychan R., Crotty F. V., Sanderson R., Griffith G. W., et al. (2016). The legacy effect of cover crops on soil fungal populations in a cereal rotation. Agr. Ecosyst. Environ. 228, 49–61. 10.1016/j.agee.2016.04.022 DOI
Dey A., Sehgal J. P., Puniya A. K., Singh K. (2004). Influence of anaerobic fungal culture (Orpinomyces sp.) administration on growth rate, ruminal fermentation and nutrient digestion in calves. Asian Austral. J. Anim. 17, 820–824. 10.5713/ajas.2004.820 DOI
Dollhofer V., Callaghan T. M., Dorn-In S., Bauer J., Lebuhn M. (2016). Development of three specific PCR-based tools to determine quantity, cellulolytic transcriptional activity and phylogeny of anaerobic fungi. J. Microbiol. Meth. 127, 28–40. 10.1016/j.mimet.2016.05.017 PubMed DOI
Dollhofer V., Callaghan T. M., Griffith G. W., Lebuhn M., Bauer J. (2017). Presence and transcriptional activity of anaerobic fungi in agricultural biogas plants. Bioresour. Technol. 235, 131–139. 10.1016/j.biortech.2017.03.116 PubMed DOI
Dollhofer V., Podmirseg S. M., Callaghan T. M., Griffith G. W., Fliegerova K. (2015). Anaerobic fungi and their potential for biogas production, in Biogas Science and Technology, eds Guebitz G. M., Bauer A., Bochmann G., Gronauer A., Weiss S. (Cham: Springer International Publishing; ), 41–61. PubMed
Dore J., Stahl D. (1991). Phylogeny of anaerobic rumen Chytridiomycetes inferred from small subunit ribosomal RNA sequence comparisons. Can. J. Bot. 69, 1964–1971. 10.1139/b91-246 DOI
Eberhardt R. Y., Gilbert H. J., Hazlewood G. P. (2000). Primary sequence and enzymic properties of two modular endoglucanases, Cel5A and Cel45A, from the anaerobic fungus Piromyces equi. Microbiology 146, 1999–2008. 10.1099/00221287-146-8-1999 PubMed DOI
Eckart M., Fliegerová K., Hoffmann K., Voigt K. (2010). Molecular identification of anaerobic rumen fungi, in Molecular Identification of Fungi, eds Gherbawy Y., Voigt K. (Heidelbergl; Berlin: Springer-Verlag; ), 297–313.
Edwards J. E., Kingston-Smith A. H., Jimenez H. R., Huws S. A., Skot K. P., Griffith G. W., et al. . (2008). Dynamics of initial colonization of nonconserved perennial ryegrass by anaerobic fungi in the bovine rumen. FEMS Microbiol. Ecol. 66, 537–545. 10.1111/j.1574-6941.2008.00563.x PubMed DOI
Elekwachi C. O., Wang Z., Wu X., Rabee A., Forster R. J. (2017). Total rRNA-seq analysis gives insight intobacterial, fungal, protozoaland archaeal communities in the rumen using an optimized RNA isolation method. Front. Microbiol. 8:1814 10.3389/fmicb.2017.01814 PubMed DOI PMC
Feist P., Hummon A. B. (2015). Proteomic challenges: sample preparation techniques for microgram-quantity protein analysis from biological samples. Int. J. Mol. Sci. 16, 3537–3563. 10.3390/ijms16023537 PubMed DOI PMC
Fell J. W., Boekhout T., Fonseca A., Scorzetti G., Statzell-Tallman A. (2000). Biodiversity and systematics of basidiomycetous yeasts as determined by large-subunit rDNA D1/D2 domain sequence analysis. Int. J. Syst. Evol.Microbiol. 50, 1351–1371. 10.1099/00207713-50-3-1351 PubMed DOI
Ferrer M., Golyshina O. V., Chernikova T. N., Khachane A. N., Reyes-Duarte D., Santos V. A., et al. . (2005). Novel hydrolase diversity retrieved from a metagenome library of bovine rumen microflora. Environ. Microbiol. 7, 1996–2010. 10.1111/j.1462-2920.2005.00920.x PubMed DOI
Fliegerova K., Hodrova B., Voigt K. (2004). Classical and molecular approaches as a powerful tool for the characterization of rumen polycentric fungi. Folia. Microbiol. 49, 157–164. 10.1007/BF02931392 PubMed DOI
Fliegerova K., Mrazek J., Voigt K. (2006). Differentiation of anaerobic polycentric fungi by rDNA PCR-RFLP. Folia Microbiol. 51, 273–277. 10.1007/BF02931811 PubMed DOI
Fliegerova K., Mrazek J., Hoffmann K., Zabranska J., Voigt K. (2010). Diversity of anaerobic fungi within cow manure determined by ITS1 analysis. Folia Microbiol. 55, 319–325. 10.1007/s12223-010-0049-y PubMed DOI
Fliegerova K., Pazoutova S., Mrazek J., Kopecny J. (2002). Special properties of polycentric anaerobic fungus Anaeromyces mucronatus. Acta. Veta. Brno. 71, 441–444. 10.2754/avb200271040441 DOI
