The complex polyploid genome architecture of sugarcane
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
PubMed
38538783
PubMed Central
PMC11041754
DOI
10.1038/s41586-024-07231-4
PII: 10.1038/s41586-024-07231-4
Knihovny.cz E-zdroje
- MeSH
- biotechnologie MeSH
- chromozomy rostlin genetika MeSH
- DNA rostlinná genetika MeSH
- genom rostlinný * genetika MeSH
- haplotypy genetika MeSH
- hybridizace genetická genetika MeSH
- polyploidie * MeSH
- referenční standardy MeSH
- Saccharum * klasifikace genetika MeSH
- šlechtění rostlin MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- DNA rostlinná MeSH
Sugarcane, the world's most harvested crop by tonnage, has shaped global history, trade and geopolitics, and is currently responsible for 80% of sugar production worldwide1. While traditional sugarcane breeding methods have effectively generated cultivars adapted to new environments and pathogens, sugar yield improvements have recently plateaued2. The cessation of yield gains may be due to limited genetic diversity within breeding populations, long breeding cycles and the complexity of its genome, the latter preventing breeders from taking advantage of the recent explosion of whole-genome sequencing that has benefited many other crops. Thus, modern sugarcane hybrids are the last remaining major crop without a reference-quality genome. Here we take a major step towards advancing sugarcane biotechnology by generating a polyploid reference genome for R570, a typical modern cultivar derived from interspecific hybridization between the domesticated species (Saccharum officinarum) and the wild species (Saccharum spontaneum). In contrast to the existing single haplotype ('monoploid') representation of R570, our 8.7 billion base assembly contains a complete representation of unique DNA sequences across the approximately 12 chromosome copies in this polyploid genome. Using this highly contiguous genome assembly, we filled a previously unsized gap within an R570 physical genetic map to describe the likely causal genes underlying the single-copy Bru1 brown rust resistance locus. This polyploid genome assembly with fine-grain descriptions of genome architecture and molecular targets for biotechnology will help accelerate molecular and transgenic breeding and adaptation of sugarcane to future environmental conditions.
Arizona Genomics Institute University of Arizona Tucson AZ USA
CIRAD UMR AGAP Institut Montpellier France
Corteva Agriscience Johnston IA USA
CSIRO Agriculture and Food Queensland Bioscience Precinct St Lucia Queensland Australia
CSIRO Agriculture and Food Urrbrae South Australia Australia
Department of Energy Joint Genome Institute Lawrence Berkeley National Laboratory Berkeley CA USA
ERCANE Sainte Clotilde La Réunion France
Genome Sequencing Center HudsonAlpha Institute for Biotechnology Huntsville AL USA
Joint BioEnergy Institute Lawrence Berkeley National Laboratory Emeryville CA USA
Sugar Research Australia Te Kowai Queensland Australia
UMR AGAP Institut Univ Montpellier CIRAD INRAE Institut Agro Montpellier France
Zobrazit více v PubMed
Dinesh Babu KS, et al. A short review on sugarcane: its domestication, molecular manipulations and future perspectives. Genet. Resour. Crop Evol. 2022;69:2623–2643. doi: 10.1007/s10722-022-01430-6. PubMed DOI PMC
Yadav S, et al. Accelerating genetic gain in sugarcane breeding using genomic selection. Agronomy. 2020;10:585. doi: 10.3390/agronomy10040585. DOI
Grivet, L., Glaszmann, J.-C. & D’Hont, A. in Darwin’s Harvest (eds Motley, T. J. et al.) 49–66 (Columbia Univ. Press, 2006).
Bremer G. Problems in breeding and cytology of sugar cane. Euphytica. 1961;10:59–78. doi: 10.1007/BF00037206. DOI
Burner DM, Legendre BL. Chromosome transmission and meiotic stability of sugarcane (Saccharum spp.) hybrid derivatives. Crop Sci. 1993;33:600–606. doi: 10.2135/cropsci1993.0011183X003300030036x. DOI
Vieira MLC, et al. Revisiting meiosis in sugarcane: chromosomal irregularities and the prevalence of bivalent configurations. Front. Genet. 2018;9:213. doi: 10.3389/fgene.2018.00213. PubMed DOI PMC
Oliveira, G. K. et al. Meiotic abnormalities in sugarcane (Saccharum spp.) and parental species: evidence for peri‐ and paracentric inversions. Ann. Appl. Biol.10.1111/aab.12855 (2023).
