Fine Mapping of Lr49 Using 90K SNP Chip Array and Flow-Sorted Chromosome Sequencing in Wheat
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
32117347
PubMed Central
PMC7010802
DOI
10.3389/fpls.2019.01787
Knihovny.cz E-zdroje
- Klíčová slova
- Infinium iSelect 90K SNP array, adult plant resistance, chromosome sorting, leaf rust, marker assisted breeding,
- Publikační typ
- časopisecké články MeSH
Leaf rust, caused by Puccinia triticina, threatens global wheat production due to the constant evolution of virulent pathotypes that defeat commercially deployed all stage-resistance (ASR) genes in modern cultivars. Hence, the deployment of combinations of adult plant resistance (APR) and ASR genes in new wheat cultivars is desirable. Adult plant resistance gene Lr49 was previously mapped on the long arm of chromosome 4B of cultivar VL404 and flanked by microsatellite markers barc163 (8.1 cM) and wmc349 (10.1 cM), neither of which was sufficiently closely linked for efficient marker assisted selection. This study used high-density SNP genotyping and flow sorted chromosome sequencing to fine-map the Lr49 locus as a starting point to develop a diagnostic marker for use in breeding and to clone this gene. Marker sunKASP_21 was mapped 0.4 cM proximal to Lr49, whereas a group of markers including sunKASP_24 were placed 0.6 cM distal to this gene. Testing of the linked markers on 75 Australian and 90 European cultivars with diverse genetic backgrounds showed that sunKASP_21 was most strongly associated with Lr49. Our results also show that the Lr49 genomic region contains structural variation relative to the reference stock Chinese Spring, possibly an inverted genomic duplication, which introduces a new set of challenges for the Lr49 cloning.
Agriculture Victoria Research AgriBio Bundoora VIC Australia
School of Applied Systems Biology La Trobe University Bundoora VIC Australia
Zobrazit více v PubMed
Appels R., Eversole K., Feuillet C., Keller B., Rogers J., Stein N., et al. (2018). Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361, 661. 10.1126/science.aar7191 PubMed DOI
Avni R., Nave M., Barad O., Baruch K., Twardziok S. O., Gundlach H., et al. (2017). Wild emmer genome architecture and diversity elucidate wheat evolution and domestication. Science 357, 93–97. 10.1126/science.aan0032 PubMed DOI
Bansal U. K., Hayden M. J., Venkata B. P., Khanna R., Saini R. G., Bariana H. S. (2008). Genetic mapping of adult plant leaf rust resistance genes Lr48 and Lr49 in common wheat. Theor. Appl. Genet. 117, 307–312. 10.1007/s00122-008-0775-6 PubMed DOI
Bansal U. K., Kazi A. G., Singh B., Hare R. A., Bariana H. S. (2014. a). Mapping of durable stripe rust resistance in a durum wheat cultivar Wollaroi. Mol. Breed 33, 51– 59. 10.1007/s11032-013-9933-x DOI
Bansal U. K., Wicker T., Keller B., Hayden M., Bariana H. S. (2014. b). Molecular mapping of an adult plant stem rust resistance gene Sr56 in winter wheat cultivar Arina. Theor. Appl. Genet. 127, 1441–1448. 10.1007/s00122-014-2311-1 PubMed DOI
Bariana H. S., Bansal U. K. (2017). “Breeding for disease Resistance,” in Encyclopedia of applied plant sciences, vol. 3 . Eds. Kole B., Murray G. B., Murphy J. D. (Waltham, MA: Academic Press; ), 69–76.
Bariana H. S., Brown G. N., Bansal U. K., Miah H., Standen G. E., Lu M. (2007). Breeding for triple rust resistance wheat cultivars for Australia using conventional and marker assisted selection technologies. Aust. J. Agric. Res. 58, 576–587. 10.1071/AR07124 DOI
Bariana H., Bansal U., Basandrai D., Chhetri M. (2013). “Disease Resistance,” in Genomics and breeding for climate-resilient crops Vol. 2 Target Traits. Ed. Kole C. (Berlin, Germany: Springer-Verlag; ), 291–314.
Bariana H. S. (2003). “Breeding for disease resistance,” in Encyclopedia of applied plant sciences. Eds. Thomas B., Murphy D. J., Murray B. G.(UK: AcademicPress, Harcourt; ), 244–253.