Gilbert H. J., Hazlewood G. P., Laurie J. I., Orpin C. G., Xue G. P. (1992). Homologous catalytic domains in a rumen fungal xylanase: evidence for gene duplication and prokaryotic origin. Mol. Microbiol. 6, 2065–2072. 10.1111/j.1365-2958.1992.tb01379.x PubMed DOI
Gilmore S. P., Henske J. K., O'Malley M. A. (2015). Driving biomass breakdown through engineered cellulosomes. Bioengineered, 6, 204–208. 10.1080/21655979.2015.1060379 PubMed DOI PMC
Gordon G. L. R., Phillips M. W. (1998). The role of anaerobic gut fungi in ruminants. Nutr. Res. Rev. 11, 133–168. 10.1079/NRR19980009 PubMed DOI
Gorg A., Weiss W., Dunn M. J. (2004). Current two-dimensional electrophoresis technology for proteomics. Proteomics 4, 3665–3685. 10.1002/pmic.200401031 PubMed DOI
Graham R. L. J., Graham C., McMullan G. (2007). Microbial proteomics: a mass spectrometry primer for biologists. Microb. Cell Fact. 6, 26–40. 10.1186/1475-2859-6-26 PubMed DOI PMC
Griffith G. W., Ozkose E., Theodorou M. K., Davies D. R. (2009). Diversity of anaerobic fungal populations in cattle revealed by selective enrichment culture using different carbon sources. Fungal Ecol. 2, 87–97. 10.1016/j.funeco.2009.01.005 DOI
Grigoriev I. V., Nikitin R., Haridas S., Kuo A., Ohm R., Otillar R., et al. . (2014). MycoCosm portal: gearing up for 1000 fungal genomes. Nucleic Acids Res. 42, 699–704. 10.1093/nar/gkt1183 PubMed DOI PMC
Gruninger R. J., Puniya A. K., Callaghan T. M., Edwards J. E., Youssef N., Dagar S. S., et al. . (2014). Anaerobic fungi (phylum Neocallimastigomycota): advances in understanding their taxonomy, life cycle, ecology, role and biotechnological potential. FEMS Microbiol. Ecol. 90, 1–17. 10.1111/1574-6941.12383 PubMed DOI
Haitjema C. H., Gilmore S. P., Henske J. K., Solomon K. V., deGroot R., Kuo A., et al. . (2017). A parts list for fungal cellulosomes revealed by comparative genomics. Nat. Microbiol. 2:17087. 10.1038/nmicrobiol.2017.87 PubMed DOI
Haitjema C. H., Solomon K. V., Henske J. K., Theodorou M. K., O'Malley M. A. (2014). Anaerobic gut fungi: advances in isolation, culture, and cellulolytic enzyme discovery for biofuel production. Biotechnol. Bioeng. 111, 1471–1482. 10.1002/bit.25264 PubMed DOI
Hanafy R. A., Elshahed M. S., Liggenstoffer A. S., Griffith G. W., Youssef N. H. (2017). Pecoramyces ruminantium, gen. nov, sp. nov., an anaerobic gut fungus from the feces of cattle and sheep. Mycologia. 109, 231–243. 10.1080/00275514.2017.1317190 PubMed DOI
Hausner G., Inglis G. D., Yanke L. J., Kawchuk L. M., Mcallister T. A. (2000). Analysis of restriction fragment length polymorphisms in the ribosomal DNA of a selection of anaerobic chytrids. Can. J. Bot. 78, 917–927. 10.1139/b00-067 DOI
Henderson G., Cox F., Ganesh S., Jonker A., Young W., Janssen P. H. (2015). Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Sci. Rep. 5:14567. 10.1038/srep14567 PubMed DOI PMC
Henderson G., Cox F., Kittelmann S., Miri V. H., Zethof M., Noel S. J., et al. . (2013). Effect of DNA extraction methods and sampling techniques on the apparent structure of cow and sheep rumen microbial communities. PLoS ONE 8:e74787. 10.1371/journal.pone.0074787 PubMed DOI PMC
Herrera J., Poudel R., Khidir H. H. (2011). Molecular characterization of coprophilous fungal communities reveals sequences related to root-associated fungal endophytes. Microb. Ecol. 61, 239–244. 10.1007/s00248-010-9744-0 PubMed DOI
Hess M., Sczyrba A., Egan R., Kim T. W., Chokhawala H., Schroth G., et al. . (2011). Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science 331, 463–467. 10.1126/science.1200387 PubMed DOI
Hibbett D. S., Binder M., Bischoff J. F., Blackwell M., Cannon P. F., Eriksson O. E., et al. . (2007). A higher-level phylogenetic classification of the Fungi. Mycol. Res. 111, 509–547. 10.1016/j.mycres.2007.03.004 PubMed DOI
Hinsu A. T., Parmar N. R., Nathani N. M., Pandit R. J., Patel A. B., Patel A. K., et al. . (2017). Functional gene profiling through metaRNAseq approach reveals diet-dependent variation in rumen microbiota of buffalo (Bubalus bubalis). Anaerobe 44, 106–116. 10.1016/j.anaerobe.2017.02.021 PubMed DOI
