High-throughput physical map anchoring via BAC-pool sequencing
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
25887276
PubMed Central
PMC4407875
DOI
10.1186/s12870-015-0429-1
PII: 10.1186/s12870-015-0429-1
Knihovny.cz E-zdroje
- MeSH
- chromozomy rostlin * MeSH
- mapování chromozomů * MeSH
- rostliny genetika MeSH
- umělé bakteriální chromozomy * MeSH
- vysoce účinné nukleotidové sekvenování * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: Physical maps created from large insert DNA libraries, typically cloned in BAC vector, are valuable resources for map-based cloning and de novo genome sequencing. The maps are most useful if contigs of overlapping DNA clones are anchored to chromosome(s), and ordered along them using molecular markers. Here we present a novel approach for anchoring physical maps, based on sequencing three-dimensional pools of BAC clones from minimum tilling path. RESULTS: We used physical map of wheat chromosome arm 3DS to validate the method with two different DNA sequence datasets. The first comprised 567 genes ordered along the chromosome arm based on syntenic relationship of wheat with the sequenced genomes of Brachypodium, rice and sorghum. The second dataset consisted of 7,136 SNP-containing sequences, which were mapped genetically in Aegilops tauschii, the donor of the wheat D genome. Mapping of sequence reads from individual BAC pools to the first and the second datasets enabled unambiguous anchoring 447 and 311 3DS-specific sequences, respectively, or 758 in total. CONCLUSIONS: We demonstrate the utility of the novel approach for BAC contig anchoring based on mass parallel sequencing of three-dimensional pools prepared from minimum tilling path of physical map. The existing genetic markers as well as any other DNA sequence could be mapped to BAC clones in a single in silico experiment. The approach reduces significantly the cost and time needed for anchoring and is applicable to any genomic project involving the construction of anchored physical map.
Istituto di Genomica Applicata Via J Linussio 51 33100 Udine Italy
Plant Genome and Systems Biology Helmholtz Zentrum München 85764 Neuherberg Germany
Zobrazit více v PubMed
Sharma TR, Madhav MS, Singh BK, Shanker P, Jana TK, Dalal V, et al. High-resolution mapping, cloning and molecular characterization of the Pi-k(h) supercript stop gene of rice, which confers resistance to Magnaporthe grisea. Mol Genet Genomics. 2005;274:569–78. doi: 10.1007/s00438-005-0035-2. PubMed DOI
Liu S, Sehgal SK, Li J, Lin M, Trick HN, Yu J, et al. Cloning and characterization of a critical regulator for preharvest sprouting in wheat. Genetics. 2013;195:263–73. doi: 10.1534/genetics.113.152330. PubMed DOI PMC
Feuillet C, Stein N, Rossini L, Praud S, Mayer K, Schulman A, et al. Integrating cereal genomics to support innovation in the Triticeae. Funct Integr Genomics. 2012;12:573–83. doi: 10.1007/s10142-012-0300-5. PubMed DOI PMC
Feuillet C, Leach JE, Rogers J, Schnable PS, Eversole K. Crop genome sequencing: lessons and rationales. Trends Plant Sci. 2011;16:77–88. doi: 10.1016/j.tplants.2010.10.005. PubMed DOI
Pan Y, Deng Y, Lin H, Kudrna DA, Wing RA, Li L, et al. Comparative BAC-based physical mapping of Oryza sativa ssp. indica var. 93–11 and evaluation of the two rice reference sequence assemblies. Plant J. 2014;77:795–805. doi: 10.1111/tpj.12412. PubMed DOI
