Flow cytometric characterisation of the complex polyploid genome of Saccharum officinarum and modern sugarcane cultivars
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31852940
PubMed Central
PMC6920420
DOI
10.1038/s41598-019-55652-3
PII: 10.1038/s41598-019-55652-3
Knihovny.cz E-zdroje
- MeSH
- alely MeSH
- buněčný cyklus účinky léků genetika MeSH
- chromozomy rostlin genetika MeSH
- DNA rostlinná metabolismus MeSH
- fluorescence MeSH
- genom rostlinný * MeSH
- hydroxymočovina farmakologie MeSH
- karyotyp MeSH
- kinetika MeSH
- kořeny rostlin účinky léků MeSH
- polyploidie * MeSH
- průtoková cytometrie metody MeSH
- Saccharum účinky léků genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA rostlinná MeSH
- hydroxymočovina MeSH
Sugarcane (Saccharum spp.) is a globally important crop for sugar and bioenergy production. Its highly polyploid, complex genome has hindered progress in understanding its molecular structure. Flow cytometric sorting and analysis has been used in other important crops with large genomes to dissect the genome into component chromosomes. Here we present for the first time a method to prepare suspensions of intact sugarcane chromosomes for flow cytometric analysis and sorting. Flow karyotypes were generated for two S. officinarum and three hybrid cultivars. Five main peaks were identified and each genotype had a distinct flow karyotype profile. The flow karyotypes of S. officinarum were sharper and with more discrete peaks than the hybrids, this difference is probably due to the double genome structure of the hybrids. Simple Sequence Repeat (SSR) markers were used to determine that at least one allelic copy of each of the 10 basic chromosomes could be found in each peak for every genotype, except R570, suggesting that the peaks may represent ancestral Saccharum sub genomes. The ability to flow sort Saccharum chromosomes will allow us to isolate and analyse chromosomes of interest and further examine the structure and evolution of the sugarcane genome.
Zobrazit více v PubMed
International Sugar Organisation. Available at: https://www.isosugar.org/sugarsector/sugar. (Accessed: 15th August 2019) (2019).
Lalman, J. A., Shewa, W. A. & Gallagher, J. Biofuels production from renewable feedstocks. In Quality Living Through Chemurgy and Green Chemistry (ed. C. K. Lau, P.) (Springer Berlin Heidelberg, 2016).
Food and Agriculture Organization of the United Nations. Available at: http://www.fao.org/home/en/.
Paterson AH, et al. Comparative genomics of plant chromosomes. Plant Cell. 2000;12:1523–40. doi: 10.1105/tpc.12.9.1523. PubMed DOI PMC
Salse J, et al. Identification and characterization of shared duplications between rice and wheat provide new insight into grass genome evolution. Plant Cell. 2008;20:11–24. doi: 10.1105/tpc.107.056309. PubMed DOI PMC
Devos KM. Grass genome organization and evolution. Curr. Opin. Plant Biol. 2010;13:139–145. doi: 10.1016/j.pbi.2009.12.005. PubMed DOI
Salse J, et al. Reconstruction of monocotelydoneous proto-chromosomes reveals faster evolution in plants than in animals. Proc. Natl. Acad. Sci. 2009;106:14908–14913. doi: 10.1073/pnas.0902350106. PubMed DOI PMC
Zhang J, et al. Recent polyploidization events in three Saccharum founding species. Plant Biotechnol. J. 2019;17:264–274. doi: 10.1111/pbi.12962. PubMed DOI PMC
Paterson AH, Freeling M, Tang H, Wang X. Insights from the comparison of plant genome sequences. Annu. Rev. Plant Biol. 2010;61:349–372. doi: 10.1146/annurev-arplant-042809-112235. PubMed DOI