Ho Y. W., Abdullah N., Jalaludin S. (1988). Penetrating structures of anaerobic rumen fungi in cattle and swamp buffalo. J. Gen. Microbiol. 134, 177–181. 10.1099/00221287-134-1-177 DOI
Ho Y. W., Wong M.-L., Abdullan N., Kudo H., Jalaludin S. (1996). Fermentation activities of some new species of anaerobic rumen fungi from Malaysia. J. Gen. Appl. Microbiol. 42, 51–59. 10.2323/jgam.42.51 DOI
Hur J. Y., Park M. C., Suh K. Y., Park S. H. (2011). Synchronization of cell cycle of Saccharomyces cerevisiae by using a cell chip platform. Mol. Cells 32, 483–488. 10.1007/s10059-011-0174-8 PubMed DOI PMC
Ivarsson M., Schnürer A., Bengtson S., Neubeck A. (2016). Anaerobic Fungi: a potential source of biological H2 in the Oceanic Crust. Front. Microbiol. 7:674. 10.3389/fmicb.2016.00674 PubMed DOI PMC
James T. Y., Kauff F., Schoch C. L., Matheny P. B., Hofstetter V., Cox C., et al. . (2006). Reconstructing the early evolution of Fungi using a six-gene phylogeny. Nature 443:818. 10.1038/nature05110 PubMed DOI
Jin W., Cheng Y.-F., Mao S.-Y., Zhu W.-Y. (2011). Isolation of natural cultures of anaerobic fungi and indigenously associated methanogens from herbivores and their bioconversion of lignocellulosic materials to methane. Bioresource. Technol. 102, 7925–7931. 10.1016/j.biortech.2011.06.026 PubMed DOI
Kamke J., Kittelmann S., Soni P., Li Y., Tavendale M., Ganesh S., et al. (2016). Rumen metagenome and metatranscriptome analyses of low methane yield sheep reveals a Sharpea-enriched microbiome characterized by lactic acid formation and utilisation. Microbiome 4:56 10.1186/s40168-016-0201-2 PubMed DOI PMC
Keller A., Förster F., Müller T., Dandekar T., Schultz J., Wolf M. (2010). Including RNA secondary structures improves accuracy and robustness in reconstruction of phylogenetic trees. Biol. Direct 5:4. 10.1186/1745-6150-5-4 PubMed DOI PMC
Keller N., Turner G., Bennett J. (2005). Fungal secondary metabolism – from biochemistry to genomics. Nat. Rev. Microbiol. 3, 937–947. 10.1038/nrmicro1286 PubMed DOI
Khejornsart P., Wanapat M. (2010). Diversity of rumen anaerobic fungi and methanogenic archaea in swamp buffalo influenced by various diets. J. Anim. Vet. Adv. 9, 3062–3069. 10.3923/javaa.2010.3062.3069 DOI
Khejornsart P., Wanapat M., Rowlinson P. (2011). Diversity of anaerobic fungi and rumen fermentation characteristic in swamp buffalo and beef cattle fed on different diets. Livest. Sci. 139, 230–236. 10.1016/j.livsci.2011.01.011 DOI
Kittelmann S., Cathrine S. J., Kearney R., Natvig D., Gleason F. H. (2017). Adaptations of fungi and fungal like organisms for growth under reduced dissolved oxygen concentrations, in The Fungal Community, Its Organization and Role in the Ecosystem, eds Dighton J., White J. F. (Boca Raton, FL: CRC Press; ), 275–292.
Kittelmann S., Naylor G. E., Koolaard J. P., Janssen P. H. (2012). A proposed taxonomy of anaerobic fungi (Class Neocallimastigomycetes) suitable for large-scale sequence-based community structure analysis. PLoS ONE 7:e36866. 10.1371/journal.pone.0036866 PubMed DOI PMC
Kittelmann S., Seedorf H., Walters W. A., Clemente J. C., Knight R., Gordon J. I., et al. . (2013). Simultaneous amplicon sequencing to explore co-occurrence patterns of bacterial, archaeal and eukaryotic microorganisms in rumen microbial communities. PLoS ONE 8:e47879 10.1371/journal.pone.0047879 PubMed DOI PMC
Koetschan C., Kittelmann S., Lu J., Al-Halbouni D., Jarvis G. N., Müller T., et al. . (2014). Internal Transcribed Spacer 1 secondary structure analysis reveals a common core throughout the anaerobic Fungi (Neocallimastigomycota). PLoS ONE 9:e91928. 10.1371/journal.pone.0091928 PubMed DOI PMC
Kõljalg U., Larsson K.-H., Abarenkov K., Nilsson R. H., Alexander I. J., Eberhardt U., et al. . (2005). UNITE: a database providing web-based methods for the molecular identification of ectomycorrhizal fungi. New Phytol. 166, 1063–1068. 10.1111/j.1469-8137.2005.01376.x PubMed DOI