Marx V. The genome jigsaw. Nature. 2013;501:263–8. doi: 10.1038/501261a. PubMed DOI
Woo S-S, Jiang J, Gill BS, Paterson AH, Wing RA. Construction and characterization of bacterial artificial chromosome library of Sorghum bicolor. Nucleic Acids Res. 1994;22:4922–31. doi: 10.1093/nar/22.23.4922. PubMed DOI PMC
Luo M-C, Thomas C, You FM, Hsiao J, Ouyang S, Buell CR, et al. High-throughput fingerprinting of bacterial artificial chromosomes using the snapshot labeling kit and sizing of restriction fragments by capillary electrophoresis. Genomics. 2003;82:378–89. doi: 10.1016/S0888-7543(03)00128-9. PubMed DOI
Meyers BC, Scalabrin S, Morgante M. Mapping and sequencing complex genomes: let’s get physical! Nat Rev Genet. 2004;5:578–88. doi: 10.1038/nrg1404. PubMed DOI
Soderlund C, Longden I, Mott R. FPC: a system for building contigs from restriction fingerprinted clones. Comput Appl Biosci. 1997;13:523–35. PubMed
Soderlund C, Humphray S, Dunham A, French L. Contigs built with fingerprints, markers, and FPC V4.7. Genome Res. 2000;10:1772–87. doi: 10.1101/gr.GR-1375R. PubMed DOI PMC
Frenkel Z, Paux E, Mester D, Feuillet C, Korol A. LTC: a novel algorithm to improve the efficiency of contig assembly for physical mapping in complex genomes. BMC Bioinformatics. 2010;11:584. doi: 10.1186/1471-2105-11-584. PubMed DOI PMC
Vu GT, Caligari PD, Wilkinson MJ. A simple, high throughput method to locate single copy sequences from Bacterial Artificial Chromosome (BAC) libraries using High Resolution Melt analysis. BMC Genomics. 2010;11:301. doi: 10.1186/1471-2164-11-301. PubMed DOI PMC
Gardiner J, Schroeder S, Polacco ML, Sanchez-Villeda H, Fang Z, Morgante M, et al. Anchoring 9,371 maize expressed sequence tagged unigenes to the bacterial artificial chromosome contig map by two-dimensional overgo hybridization. Plant Physiol. 2004;134:1317–26. doi: 10.1104/pp.103.034538. PubMed DOI PMC
Barillot E, Lacroix B, Cohen D. Theoretical analysis of library screening using a N-dimensional pooling strategy. Nucleic Acids Res. 1991;19:6241–7. doi: 10.1093/nar/19.22.6241. PubMed DOI PMC
Bruno WJ, Knill E, Balding DJ, Bruce DC, Doggett NA, Sawhill WW, et al. Efficient pooling designs for library screening. Genomics. 1995;26:21–30. doi: 10.1016/0888-7543(95)80078-Z. PubMed DOI
Bouzidi MF, Franchel J, Tao Q, Stormo K, Mraz A, Nicolas P, et al. A sunflower BAC library suitable for PCR screening and physical mapping of targeted genomic regions. Theor Appl Genet. 2006;113:81–9. doi: 10.1007/s00122-006-0274-6. PubMed DOI
Rustenholz C, Hedley PE, Morris J, Choulet F, Feuillet C, Waugh R, et al. Specific patterns of gene space organisation revealed in wheat by using the combination of barley and wheat genomic resources. BMC Genomics. 2010;11:714. doi: 10.1186/1471-2164-11-714. PubMed DOI PMC
Luo M-C, Xu K, Ma Y, Deal KR, Nicolet CM, Dvorak J. A high-throughput strategy for screening of bacterial artificial chromosome libraries and anchoring of clones on a genetic map constructed with single nucleotide polymorphisms. BMC Genomics. 2009;10:28. doi: 10.1186/1471-2164-10-28. PubMed DOI PMC