Borlaug N. E. (2007). Sixty-two years of fighting hunger: personal recollections. Euphytica 157, 287–297. 10.1007/s10681-007-9480-9 DOI
Clavijo B. J., Venturini L., Schudoma C., Accinelli G. G., Kaithakottil G., Wright J., et al. (2017). An improved assembly and annotation of the allohexaploid wheat genome identifies complete families of agronomic genes and provides genomic evidence for chromosomal translocations. Genome Res. 27, 885–896. 10.1101/gr.217117.116 PubMed DOI PMC
Cruz V. M., Kilian A., Dierig D. A. (2013). Development of DArT marker platforms and genetic diversity assessment of the US collection of the new oilseed crop lesquerella and related species. PLoS ONE 8, e64062. 10.1371/journal.pone.0064062 PubMed DOI PMC
Doležel J, Kubaláková M, Paux E., Bartoš J., Feuillet C. (2007). Chromosome-based genomics in the cereals. Chromosome Res. 15, 51–66. 10.1007/s10577-006-1106-x PubMed DOI
Doležel J, Vrána J, Šafár J., Bartoš J., Kubaláková M., Šimková H. (2012). Chromosomes in the flow to simplify genome analysis. Funct. Integr. Genomics 12, 397–416. 10.1007/s10142-012-0293-0 PubMed DOI PMC
Dubcovsky J., Dvorak J. (2007). Genome plasticity a key factor in the success of polyploid wheat under domestication. Science 316, 1862–1866. 10.1126/science.1143986 PubMed DOI PMC
Dyck P. L. (1979). Identification of the gene for adult-plant leaf rust resistance in Thatcher. Can J. Plant Sci. 59, 499–501.
Forster B. P., Till B. J., Ghanim A. M. A., Huynh H. O. A., Burstmayr H., Caligari P. D. S. (2015). Accelerated plant breeding. CAB Rev. 43, 1749–8848. 10.1079/PAVSNNR20149043 DOI
Giorgi D., Farina A., Grosso V., Gennaro A., Ceoloni C., Lucretti S. (2013). FISHIS: fluorescence in situ hybridization in suspension and chromosome flow sorting made easy. PLoS One 8, e57994. 10.1371/journal.pone.0057994 PubMed DOI PMC
He F., Pasam R., Shi F., Kant S., Keeble-Gagnere G., Kay P., et al. (2019). Exome sequencing highlights the role of wild-relative introgression in shaping the adaptive landscape of the wheat genome. Nat. Genet. 51, 896–904. 10.1038/s41588-019-0382-2 PubMed DOI
Herrera-Foessel S. A., Singh R. P., Huerta-Espino J., Rosewarne G. M., Periyannan S. K., Viccars L., et al. (2012). Lr68: a new gene conferring slow rusting resistance to leaf rust in wheat. Theor. Appl. Genet. 124, 1475–1486. 10.1007/s00122-012-1802-1 PubMed DOI
Herrera-Fossel S. A., Lagudah E. S., Huerta-Espino J., Hayden M. J., Bariana H. S., Singh D., et al. (2011). New slow-rusting leaf rust and stripe rust resistance genes Lr67 and Yr46 in wheat are pleiotropic or closely linked. Theor. Appl. Genet. 122, 239–249. 10.1007/s00122-010-1439-x PubMed DOI
Hiebert C. W., Thomas J. B., McCallum B. D., Humphreys D. G., DePauw R. M., Hayden M. J., et al. (2010). An introgression on wheat chromosome 4DL in RL6077 (Thatcher*6 / PI 250413) confers adult plant resistance to stripe rust and leaf rust (Lr67). Theor. Appl. Genet. 121, 1083–1091. 10.1007/s00122-010-1373-y PubMed DOI
International Wheat Genome Sequencing Consortium (IWGSC) (2014). A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum). Science 345, 6194. 10.1126/science.1251788 PubMed DOI
Keeble-Gagnère G., Isdale D., Suchecki R., Kruger A., Lomas K., Carroll D., et al. (2019). Integrating past, present and future wheat research with Pretzel. bioRxiv. 4. 10.1101/517953 DOI
Kolmer J. A. (2005). Tracking wheat rust on a continental scale. Curr. Opin. Plant Biol. 8, 441–449. 10.1016/j.pbi.2005.05.001 PubMed DOI
Kosambi D. D. (1943). The estimation of map distances from recombination values. Ann Eugen. 12, 172–175. 10.1111/j.1469-1809.1943.tb02321.x DOI
Kubaláková M., Macas J., Doležel J. (1997). Mapping of repeated DNA sequences in plant chromosomes by PRINS and C-PRINS. Theor. Appl. Genet. 94, 758–763. 10.1007/s001220050475 DOI
Kubaláková M., Vrána J., Číhalíková J., Šimková H., Doležel J. (2002). Flow Karyotyping and chromosome sorting in bread wheat (Triticum aestivum L.). Theor. Appl. Genet. 104, 1362–1372. 10.1007/s00122-002-0888-2 PubMed DOI
Manly K. F., Cudmore RH, Jr, Meer J. M. (2001). Map Manager QTX, cross-platform software for genetic mapping. Mamm. Genome 12, 930–932. 10.1007/s00335-001-1016-3 PubMed DOI
McIntosh R. A., Park R. F., Wellings C. R. (1995). Wheat Rusts: An Atlas of Resistance Genes (East Melbourne, Australia: CSIRO Publications: ).