Kong Y., Teather R., Forster R. (2010). Composition, spatial distribution, and diversity of the bacterial communities in the rumen of cows fed different forages. FEMS Microbiol. Ecol. 74, 612–622. 10.1111/j.1574-6941.2010.00977.x PubMed DOI
Kostyukovsky V. A., Okunev O. N., Tarakanov B. V. (1991). Description of two anaerobic fungal strains from the bovine rumen and influence of diet on the fungal population in vivo. Microbiology 137, 1759–1764. 10.1099/00221287-137-7-1759 PubMed DOI
Kwon M., Song J., Ha J. K., Park H.-S., Chang J. (2009). Analysis of functional genes in carbohydrate metabolic pathway of anaerobic rumen fungus Neocallimastix frontalis PMA02. Asian. Austral. J. Anim. 22, 1555–1565. 10.5713/ajas.2009.80371 DOI
Lam K.-K., LaButti K., Khalak A., Tse D. (2015). FinisherSC: a repeat-aware tool for upgrading de novo assembly using long reads. Bioinformatics 31, 3207–3209. 10.1093/bioinformatics/btv280 PubMed DOI
Lee S. M., Guan L. L., Eun J. S., Kim C. H., Lee S. J., Kim E. T., et al. . (2015). The effect of anaerobic fungal inoculation on the fermentation characteristics of rice straw silages. J. Appl. Microbiol. 118, 565–573. 10.1111/jam.12724 PubMed DOI
Lee S. S., Ha J. K., Cheng K. J. (2000). Influence of an anaerobic fungal culture administration on in-vivo ruminal fermentation and nutrient digestion. Anim. Feed Sci. Tech. 88, 201–217. 10.1016/S0377-8401(00)00216-9 DOI
Lee S. S., Shin K. J., Kim W. Y., Ha J. K., Han I. K. (1999). The rumen ecosystem: as a fountain source of novel enzymes - Review. Asian Austral. J. Anim. 12, 988–1001. 10.5713/ajas.1999.988 DOI
Leis S., Dresch P., Peintner U., Fliegerova K., Sandbichler A. M., Insam H., et al. . (2014). Finding a robust strain for biomethanation: Anaerobic fungi (Neocallimastigomycota) from the Alpine ibex (Capra ibex) and their associated methanogens. Anaerobe 29, 34–43. 10.1016/j.anaerobe.2013.12.002 PubMed DOI
Li F., Guan L. L. (2017). Metatranscriptomic profiling reveals linkages between the active rumen microbiome and feed efficiency in beef cattle. Appl. Environ. Microbiol. 83:e00061–17. 10.1128/AEM.00061-17 PubMed DOI PMC
Li F., Henderson G., Sun X., Cox F., Janssen P. H., Guan L. L. (2016). Taxonomic assessment of rumen microbiota using total RNA and targeted amplicon sequencing approaches. Front. Microbiol. 7:987. 10.3389/fmicb.2016.00987 PubMed DOI PMC
Li G. J., Hyde K. D., Zhao R. L., Hongsanan S., Abdel-Aziz F. A., Abdel-Wahab M. A., et al. (2016). Fungal diversity notes 253–366: taxonomic and phylogenetic contributions to fungal taxa. Fungal Divers. 78, 1–237. 10.1007/s13225-016-0366-9 DOI
Li J., Heath I. B. (1992). The phylogenetic relationships of the anaerobic chytridiomycetous gut fungi (Neocallimasticaceae) and the Chytridiomycota. I. Cladistic analysis of rRNA sequences. Can. J. Bot. 70, 1738–1746. 10.1139/b92-215 DOI
Liggenstoffer A. S., Youssef N. H., Couger M. B., Elshahed M. S. (2010). Phylogenetic diversity and community structure of anaerobic gut fungi (phylum Neocallimastigomycota) in ruminant and non-ruminant herbivores. ISME. J. 4, 1225–1235. 10.1038/ismej.2010.49 PubMed DOI
Lin D., Tabb D. L., Yates J. R., II. (2003). Large-scale protein identification using mass spectrometry. Biochim. Biophys. Acta 1646, 1–10. 10.1016/S1570-9639(02)00546-0 PubMed DOI
Lockhart R. J., Van Dyke M. I., Beadle I. R., Humphreys P., McCarthy A. J. (2006). Molecular biological detection of anaerobic gut fungi (Neocallimastigales) from landfill sites. Appl. Environ. Microbiol. 72, 5659–5661. 10.1128/AEM.01057-06 PubMed DOI PMC
Lowe S. E., Theodorou M. K., Trinci A. P., Hespell R. B. (1985). Growth of anaerobic rumen fungi on defined and semi-defined media lacking rumen fluid. J. Gen.Microbiol. 131, 2225–2229. 10.1099/00221287-131-9-2225 DOI
Lowe S. E., Theodorou M., Trinci A. (1987). Growth and fermentation of an anaerobic rumen fungus on various carbon sources and effect of temperature on development. Appl. Environ. Microbiol. 53, 1210–1215. PubMed PMC
Lwin K., Hayakawa M., Ban-Tokuda T., Matsui H. (2011). Real-time PCR assays for monitoring anaerobic fungal biomass and population size in the rumen. Curr. Microbiol. 62, 1147–1151. 10.1007/s00284-010-9843-7 PubMed DOI