Van Os H, Andrzejewski S, Bakker E, Barrena I, Bryan GJ, Caromel B, et al. Construction of a 10,000-marker ultradense genetic recombination map of potato: Providing a framework for accelerated gene isolation and a genomewide physical map. Genetics. 2006;173:1075–87. doi: 10.1534/genetics.106.055871. PubMed DOI PMC
Ganal MW, Durstewitz G, Polley A, Berard A, Buckler ES, Charcosset A, et al. A large maize (Zea mays L.) SNP genotyping array: development and germplasm genotyping, and genetic mapping to compare with the B73 reference genome. Plos One. 2011;6:e28334. doi: 10.1371/journal.pone.0028334. PubMed DOI PMC
Poland J, Endelman J, Dawson J, Rutkoski J, Wu S, Manes Y, et al. Genomic selection in wheat breeding using genotyping-by-sequencing. Plant Genome. 2012;5:103–13. doi: 10.3835/plantgenome2012.06.0006. DOI
Karafiátová M, Bartoš J, Kopecký D, Ma L, Sato K, Houben A, et al. Mapping nonrecombining regions in barley using multicolor FISH. Chromosome Res. 2013;21:739–51. doi: 10.1007/s10577-013-9380-x. PubMed DOI
Qi LL, Echalier B, Chao S, Lazo GR, Butler GE, Anderson OD, et al. A chromosome Bin Map of 16,000 expressed sequence tag loci and distribution of genes among the three genomes of polyploid wheat. Genetics. 2004;168:701–12. doi: 10.1534/genetics.104.034868. PubMed DOI PMC
Thangavelu M, James AB, Bankier A, Bryan GJ, Dear PH, Waugh R. HAPPY mapping in a plant genome: reconstruction and analysis of a high-resolution physical map of a 1.9 Mbp region of Arabidopsis thaliana chromosome 4. Plant Biotechnol J. 2003;1:23–31. doi: 10.1046/j.1467-7652.2003.00001.x. PubMed DOI
Kumar A, Simons K, Iqbal MJ, De Jiménez MM, Bassi FM, Ghavami F, et al. Physical mapping resources for large plant genomes: radiation hybrids for wheat D-genome progenitor Aegilops tauschii. BMC Genomics. 2012;13:597. doi: 10.1186/1471-2164-13-597. PubMed DOI PMC
Mayer KFX, Taudien S, Martis M, Šimková H, Suchánková P, Gundlach H, et al. Gene content and virtual gene order of barley chromosome 1H. Plant Physiol. 2009;151:496–505. doi: 10.1104/pp.109.142612. PubMed DOI PMC
International Brachypodium Initiative Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature. 2010;463:763–8. doi: 10.1038/nature08747. PubMed DOI
International Rice Genome Sequencing Project The map-based sequence of the rice genome. Nature. 2005;436:793–800. doi: 10.1038/nature03895. PubMed DOI
Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, et al. The Sorghum bicolor genome and the diversification of grasses. Nature. 2009;457:551–6. doi: 10.1038/nature07723. PubMed DOI
Martis MM, Zhou R, Haseneyer G, Schmutzer T, Vrána J, Kubaláková M, et al. Reticulate evolution of the Rye genome. Plant Cell Online. 2013;25:3685–98. doi: 10.1105/tpc.113.114553. PubMed DOI PMC
Hernandez P, Martis M, Dorado G, Pfeifer M, Gálvez S, Schaaf S, et al. Next-generation sequencing and syntenic integration of flow-sorted arms of wheat chromosome 4A exposes the chromosome structure and gene content. Plant J. 2012;69:377–86. doi: 10.1111/j.1365-313X.2011.04808.x. PubMed DOI
Mayer KFX, Martis M, Hedley PE, Šimková H, Liu H, Morris JA, et al. Unlocking the barley genome by chromosomal and comparative genomics. Plant Cell Online. 2011;23:1249–63. doi: 10.1105/tpc.110.082537. PubMed DOI PMC
Doležel J, Kubaláková M, Paux E, Bartoš J, Feuillet C. Chromosome-based genomics in the cereals. Chromosome Res. 2007;15:51–66. doi: 10.1007/s10577-006-1106-x. PubMed DOI