Hoarau J-Y, et al. Genetic dissection of a modern sugarcane cultivar (Saccharum spp.). I. Genome mapping with AFLP markers. Theor. Appl. Genet. 2001;103:84–97. doi: 10.1007/s001220000390. PubMed DOI
Aitken KS, Jackson PA, McIntyre CL. A combination of AFLP and SSR markers provides extensive map coverage and identification of homo(eo)logous linkage groups in a sugarcane cultivar. Theor. Appl. Genet. 2005;110:789–801. doi: 10.1007/s00122-004-1813-7. PubMed DOI
Jannoo, N., Grivet, L., David, J., D’Hont, A & Glaszmann, J.-C. Differential chromosome pairing affinities at meiosis in polyploid sugarcane revealed by molecular markers. Heredity93, 460–467 (2004). PubMed
Dumont T, et al. Sugarcane breeding in reunion: challenges, achievements and future prospects. Sugar Tech. 2022;24:181–192. doi: 10.1007/s12355-021-00998-0. DOI
D’Hont A, et al. Characterisation of the double genome structure of modern sugarcane cultivars (Saccharum spp.) by molecular cytogenetics. Mol. Gen. Genet. 1996;250:405–413. doi: 10.1007/s004380050092. PubMed DOI
Piperidis N, D’Hont A. Sugarcane genome architecture decrypted with chromosome-specific oligo probes. Plant J. 2020;103:2039–2051. doi: 10.1111/tpj.14881. PubMed DOI
Costet L, et al. Haplotype structure around Bru1 reveals a narrow genetic basis for brown rust resistance in modern sugarcane cultivars. Theor. Appl. Genet. 2012;125:825–836. doi: 10.1007/s00122-012-1875-x. PubMed DOI
Parco AS, et al. Distribution and frequency of Bru1, a major brown rust resistance gene, in the sugarcane world collection. Plant Breed. 2017;136:637–651. doi: 10.1111/pbr.12508. DOI
Garsmeur O, et al. A mosaic monoploid reference sequence for the highly complex genome of sugarcane. Nat. Commun. 2018;9:2638. doi: 10.1038/s41467-018-05051-5. PubMed DOI PMC
Souza GM, et al. Assembly of the 373k gene space of the polyploid sugarcane genome reveals reservoirs of functional diversity in the world’s leading biomass crop. GigaScience. 2019;8:giz129. doi: 10.1093/gigascience/giz129. PubMed DOI PMC
Shearman JR, et al. A draft chromosome-scale genome assembly of a commercial sugarcane. Sci. Rep. 2022;12:20474. doi: 10.1038/s41598-022-24823-0. PubMed DOI PMC
Nurk S, et al. The complete sequence of a human genome. Science. 2022;376:44–53. doi: 10.1126/science.abj6987. PubMed DOI PMC
Sun H, et al. Chromosome-scale and haplotype-resolved genome assembly of a tetraploid potato cultivar. Nat. Genet. 2022;54:342–348. doi: 10.1038/s41588-022-01015-0. PubMed DOI PMC
Ou S, Chen J, Jiang N. Assessing genome assembly quality using the LTR Assembly Index (LAI) Nucleic Acids Res. 2018;46:e126. PubMed PMC
Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics31, 3210–3212 (2015). PubMed
Lovell JT, et al. GENESPACE tracks regions of interest and gene copy number variation across multiple genomes. eLife. 2022;11:e78526. doi: 10.7554/eLife.78526. PubMed DOI PMC
Cuadrado A, Acevedo R, Moreno Díaz de la Espina S, Jouve N, De La Torre C. Genome remodelling in three modern S. officinarum × S. spontaneum sugarcane cultivars. J. Exp. Bot. 2004;55:847–854. doi: 10.1093/jxb/erh093. PubMed DOI
Piperidis G, Piperidis N, D’Hont A. Molecular cytogenetic investigation of chromosome composition and transmission in sugarcane. Mol. Genet. Genomics. 2010;284:65–73. doi: 10.1007/s00438-010-0546-3. PubMed DOI
Aitken KS, et al. A comprehensive genetic map of sugarcane that provides enhanced map coverage and integrates high-throughput Diversity Array Technology (DArT) markers. BMC Genom. 2014;15:152. doi: 10.1186/1471-2164-15-152. PubMed DOI PMC