Mackie R. I., Rycyk M., Ruemmler R. L., Aminov R. I., Wikelski M. (2004). Biochemical and microbiological evidence for fermentative digestion in free-living land iguanas (Conolophus pallidus) and marine iguanas (Amblyrhynchus cristatus) on the Galapagos archipelago. Physiol. Biochem. Zool. 77, 127–138. 10.1086/383498 PubMed DOI
Marano A. V., Gleason F. H., Bärlocher F., Pires-Zottarelli C. L., Lilje O., Schmidt S. K., et al. . (2012). Quantitative methods for the analysis of zoosporic fungi. J. Microbiol. Meth. 89, 22–32. 10.1016/j.mimet.2012.02.003 PubMed DOI
Marmeisse R., Kellner H., Fraissinet-Tachet L., Luis P. (2017). Discovering protein-coding genes from the environment: time for the eukaryotes? Trends Biotechnol. 35, 824–835. 10.1016/j.tibtech.2017.02.003 PubMed DOI
Marvin-Sikkema F. D., Richardson A. J., Stewart C. S., Gottschal J. C., Prins R. A. (1990). Influence of hydrogen-consuming bacteria on cellulose degradation by anaerobic fungi. Appl. Environ. Microbiol. 56, 3793–3797. PubMed PMC
Mashego M. R., Rumbold K., De Mey M., Vandamme E., Soetaert W., Heijnen J. J. (2007). Microbial metabolomics: past, present and future methodologies. Biotechnol. Lett. 29, 1–16. 10.1007/s10529-006-9218-0 PubMed DOI
McGranaghan P., Davies J. C., Griffith G. W., Davies D. R., Theodorou M. K. (1999). The survival of anaerobic fungi in cattle faeces. FEMS Microbiol. Ecol. 29, 293–300. 10.1111/j.1574-6941.1999.tb00620.x DOI
Mohamed D. J., Martiny J. B. (2011). Patterns of fungal diversity and composition along a salinity gradient. ISME J. 5, 379–388. 10.1038/ismej.2010.137 PubMed DOI PMC
Mondo S. J., Dannebaum R. O., Kuo R., LaButti K., Haridas S., Kuo A., et al. . (2017). Widespread adenine N6-methylation of active genes in fungi. Nat. Genet. 49, 964–968. 10.1038/ng.3859 PubMed DOI
Morgavi D. P., Sakurada M., Mizokami M., Tomita Y., Onodera R. (1994a). Effects of ruminal protozoa on cellulose degradation and the growth of an anaerobic ruminal fungus, Piromyces sp. strain OTS1, in vitro. Appl. Environ. Microbiol. 60, 3718–3723. PubMed PMC
Morgavi D. P., Sakurada M., Tomita Y., Onodera R. (1994b). Presence in rumen bacterial and protozoal populations of enzymes capable of degrading fungal cell walls. Microbiology 140, 631–636. 10.1099/00221287-140-3-631 PubMed DOI
Mountfort D. O., Asher R. A., Bauchop T. (1982). Fermentation of cellulose to methane and carbon dioxide by a rumen anaerobic fungus in a triculture with Methanobrevibacter sp. strain RA1 and Methanosarcina barkeri. Appl. Environ. Microbiol. 44, 128–134. PubMed PMC
Nakashimada Y., Srinivasan K., Murakami M., Nishio N. (2000). Direct conversion of cellulose to methane by anaerobic fungus Neocallimastix frontalis and defined methanogens. Biotechnol. Lett. 22, 223–227. 10.1023/A:1005666428494 DOI
Newbold C. J., de la Fuente G., Belanche A., Ramos-Morales E., McEwan N. R. (2015). The role of ciliate protozoa in the rumen. Front. Microbiol. 6:1313. 10.3389/fmicb.2015.01313 PubMed DOI PMC
Nicholson M. J., Mcsweeney C. S., Mackie R. I., Brookman J. L., Theodorou M. K. (2010). Diversity of anaerobic gut fungal populations analysed using ribosomal ITS1 sequences in faeces of wild and domesticated herbivores. Anaerobe 16, 66–73. 10.1016/j.anaerobe.2009.05.003 PubMed DOI
Nicholson M. J., Theodorou M. K., Brookman J. L. (2005). Molecular analysis of the anaerobic rumen fungus Orpinomyces–insights into an AT-rich genome. Microbiology 151, 121–133. 10.1099/mic.0.27353-0 PubMed DOI
O'Fallon J. V., Wright R., Calza R. E. (1991). Glucose metabolic pathways in the anaerobic rumen fungus Neocallimastix frontalis EB188. Biochem. J. 274, 595–599. 10.1042/bj2740595 PubMed DOI PMC
Orpin C. G. (1975). Studies on the rumen flagellate Neocallimastix frontalis. Microbiology 91, 249–262. 10.1099/00221287-91-2-249 PubMed DOI
Orpin C. G., Joblin K. N. (1997). The rumen anaerobic fungi, in The Rumen Microbial Ecosystem, eds Hobson P. N., Stewart C. S. (Dordrecht: Springer; ), 140–195.