Vrána J, Kubaláková M, Simková H, Číhalíkovái J, Lysák MA, Dolezel J. Flow sorting of mitotic chromosomes in common wheat (Triticum aestivum L.) Genetics. 2000;156:2033–41. PubMed PMC
Šafář J, Bartoš J, Janda J, Bellec A, Kubaláková M, Valárik M, et al. Dissecting large and complex genomes: flow sorting and BAC cloning of individual chromosomes from bread wheat. Plant J. 2004;39:960–8. doi: 10.1111/j.1365-313X.2004.02179.x. PubMed DOI
Šafář J, Šimková H, Kubaláková M, Číhalíková J, Suchánková P, Bartoš J, et al. Development of chromosome-specific BAC resources for genomics of bread wheat. Cytogenet Genome Res. 2010;129:211–23. doi: 10.1159/000313072. PubMed DOI
Poursarebani N, Nussbaumer T, Šimková H, Šafář J, Witsenboer H, van Oeveren J, et al. Whole-genome profiling and shotgun sequencing delivers an anchored, gene-decorated, physical map assembly of bread wheat chromosome 6A. Plant J. 2014;79:334–47. doi: 10.1111/tpj.12550. PubMed DOI PMC
Van Oeveren J, de Ruiter M, Jesse T, van der Poel H, Tang J, Yalcin F, et al. Sequence-based physical mapping of complex genomes by whole genome profiling. Genome Res. 2011;21:618–25. doi: 10.1101/gr.112094.110. PubMed DOI PMC
Rustenholz C, Choulet F, Laugier C, Šafář J, Šimková H, Doležel J, et al. A 3,000-loci transcription map of chromosome 3B unravels the structural and functional features of gene islands in hexaploid wheat. Plant Physiol. 2011;157:1596–608. doi: 10.1104/pp.111.183921. PubMed DOI PMC
Breen J, Wicker T, Shatalina M, Frenkel Z, Bertin I, Philippe R, et al. A physical map of the short arm of wheat chromosome 1A. PLoS One. 2013;8:e80272. doi: 10.1371/journal.pone.0080272. PubMed DOI PMC
Lucas SJ, Akpınar BA, Kantar M, Weinstein Z, Aydınoğlu F, Šafář J, et al. Physical mapping integrated with syntenic analysis to characterize the gene space of the long arm of wheat chromosome 1A. PLoS One. 2013;8:e59542. doi: 10.1371/journal.pone.0059542. PubMed DOI PMC
Philippe R, Paux E, Bertin I, Sourdille P, Choulet F, Laugier C, et al. A high density physical map of chromosome 1BL supports evolutionary studies, map-based cloning and sequencing in wheat. Genome Biol. 2013;14:R64. doi: 10.1186/gb-2013-14-6-r64. PubMed DOI PMC
Mayer KFX, Rogers J, Doležel J, Pozniak C, Eversole K, Feuillet C, et al. A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science. 2014;345:1251788. doi: 10.1126/science.1251788. PubMed DOI
Brenchley R, Spannagl M, Pfeifer M, Barker GLA, D’Amore R, Allen AM, et al. Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature. 2012;491:705–10. doi: 10.1038/nature11650. PubMed DOI PMC
Šimková H, Svensson JT, Condamine P, Hřibová E, Suchánková P, Bhat PR, et al. Coupling amplified DNA from flow-sorted chromosomes to high-density SNP mapping in barley. BMC Genomics. 2008;9:294. doi: 10.1186/1471-2164-9-294. PubMed DOI PMC
Luo M-C, Gu YQ, You FM, Deal KR, Ma Y, Hu Y, et al. A 4-gigabase physical map unlocks the structure and evolution of the complex genome of Aegilops tauschii, the wheat D-genome progenitor. Proc Natl Acad Sci. 2013;110:7940–5. doi: 10.1073/pnas.1219082110. PubMed DOI PMC
Lee W-P, Stromberg MP, Ward A, Stewart C, Garrison EP, Marth GT. MOSAIK: a hash-based algorithm for accurate next-generation sequencing short-read mapping. PLoS One. 2014;9:e90581. doi: 10.1371/journal.pone.0090581. PubMed DOI PMC