McIntosh R. A., Dubcovsky J., Rogers J. W., Morris C., Appels R., Xia C. X. (2013). Catalogue of gene symbols for wheat: 2013-2014 supplement. KOMUGI Integr. Wheat Sci. Database. Available online at http://www.shigen.nig.ac.jp/wheat/komugi/genes/symbolClassList.jsp (Accessed on 15 August 2015).
Montenegro J. D., Golicz A. A., Bayer P. E., Hurgobin B., Lee H., Chan C. K., et al. (2017). The pangenome of hexaploid bread wheat. Plant J. 90, 1007–1013. 10.1111/tpj.13515 PubMed DOI
Saini R. G., Kaur M., Singh B., Sharma S., Nanda G. S., Nayar S. K., et al. (2002). Lr48 and Lr49, novel hypersensitive adult plant leaf rust resistance genes in wheat (Triticum aestivum L.). Euphytica 124, 365–370. 10.1023/A:1015762812907 DOI
Singh R. P., Mujeebkazi A., Huerta-Espino J. (1998). Lr46: a gene conferring slow rusting resistance to leaf rust in wheat. Phytopathology 88, 890–894. 10.1094/PHYTO.1998.88.9.890 PubMed DOI
Singh R. P. (1992). Association between gene Lr34 for leaf rust resistance and leaf tip necrosis in wheat. Crop Sci. 32, 874–878. 10.2135/cropsci1992.0011183X003200040008x DOI
Singla J., Lüthi L., Wicker T., Bansal U., Krattinger S. G., Keller B. (2017). Characterization of Lr75: a partial, broad-spectrum leaf rust resistance gene in wheat. Theor. Appl. Genet. 130, 1–12. 10.1007/s00122-016-2784-1 PubMed DOI
Šimková H., Svensson J. T., Condamine P., Hřibová E., Suchánková P., Bhat P. R., et al. (2008). Coupling amplified DNA from flow-sorted chromosomes to high-density SNP mapping in barley. BMC Genomics 9, 294. 10.1186/1471-2164-9-294 PubMed DOI PMC
Thind A. K., Wicker T., Šimková H., Fossati D., Moullet O., Brabant C., et al. (2017). Rapid cloning of genes in hexaploid wheat using cultivar-specific long-range chromosome assembly. Nat. Biotechnol. 35, 793–796. 10.1038/nbt.3877 PubMed DOI
Voorrips R. E. (2002). MapChart: software for the graphical presentation of linkage maps and QTLs. J. Hered 93, 77–78. 10.1093/jhered/93.1.77 PubMed DOI
Vrána J., Kubaláková M., Šimková H., Číhalíková J., Lysák M. A., Doležel J. (2000). Flow-sorting of mitotic chromosomes in common wheat (Triticum aestivum L.). Genetics 156, 2033–2041. PubMed PMC
Vrána J., Šimková H., Kubaláková M., Číhalíková J., Doležel J. (2012). Flow cytometric chromosome sorting in plants: the next generation. Methods 57, 331–337. 10.1016/j.ymeth.2012.03.006 PubMed DOI
Wang S., Wong D., Forrest K., Allen A., Chao S., Huang B. E., et al. (2014). Characterization of polyploid wheat genomic diversity using a high-density 90,000 single nucleotide polymorphism array. Plant Biotechnol. J. 12, 787–796. 10.1111/pbi.12183 PubMed DOI PMC
Flow Cytometric Analysis and Sorting of Plant Chromosomes