Orpin C. G., Munn E. A. (1986). Neocallimastix patriciarum sp. nov., a new member of the Neocallimasticaceae inhabiting the rumen of sheep. Brit. Mycol. Soc. 86, 178–181. 10.1016/S0007-1536(86)80138-3 DOI
Orpin C. G. (1977). The occurrence of chitin in the cell walls of the rumen organisms Neocallimastix frontalis, Piromonas communis and Sphaeromonas communis. J. Gen. Microbiol. 99, 215–218. 10.1099/00221287-99-1-215 PubMed DOI
Ozkose E., Thomas B. J., Davies D. R., Griffith G. W., Theodorou M. K. (2001). Cyllamyces aberensis gen. nov. sp. nov., a new anaerobic gut fungus with branched sporangiophores isolated from cattle. Can. J. Bot. 79, 666–673. 10.1139/b01-047 DOI
Park M. A. (2011). Genomic and Proteomic Approaches for Elucidation of Carbohydrate Metabolism in Anaerobic Rumen Fungus, Neocallimastix frontalis PMA02. Ph.D. Thesis, Seoul National University.
Paul S. S., Kamra D. N., Sastry V. R. (2010). Fermentative characteristics and fibrolytic activities of anaerobic gut fungi isolated from wild and domestic ruminants. Arch. Anim. Nutr. 64, 279–292. 10.1080/17450391003625037 PubMed DOI
Paul S. S., Kamra D. N., Sastry V. R. B., Agarwal N. (2004). Effect of administration of an anaerobic gut fungus isolated from wild blue bull to buffaloes on in-vivo ruminal fermentation and digestion of nutrients. Anim. Feed Sci. Tech. 115, 143–157. 10.1016/j.anifeedsci.2004.01.010 DOI
Peng X., Gilmore S. P., O'Malley M. A. (2016). Microbial communities for bioprocessing: lessons learned from nature. Curr. Opin. Chem. Eng. 14, 103–109. 10.1016/j.coche.2016.09.003 DOI
Phillips M. W., Gordon G. L. (1988). Sugar and polysaccharide fermentation by rumen anaerobic fungi from Australia, Britain and New Zealand. Biosystems. 21, 377–383. 10.1016/0303-2647(88)90036-6 PubMed DOI
Picard K. T. (2017). Coastal marine habitats harbor novel early-diverging fungal diversity. Fungal Ecol. 25, 1–13. 10.1016/j.funeco.2016.10.006 DOI
Pitta D. W., Pinchak W. E., Indugu N., Vecchiarelli B., Sinha R., Fulford J. D. (2016). Metagenomic Analysis of the Rumen Microbiome of Steers with Wheat-Induced Frothy Bloat. Front. Microbiol. 7:689. 10.3389/fmicb.2016.00689 PubMed DOI PMC
Pope P. B., Mackenzie A. K., Gregor I., Smith W., Sundset M. A., McHardy A. C., et al. . (2012). Metagenomics of the Svalbard reindeer rumen microbiome reveals abundance of polysaccharide utilization loci. PLoS ONE 7:e38571. 10.1371/journal.pone.0038571 PubMed DOI PMC
Poulsen M., Schwab C., Jensen B. B., Engberg R. M., Spang A., Canibe N., et al. . (2013). Methylotrophic methanogenic Thermoplasmata implicated in reduced methane emissions from bovine rumen. Nat. Commun. 4:1428. 10.1038/ncomms2432 PubMed DOI
Prochazka J., Mrazek J., Štrosová L., Fliegerová K., Zábranská J., Dohányos M. (2012). Enhanced biogas yield from energy crops with rumen anaerobic fungi. Eng. Life Sci. 12, 343–351. 10.1002/elsc.201100076 DOI
Puniya A. K., Salem A. Z. M., Kumar S., Dagar S. S., Griffith G. W., Puniya M., et al. (2015). Role of live microbial feed supplements with reference to anaerobic fungi in ruminant productivity. J. Integr. Agr. 14, 550–560. 10.1016/S2095-3119(14)60837-6 DOI
Qi M., Wang P., O'Toole N., Barboza P. S., Ungerfeld E., Leigh M. B., et al. . (2011). Snapshot of the eukaryotic gene expression in muskoxen rumen—a metatranscriptomic approach. PLoS ONE 6:e20521. 10.1371/journal.pone.0020521 PubMed DOI PMC
Reymond P., Geourjon C., Roux B., Durand R., Fevre M. (1992). Sequence of the phosphoenolpyruvate carboxykinase-encoding cDNA from the rumen anaerobic fungus Neocallimastix frontalis: comparison of the amino acid sequence with animals and yeast. Gene 110, 57–63. 10.1016/0378-1119(92)90444-T PubMed DOI
Rezaeian M., Beakes G. W., Parker D. S. (2004). Distribution and estimation of anaerobic zoosporic fungi along the digestive tracts of sheep. Mycol. Res. 108, 1227–1233. 10.1017/S0953756204000929 PubMed DOI
Roger V., Grenet E., Jamot J., Bernalier A., Fonty G., Gouet P. (1992). Degradation of maize stem by two rumen fungal species, Piromyces communis and Caecomyces communis, in pure cultures or in association with cellulolytic bacteria. Reprod. Nutr. Dev. 32, 321–329. 10.1051/rnd:19920402 PubMed DOI