D’Hont A, et al. Characterisation of the double genome structure of modern sugarcane cultivars (Saccharum spp.) by molecular cytogenetics. Mol. Gen. Genet. 1996;250:405–413. doi: 10.1007/s004380050092. PubMed DOI
Grivet L, Arruda P. Sugarcane genomics: depicting the complex genome of an important tropical crop. Curr. Opin. Plant Biol. 2001;5:122–127. doi: 10.1016/S1369-5266(02)00234-0. PubMed DOI
D’Hont A, Ison D, Alix K, Roux C, Glaszmann JC. Determination of basic chromosome numbers in the genus Saccharum by physical mapping of ribosomal RNA genes. Genome. 1998;41:221–225. doi: 10.1139/g98-023. DOI
Li LJ, et al. Flow cytometric sorting of maize chromosome 9 from an oat-maize chromosome addition line. Theor. Appl. Genet. 2001;102:658–663. doi: 10.1007/s001220051694. DOI
Piperidis G, Piperidis N, D’Hont A. Molecular cytogenetic investigation of chromosome composition and transmission in sugarcane. Mol. Genet. genomics. 2010;284:65–73. doi: 10.1007/s00438-010-0546-3. PubMed DOI
D’Hont A. Unraveling the genome structure of polyploids using FISH and GISH; examples of sugarcane and banana. Cytogenet. Genome Res. 2005;109:27–33. doi: 10.1159/000082378. PubMed DOI
Wendel JF, Jackson SA, Meyers BC, Wing RA. Evolution of plant genome architecture. Genome Biol. 2016;17:37. doi: 10.1186/s13059-016-0908-1. PubMed DOI PMC
Doležel J, Kubaláková M, Paux E, Bartoš J, Feuillet C. Chromosome-based genomics in the cereals. Chromosom. Res. 2007;15:51–66. doi: 10.1007/s10577-006-1106-x. PubMed DOI
Grosso V, Farina A, Gennaro A, Giorgi D, Lucretti S. Flow sorting and molecular cytogenetic identification of individual chromosomes of Dasypyrum villosum L. (H. villosa) by a single DNA probe. PLoS One. 2012;7:e50151. doi: 10.1371/journal.pone.0050151. PubMed DOI PMC
Vrána J, et al. Flow Analysis and Sorting of Plant Chromosomes. Curr. Protoc. Cytom. 2016;78:5.3.1–5.3.43. doi: 10.1002/cpcy.9. PubMed DOI
Doležel J, Číhalíková J, Weiserová J, Lucretti S. Cell cycle synchronization in plant root meristems. Methods Cell Sci. 1999;21:95–107. doi: 10.1023/A:1009876621187. PubMed DOI
Vrána J, Šimková H, Kubaláková M, Číhalíková J, Doležel J. Flow cytometric chromosome sorting in plants: The next generation. Methods. 2012;57:331–337. doi: 10.1016/j.ymeth.2012.03.006. PubMed DOI
Lee J-H, et al. Root tip cell cycle synchronization and metaphase chromosomes isolation suitable for flow sorting in common wheat (Triticum aestivum L) Genome. 1997;40:633–638. doi: 10.1139/g97-083. PubMed DOI
Abbott JC, Butcher SA. Strategies towards sequencing complex crop genomes. Genome Biol. 2012;13:322. doi: 10.1186/gb-2012-13-11-322. PubMed DOI PMC
Aitken KS, et al. Comparative mapping in the Poaceae family reveals translocations in the complex polyploid genome of sugarcane. BMC Plant Biol. 2014;14:190. doi: 10.1186/s12870-014-0190-x. PubMed DOI PMC
Aitken KS, et al. A comprehensive genetic map of sugarcane that provides enhanced map coverage and integrates high-throughput Diversity Array Technology (DArT) markers. BMC Genomics. 2014;15:152. doi: 10.1186/1471-2164-15-152. PubMed DOI PMC