Garsmeur O, et al. High homologous gene conservation despite extreme autopolyploid redundancy in sugarcane. New Phytol. 2011;189:629–642. doi: 10.1111/j.1469-8137.2010.03497.x. PubMed DOI
Vilela M, et al. Analysis of three sugarcane homo/homeologous regions suggests independent polyploidization events of Saccharum officinarum and Saccharum spontaneum. Genome Biol. Evol. 2017;9:266–278. PubMed PMC
Pompidor N, et al. Three founding ancestral genomes involved in the origin of sugarcane. Ann. Bot. 2021;127:827–840. doi: 10.1093/aob/mcab008. PubMed DOI PMC
Jannoo, N. et al. Orthologous comparison in a gene‐rich region among grasses reveals stability in the sugarcane polyploid genome. Plant J.50, 574–585 (2007). PubMed
Zhang Q, et al. Genomic insights into the recent chromosome reduction of autopolyploid sugarcane Saccharum spontaneum. Nat. Genet. 2022;54:885–896. doi: 10.1038/s41588-022-01084-1. PubMed DOI
Zhang J, et al. Allele-defined genome of the autopolyploid sugarcane Saccharum spontaneum L. Nat. Genet. 2018;50:1565–1573. doi: 10.1038/s41588-018-0237-2. PubMed DOI
Kamal, N. et al. The mosaic oat genome gives insights into a uniquely healthy cereal crop. Nature10.1038/s41586-022-04732-y (2022). PubMed PMC
Song K, Lu P, Tang K, Osborn TC. Rapid genome change in synthetic polyploids of Brassica and its implications for polyploid evolution. Proc. Natl Acad. Sci. USA. 1995;92:7719–7723. doi: 10.1073/pnas.92.17.7719. PubMed DOI PMC
Liu B, et al. Rapid genomic changes in polyploid wheat and related species: implications for genome evolution and genetic improvement. J. Genet. Genom. 2009;36:519–528. doi: 10.1016/S1673-8527(08)60143-5. PubMed DOI
Lu, X. et al. Segregation analysis of microsatellite (SSR) markers in sugarcane polyploids. Genet. Mol. Res.14, 18384–18395 (2015). PubMed
Piperidis N, et al. Comparative genetics in sugarcane enables structured map enhancement and validation of marker-trait associations. Mol. Breed. 2008;21:233–247. doi: 10.1007/s11032-007-9124-8. DOI
Steuernagel B, et al. The NLR-Annotator tool enables annotation of the intracellular immune receptor repertoire. Plant Physiol. 2020;183:468–482. doi: 10.1104/pp.19.01273. PubMed DOI PMC
Aitken KS, Jackson PA, McIntyre CL. Quantitative trait loci identified for sugar related traits in a sugarcane (Saccharum spp.) cultivar × Saccharum officinarum population. Theor. Appl. Genet. 2006;112:1306–1317. doi: 10.1007/s00122-006-0233-2. PubMed DOI
Hoarau J-Y, et al. Genetic dissection of a modern sugarcane cultivar (Saccharum spp.).II. Detection of QTLs for yield components. Theor. Appl. Genet. 2002;105:1027–1037. doi: 10.1007/s00122-002-1047-5. PubMed DOI
Ming R, et al. Molecular dissection of complex traits in autopolyploids: mapping QTLs affecting sugar yield and related traits in sugarcane. Theor. Appl. Genet. 2002;105:332–345. doi: 10.1007/s00122-001-0861-5. PubMed DOI
Cooper EA, et al. A new reference genome for Sorghum bicolor reveals high levels of sequence similarity between sweet and grain genotypes: implications for the genetics of sugar metabolism. BMC Genom. 2019;20:420. doi: 10.1186/s12864-019-5734-x. PubMed DOI PMC
Daugrois JH, et al. A putative major gene for rust resistance linked with a RFLP marker in sugarcane cultivar ‘R570’. Theor. Appl. Genet. 1996;92:1059–1064. doi: 10.1007/BF00224049. PubMed DOI
Le Cunff L, et al. Diploid/polyploid syntenic shuttle mapping and haplotype-specific chromosome walking toward a rust resistance gene (Bru1) in highly polyploid sugarcane (2n ∼ 12x ∼ 115) Genetics. 2008;180:649–660. doi: 10.1534/genetics.108.091355. PubMed DOI PMC