Ross M. G., Russ C., Costello M., Hollinger A., Lennon N. J., Hegarty R., et al. . (2013). Characterizing and measuring bias in sequence data. Genome Biol. 14:R51. 10.1186/gb-2013-14-5-r51 PubMed DOI PMC
Santamaria M., Fosso B., Consiglio A., De Caro G., Grillo G., Licciulli F., et al. . (2012). Reference databases for taxonomic assignment in metagenomics. Brief Bioinform. 13, 682–695. 10.1093/bib/bbs036 PubMed DOI
Saxena S., Sehgal J. P., Puniya A. K., Singh K. (2010). Effect of administration of rumen fungi on production performance of lactating buffaloes, Benef. Microbes 1, 183–188. 10.3920/BM2009.0018 PubMed DOI
Schloss P. D., Westcott S. L., Ryabin T., Hall J. R., Hartmann M., Hollister E. B., et al. . (2009). Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541. 10.1128/AEM.01541-09 PubMed DOI PMC
Schoch C. L., Seifert K. A., Huhndorf S., Robert V., Spouge J. L., Levesque C. A., et al. . (2012). Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. PNAS 109, 6241–6246. 10.1073/pnas.1117018109 PubMed DOI PMC
Schurch N. J., Schofield P., Gierlinski M., Cole C., Sherstnev A., Singh V., et al. (2016). How many biological replicates are needed in an RNA-seq experiment and which differential expression tool should you use? RNA 22, 839–851. 10.1261/rna.053959.115 PubMed DOI PMC
Seibel P. N., Müller T., Dandekar T., Schultz J., Wolf M. (2006). 4SALE a tool for synchronous RNA sequence and secondary structure alignment and editing. BMC Bioinformatics 7:498. 10.1186/1471-2105-7-498 PubMed DOI PMC
Seibel P. N., Müller T., Dandekar T., Wolf M. (2008). Synchronous visual analysis and editing of RNA sequence and secondary structure alignments using 4SALE. BMC Res. Notes 1:91. 10.1186/1756-0500-1-91 PubMed DOI PMC
Sekhavati M. H., Mesgaran M. D., Nassiri M. R., Mohammadabadi T., Rezaii F., Fani Maleki A. (2009). Development and use of quantitative competitive PCR assays for relative quantifying rumen anaerobic fungal populations in both in vitro and in vivo systems. Mycol. Res. 113, 1146–1153. 10.1016/j.mycres.2009.07.017 PubMed DOI
Shulaev V. (2006). Metabolomics technology and bioinformatics. Brief. Bioinform. 7, 128–139. 10.1093/bib/bbl012 PubMed DOI
Solomon K. V., Haitjema C. H., Henske J. K., Gilmore S. P., Borges-Rivera D., Lipzen A., et al. . (2016a). Early-branching gut fungi possess a large, comprehensive array of biomass-degrading enzymes. Science 351, 1192–1195. 10.1126/science.aad1431 PubMed DOI PMC
Solomon K. V., Henske J. K., Theodorou M. K., O'Malley M. A. (2016b). Robust and effective methodologies for cryopreservation and DNA extraction from anaerobic gut fungi. Anaerobe 38, 39–46. 10.1016/j.anaerobe.2015.11.008 PubMed DOI
Srinivasan K., Murakami M., Nakashimada Y., Nishio N. (2001). Efficient production of cellulolytic and xylanolytic enzymes by the rumen anaerobic fungus, Neocallimastix frontalis, in a repeated batch culture. J. Biosci. Bioeng. 91, 153–158. 10.1016/S1389-1723(01)80058-X PubMed DOI
Tarazona S., Garcia-Alcalde F., Dopazo J., Ferrer A., Conesa A. (2011). Differential expression in RNA-seq: a matter of depth. Genome Res. 21, 2213–2223. 10.1101/gr.124321.111 PubMed DOI PMC
Theodorou M. K., Mennim G., Davies D. R., Zhu W. Y., Trinci A. P., Brookman J. L. (1996). Anaerobic fungi in the digestive tract of mammalian herbivores and their potential for exploitation. Proc. Nutr. Soc. 55, 913–926. 10.1079/PNS19960088 PubMed DOI
Thorsen M. S. (1999). Abundance and biomass of the gut-living microorganisms (bacteria, protozoa and fungi) in the irregular sea urchin Echinocardium cordatum (Spatangoida: Echinodermata). Mar. Biol. 133, 353–360. 10.1007/s002270050474 DOI
Trinci A. P., Davies D. R., Gull K., Lawrence M. I., Bonde Nielsen B., Rickers A., et al. (1994). Anaerobic fungi in herbivorous animals. Mycol. Res. 98, 129–152. 10.1016/S0953-7562(09)80178-0 DOI
Tripathi V. K., Sehgal J. P., Puniya A. K., Singh K. (2007). Effect of administration of anaerobic fungi isolated from cattle and wild blue bull (Boselaphus tragocamelus) on growth rate and fiber utilization in buffalo calves. Arch. Anim. Nutr. 61, 416–423. 10.1080/17450390701556759 PubMed DOI