Zhang Jisen, Zhang Xingtan, Tang Haibao, Zhang Qing, Hua Xiuting, Ma Xiaokai, Zhu Fan, Jones Tyler, Zhu Xinguang, Bowers John, Wai Ching Man, Zheng Chunfang, Shi Yan, Chen Shuai, Xu Xiuming, Yue Jingjing, Nelson David R., Huang Lixian, Li Zhen, Xu Huimin, Zhou Dong, Wang Yongjun, Hu Weichang, Lin Jishan, Deng Youjin, Pandey Neha, Mancini Melina, Zerpa Dessireé, Nguyen Julie K., Wang Liming, Yu Liang, Xin Yinghui, Ge Liangfa, Arro Jie, Han Jennifer O., Chakrabarty Setu, Pushko Marija, Zhang Wenping, Ma Yanhong, Ma Panpan, Lv Mingju, Chen Faming, Zheng Guangyong, Xu Jingsheng, Yang Zhenhui, Deng Fang, Chen Xuequn, Liao Zhenyang, Zhang Xunxiao, Lin Zhicong, Lin Hai, Yan Hansong, Kuang Zheng, Zhong Weimin, Liang Pingping, Wang Guofeng, Yuan Yuan, Shi Jiaxian, Hou Jinxiang, Lin Jingxian, Jin Jingjing, Cao Peijian, Shen Qiaochu, Jiang Qing, Zhou Ping, Ma Yaying, Zhang Xiaodan, Xu Rongrong, Liu Juan, Zhou Yongmei, Jia Haifeng, Ma Qing, Qi Rui, Zhang Zhiliang, Fang Jingping, Fang Hongkun, Song Jinjin, Wang Mengjuan, Dong Guangrui, Wang Gang, Chen Zheng, Ma Teng, Liu Hong, Dhungana Singha R., Huss Sarah E., Yang Xiping, Sharma Anupma, Trujillo Jhon H., Martinez Maria C., Hudson Matthew, Riascos John J., Schuler Mary, Chen Li-Qing, Braun David M., Li Lei, Yu Qingyi, Wang Jianping, Wang Kai, Schatz Michael C., Heckerman David, Van Sluys Marie-Anne, Souza Glaucia Mendes, Moore Paul H., Sankoff David, VanBuren Robert, Paterson Andrew H., Nagai Chifumi, Ming Ray. Allele-defined genome of the autopolyploid sugarcane Saccharum spontaneum L. Nature Genetics. 2018;50(11):1565–1573. doi: 10.1038/s41588-018-0237-2. PubMed DOI
Cuadrado A, Acevedo R, Moreno Díaz De La Espina S, Jouve N, De La Torre C. Genome remodelling in three modern S. officinarum x S. spontaneum sugarcane cultivars. J. Exp. Bot. 2004;55:847–854. doi: 10.1093/jxb/erh093. PubMed DOI
Cheavegatti-Gianotto A, et al. Sugarcane (Saccharum X officinarum): A Reference Study for the Regulation of Genetically Modified Cultivars in Brazil. Trop. Plant Biol. 2011;4:62–89. doi: 10.1007/s12042-011-9068-3. PubMed DOI PMC
Thirugnanasambandam PP, Hoang NV, Henry RJ. The Challenge of Analyzing the Sugarcane Genome. Front. Plant Sci. 2018;9:1–18. doi: 10.3389/fpls.2018.00616. PubMed DOI PMC
Garsmeur O, et al. A mosaic monoploid reference sequence for the highly complex genome of sugarcane. Nat. Commun. 2018;9:2638. doi: 10.1038/s41467-018-05051-5. PubMed DOI PMC
Vrána J, et al. Flow sorting of mitotic chromosomes in common wheat (Triticum aestivum L.) Genetics. 2000;156:2033–41. PubMed PMC
Aitken KS, Jackson PA, McIntyre CL. Construction of a genetic linkage map for Saccharum officinarum incorporating both simplex and duplex markers to increase genome coverage. Genome. 2007;50:742–756. doi: 10.1139/G07-056. PubMed DOI
Mudge J, Andersen WR, Kehrer RL, Fairbanks DJ. A RAPD genetic map of Saccharum officinarum. Crop Sci. 1996;36:1362–1366. doi: 10.2135/cropsci1996.0011183X003600050046x. DOI
Moore, P. H., Paterson, A. H. & Tew, T. Sugarcane: The Crop, the Plant, and Domestication. in Sugarcane: Physiology, Biochemistry, and FunctionalBiology (eds. Moore, P. H. & Botha, F. C.) 1–17 (John Wiley & Sons, Inc., 2014).
FlowJoTMSoftware (for Windows) Verson 10.5.3. Ashland (2019).
Giorgi D, et al. FISHIS: fluorescence in situ hybridization in suspension and chromosome flow sorting made easy. PLoS One. 2013;8:e57994. doi: 10.1371/journal.pone.0057994. PubMed DOI PMC
Paulet, F. et al. Development of sugarcane (Saccharum spp.) microsatellite markers. EMBL database Available at: www.ebi.ac.uk (2000).
Aitken KS, Jackson PA, McIntyre CL. A combination of AFLP and SSR markers provides extensive map coverage and identification of homo(eo)logous linkage groups in a sugarcane cultivar. Theor. Appl. Genet. 2005;110:789–801. doi: 10.1007/s00122-004-1813-7. PubMed DOI
CIMMYT. Laboratory Protocols: CIMMYT Applied Molecular Genetics Laboratory. (CIMMYT, 2005).
The complex polyploid genome architecture of sugarcane
Flow Cytometric Analysis and Sorting of Plant Chromosomes
Chromosome analysis and sorting