Gish LA, Clark SE. The RLK/Pelle family of kinases. Plant J. 2011;66:117–127. doi: 10.1111/j.1365-313X.2011.04518.x. PubMed DOI PMC
Brueggeman R, et al. The barley stem rust-resistance gene Rpg1 is a novel disease-resistance gene with homology to receptor kinases. Proc. Natl Acad. Sci. USA. 2002;99:9328–9333. doi: 10.1073/pnas.142284999. PubMed DOI PMC
Klymiuk V, et al. Cloning of the wheat Yr15 resistance gene sheds light on the plant tandem kinase-pseudokinase family. Nat. Commun. 2018;9:3735. doi: 10.1038/s41467-018-06138-9. PubMed DOI PMC
Lewis JD, Lo T, Bastedo P, Guttman DS, Desveaux D. The rise of the undead: pseudokinases as mediators of effector-triggered immunity. Plant Signal. Behav. 2014;9:e27563. doi: 10.4161/psb.27563. PubMed DOI PMC
Klymiuk V, Coaker G, Fahima T, Pozniak CJ. Tandem protein kinases emerge as new regulators of plant immunity. Mol. Plant Microbe Interact. 2021;34:1094–1102. doi: 10.1094/MPMI-03-21-0073-CR. PubMed DOI PMC
Huang, Y. et al. Species-specific abundant retrotransposons elucidate the genomic composition of modern sugarcane cultivars. Chromosoma129, 45–55 (2020). PubMed
Metcalfe CJ, et al. Flow cytometric characterisation of the complex polyploid genome of Saccharum officinarum and modern sugarcane cultivars. Sci. Rep. 2019;9:19362. doi: 10.1038/s41598-019-55652-3. PubMed DOI PMC
Metcalfe CJ, et al. Isolation and sequencing of a single copy of an introgressed chromosome from a complex genome for gene and SNP identification. Theor. Appl. Genet. 2022;135:1279–1292. doi: 10.1007/s00122-022-04030-1. PubMed DOI
Vrána J, et al. Flow cytometric chromosome sorting in plants: the next generation. Methods. 2012;57:331–337. doi: 10.1016/j.ymeth.2012.03.006. PubMed DOI
Vollger MR, et al. Long-read sequence and assembly of segmental duplications. Nat. Methods. 2019;16:88–94. doi: 10.1038/s41592-018-0236-3. PubMed DOI PMC
Hufford, M. B. et al. De novo assembly annotation and comparative analysis of 26 diverse maize genomes. Science373, 655–662 (2021). PubMed PMC
Wang M, Kong L. pblat: a multithread blat algorithm speeding up aligning sequences to genomes. BMC Bioinformatics. 2019;20:28. doi: 10.1186/s12859-019-2597-8. PubMed DOI PMC
Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018;34:3094–3100. doi: 10.1093/bioinformatics/bty191. PubMed DOI PMC
Li H, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25:2078–2079. doi: 10.1093/bioinformatics/btp352. PubMed DOI PMC
Quinlan AR. BEDTools: the Swiss-army tool for genome feature analysis. Curr. Protoc. Bioinformatics. 2014;47:11.12.1–34. doi: 10.1002/0471250953.bi1112s47. PubMed DOI PMC
Lovell JT, et al. The genomic landscape of molecular responses to natural drought stress in Panicum hallii. Nat. Commun. 2018;9:5213. doi: 10.1038/s41467-018-07669-x. PubMed DOI PMC
Wu TD, Nacu S. Fast and SNP-tolerant detection of complex variants and splicing in short reads. Bioinformatics. 2010;26:873–881. doi: 10.1093/bioinformatics/btq057. PubMed DOI PMC
Haas BJ, et al. Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies. Nucleic Acids Res. 2003;31:5654–5666. doi: 10.1093/nar/gkg770. PubMed DOI PMC
Salamov AA, Solovyev VV. Ab initio gene finding in Drosophila genomic DNA. Genome Res. 2000;10:516–522. doi: 10.1101/gr.10.4.516. PubMed DOI PMC
Slater GSC, Birney E. Automated generation of heuristics for biological sequence comparison. BMC Bioinformatics. 2005;6:31. doi: 10.1186/1471-2105-6-31. PubMed DOI PMC
Stanke M, et al. AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic Acids Res. 2006;34:W435–9. doi: 10.1093/nar/gkl200. PubMed DOI PMC
Smit, A. F. A. & Hubley, R. RepeatModeler Open-1.0. http://www.repeatmasker.org/ (2010).