Tuckwell D. S., Nicholson M. J., Mcsweeney C. S., Theodorou M. K., Brookman J. L. (2005). The rapid assignment of ruminal fungi to presumptive genera using ITS1 and ITS2 RNA secondary structures to produce group-specific fingerprints. Microbiology 151, 1557–1567. 10.1099/mic.0.27689-0 PubMed DOI
Villas-Bôas S. G., Mas S., Åkesson M., Smedsgaard J., Nielsen J. (2005). Mass spectrometry in metabolome analysis. Mass. Spectrom. Rev. 24, 613–646. 10.1002/mas.20032 PubMed DOI
Wang L., Hatem A., Catalyurek U. V., Morrison M., Yu Z. (2013). Metagenomic Insights into the Carbohydrate-Active Enzymes Carried by the Microorganisms Adhering to Solid Digesta in the Rumen of Cows. PLoS ONE 8:e78507. 10.1371/journal.pone.0078507 PubMed DOI PMC
Wang P., Qi M., Barboza P., Leigh M. B., Ungerfeld E., Selinger L. B., et al. . (2011). Isolation of high-quality total RNA from rumen anaerobic bacteria and fungi, and subsequent detection of glycoside hydrolases. Can. J. Microbiol. 57, 590–598. 10.1139/w11-048 PubMed DOI
Wang X., Liu X., Groenewald J. Z. (2017). Phylogeny of anaerobic fungi (phylum Neocallimastigomycota), with contributions from yak in China. Anton. Van. Lee. 110, 87–103. 10.1007/s10482-016-0779-1 PubMed DOI PMC
Wei Y. Q., Yang H. J., Luan Y., Long R. J., Wu Y. J., Wang Z. Y. (2016a). Isolation, identification and fibrolytic characteristics of rumen fungi grown with indigenous methanogen from yaks (Bos grunniens) grazing on the Qinghai-Tibetan Plateau. J. Appl. Microbiol. 120, 571–587. 10.1111/jam.13035 PubMed DOI
Wei Y.-Q., Long R.-J., Yang H., Yang H.-J., Shen X.-H., Shi R.-F., et al. . (2016b). Fiber degradation potential of natural co-cultures of Neocallimastix frontalis and Methanobrevibacter ruminantium isolated from yaks (Bos grunniens) grazing on the Qinghai Tibetan Plateau. Anaerobe. 39, 158–164. 10.1016/j.anaerobe.2016.03.005 PubMed DOI
White T. J., Bruns T., Lee S. J. W. T., Taylor J. W. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protocols 18, 315–322.
Widyastuti Y., Newbold C., Stewart C., Orskov E. (1995). Interactions between rumen anaerobic fungi and ciliate protozoa in the degradation of rice straw cell walls. Lett. Appl. Microbiol. 20, 61–64. 10.1111/j.1472-765X.1995.tb00408.x PubMed DOI
Williams A., Withers S., Joblin K. (1991). Xylanolysis by cocultures of the rumen fungus Neocallimastix frontalis and ruminal bacteria. Lett. Appl. Microbiol. 12, 232–235. 10.1111/j.1472-765X.1991.tb00547.x DOI
Williams A., Withers S., Naylor G., Joblin K. (1994). Effect of heterotrophic ruminal bacteria on xylan metabolism by the anaerobic fungus Piromyces communis. Lett. Appl. Microbiol. 19, 105–109. 10.1111/j.1472-765X.1994.tb00917.x DOI
Wolf M., Ruderisch B., Dandekar T., Schultz J., Müller T. (2008). ProfDistS: (profile-) distance based phylogeny on sequence–structure alignments. Bioinformatics 24, 2401–2402. 10.1093/bioinformatics/btn453 PubMed DOI
Wurzbacher C., Warthmann N., Bourne E., Attermeyer K., Allgaier M., Powell J. R., et al. (2016). High habitat- specificity in fungal communities of an oligo-mesotrophic, temperate lake. MycoKeys 16, 17–44. 10.3897/mycokeys.16.9646 DOI
Xue G. P., Orpin C. G., Gobius K. S., Aylward J. H., Simpson G. D. (1992). Cloning and expression of multiple cellulase cDNAs from the anaerobic rumen fungus Neocallimastix partriciarum in Escherichia coli. J. Gen. Microbiol. 138, 1413–1420. 10.1099/00221287-138-7-1413 PubMed DOI
Xue G., Denman S. E., Glassop D., Johnson J. S., Dierens L. M., Gobius K. S., et al. . (1995). Modification of a xylanase cDNA isolated from an anaerobic fungus Neocallimastix patriciarum for high-level expression in Escherichia coli. J. Biotechnol. 38, 269–277. 10.1016/0168-1656(94)00133-W PubMed DOI
Youssef N. H., Couger M. B., Struchtemeyer C. G., Liggenstoffer A. S., Prade R. A., Najar F. Z., et al. . (2013). The genome of the anaerobic fungus Orpinomyces sp. strain C1A reveals the unique evolutionary history of a remarkable plant biomass degrader. Appl. Environ. Microbiol. 79, 4620–4634. 10.1128/AEM.00821-13 PubMed DOI PMC
Anaerobic Fungi: Past, Present, and Future