McCormick RF, et al. The Sorghum bicolor reference genome: improved assembly, gene annotations, a transcriptome atlas, and signatures of genome organization. Plant J. 2018;93:338–354. doi: 10.1111/tpj.13781. PubMed DOI
Mamidi S, et al. A genome resource for green millet Setaria viridis enables discovery of agronomically valuable loci. Nat. Biotechnol. 2020;38:1203–1210. doi: 10.1038/s41587-020-0681-2. PubMed DOI PMC
Wang Y, et al. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 2012;40:e49. doi: 10.1093/nar/gkr1293. PubMed DOI PMC
Emms DM, Kelly S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 2019;20:238. doi: 10.1186/s13059-019-1832-y. PubMed DOI PMC
Goel M, Sun H, Jiao WB, Schneeberger K. SyRI: finding genomic rearrangements and local sequence differences from whole-genome assemblies. Genome Biol. 2019;20:1–13. doi: 10.1186/s13059-019-1911-0. PubMed DOI PMC
Pages, H., Aboyoun, P., Gentleman, R. & DebRoy, S. Biostrings: string objects representing biological sequences, and matching algorithms (2008). R package version 2.0 (2015).
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 2013;30:772–780. doi: 10.1093/molbev/mst010. PubMed DOI PMC
Zhou L, et al. ggmsa: a visual exploration tool for multiple sequence alignment and associated data. Brief. Bioinform. 2022;23:bbac222. doi: 10.1093/bib/bbac222. PubMed DOI
Lin, Z. et al. Evolutionary-scale prediction of atomic-level protein structure with a language model. Science379, 1123–1130 (2023). PubMed
Suyama M, Torrents D, Bork P. PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res. 2006;34:W609–12. doi: 10.1093/nar/gkl315. PubMed DOI PMC
Charif, D. & Lobry, J. R. in Structural Approaches to Sequence Evolution: Molecules, Networks, Populations (eds Bastolla, U., Porto, M., Roman, H. E. & Vendruscolo, M.) 207–232 (Springer Berlin Heidelberg, 2007).
Huang C-C, et al. Evolutionary rates of commonly used nuclear and organelle markers of Arabidopsis relatives (Brassicaceae) Gene. 2012;499:194–201. doi: 10.1016/j.gene.2012.02.037. PubMed DOI
Asnaghi C, et al. Application of synteny across Poaceae to determine the map location of a sugarcane rust resistance gene. Theor. Appl. Genet. 2000;101:962–969. doi: 10.1007/s001220051568. DOI
Minic, Z. Physiological roles of plant glycoside hydrolases. Planta227, 723–740 (2008). PubMed
Levy I, Shani Z, Shoseyov O. Modification of polysaccharides and plant cell wall by endo-1,4-beta-glucanase and cellulose-binding domains. Biomol. Eng. 2002;19:17–30. doi: 10.1016/S1389-0344(02)00007-2. PubMed DOI