Theoretical Studies Applied to the Evaluation of the DFPase Bioremediation Potential against Chemical Warfare Agents Intoxication
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
29690585
PubMed Central
PMC5979579
DOI
10.3390/ijms19041257
PII: ijms19041257
Knihovny.cz E-zdroje
- Klíčová slova
- DFPase, PCA, QM/MM, cyclosarin, molecular docking, organophosphorus compounds, soman, tabun,
- MeSH
- analýza hlavních komponent MeSH
- biodegradace MeSH
- chemické bojové látky metabolismus MeSH
- hydrolasy triesterů kyseliny fosforečné metabolismus MeSH
- organofosfáty metabolismus MeSH
- organofosforové sloučeniny metabolismus MeSH
- soman metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chemické bojové látky MeSH
- cyclohexyl methylphosphonofluoridate MeSH Prohlížeč
- diisopropyl-fluorophosphatase MeSH Prohlížeč
- hydrolasy triesterů kyseliny fosforečné MeSH
- organofosfáty MeSH
- organofosforové sloučeniny MeSH
- soman MeSH
- tabun MeSH Prohlížeč
Organophosphorus compounds (OP) are part of a group of compounds that may be hazardous to health. They are called neurotoxic agents because of their action on the nervous system, inhibiting the acetylcholinesterase (AChE) enzyme and resulting in a cholinergic crisis. Their high toxicity and rapid action lead to irreversible damage to the nervous system, drawing attention to developing new treatment methods. The diisopropyl fluorophosphatase (DFPase) enzyme has been considered as a potent biocatalyst for the hydrolysis of toxic OP and has potential for bioremediation of this kind of intoxication. In order to investigate the degradation process of the nerve agents Tabun, Cyclosarin and Soman through the wild-type DFPase, and taking into account their stereochemistry, theoretical studies were carried out. The intermolecular interaction energy and other parameters obtained from the molecular docking calculations were used to construct a data matrix, which were posteriorly treated by statistical analyzes of chemometrics, using the PCA (Principal Components Analysis) multivariate analysis. The analyzed parameters seem to be quite important for the reaction mechanisms simulation (QM/MM). Our findings showed that the wild-type DFPase enzyme is stereoselective in hydrolysis, showing promising results for the catalytic degradation of the neurotoxic agents under study, with the degradation mechanism performed through two proposed pathways.
Zobrazit více v PubMed
Chauhan S., Chauhan S., D’Cruz R., Faruqi S., Singh K.K., Varma S., Singh M., Karthik V. Chemical warfare agents. Environ. Toxicol. Pharmacol. 2008;26:113–122. doi: 10.1016/j.etap.2008.03.003. PubMed DOI
Chambers J.E., Carr R.L. Biochemical mechanisms contributing to species differences in insecticidal toxicity. Toxicology. 1995;105:291–304. doi: 10.1016/0300-483X(95)03225-5. PubMed DOI
Li J.N., Liu L., Fu Y., Guo Q.X. What are the pKa values of organophosphorus compounds? Tetrahedron. 2006;62:4453–4462. doi: 10.1016/j.tet.2006.02.049. DOI
Jaga K., Dharmani C. Sources of exposure to and public health implications of organophosphate pesticides. Rev. Panam. Salud Pública. 2003;14:171–185. doi: 10.1590/S1020-49892003000800004. PubMed DOI
Giacoppo J.O.S., França T.C.C., Kuča K., Cunha E.F.F., Abagyan R., Mancini D.T., Ramalho T.C. Molecular modeling and in vitro reactivation study between the oxime BI-6 and acetylcholinesterase inhibited by different nerve agents. J. Biomol. Struct. Dyn. 2015;33:2048–2058. doi: 10.1080/07391102.2014.989408. PubMed DOI
Chen J.C.H., Mustyakimov M., Schoenborn B.P., Langan P., Blum M.M. Neutron structure and mechanistic studies of diisopropyl fluorophosphatase (DFPase) Acta Crystallogr. Sect. D Biol. Crystallogr. 2010;66:1131–1138. doi: 10.1107/S0907444910034013. PubMed DOI PMC
Melzer M., Chen J.C.H., Heidenreich A., Gäb J., Koller M., Kehe K., Blum M.M. Reversed Enantioselectivity of Diisopropyl Fluorophosphatase against Organophosphorus Nerve Agents by Rational Design. J. Am. Chem. Soc. 2009;131:17226–17232. doi: 10.1021/ja905444g. PubMed DOI
Romero A.M. Commercializing chemical warfare: Citrus, cyanide, and an endless war. Agric. Hum. Values. 2016;33:3–26. doi: 10.1007/s10460-015-9591-1. DOI
Ordentlich A., Barak D., Sod-Moriah G., Kaplan D., Mizrahi D., Segall Y., Kronman C., Karton Y., Lazar A., Marcus D., et al. Stereoselectivity toward VX is determined by interactions with residues of the acyl pocket as well as of the peripheral anionic site of AChE. Biochemistry. 2004;43:11255–11265. doi: 10.1021/bi0490946. PubMed DOI
Ramalho T.C., Castro A.A., Silva D.R., Silva M.C., França T.C.C., Bennion B.J., Kuca K. Computational Enzymology and Organophosphorus Degrading Enzymes: Promising Approaches Toward Remediation Technologies of Warfare Agents and Pesticides. Curr. Med. Chem. 2016;23:1041–1061. doi: 10.2174/0929867323666160222113504. PubMed DOI
Xu C., Yang L., Yu J.-G., Liao R.-Z. What roles do the residue Asp229 and the coordination variation of calcium play of the reaction mechanism of the diisopropyl-fluorophosphatase? A DFT investigation. Theor. Chem. Acc. 2016;135:138. doi: 10.1007/s00214-016-1896-7. DOI
Wymore T., Field M.J., Langan P., Smith J.C., Parks J.M. Hydrolysis of DFP and the Nerve Agent (S)-Sarin by DFPase Proceeds along Two Different Reaction Pathways: Implications for Engineering Bioscavengers. J. Phys. Chem. B. 2014;118:4479–4489. doi: 10.1021/jp410422c. PubMed DOI PMC
Blum M.M., Löhr F., Richardt A., Ruterjans H., Chen J.C.H. Binding of a Designed Substrate Analogue to Diisopropyl Fluorophosphatase: Implications for the Phosphotriesterase Mechanism. J. Am. Chem. Soc. 2006;128:12750–12757. doi: 10.1021/ja061887n. PubMed DOI
Castro A.A., Caetano M.S., Silva T.C., Mancini D.T., Rocha E.P., Cunha E.F.F., Ramalho T.C. Molecular Docking, Metal Substitution and Hydrolysis Reaction of Chiral Substrates of Phosphotriesterase. Comb. Chem. High Throughput Screen. 2016;19:334–344. doi: 10.2174/1386207319666160325113844. PubMed DOI
Sartorelli J., Castro A.A., Ramalho T.C., Giacoppo J.O.S., Mancini D.T., Caetano M.S., Cunha E.F.F. Asymmetric biocatalysis of the nerve agent VX by human serum paraoxonase 1: Molecular docking and reaction mechanism calculations. Med. Chem. Res. 2016;25:2521–2533. doi: 10.1007/s00044-016-1704-x. DOI
Dawson R.M., Pantelidis S., Rose H.R., Kotsonis S.E. Degradation of nerve agents by an organophosphate-degrading agent (OpdA) J. Hazard. Mater. 2008;157:308–314. doi: 10.1016/j.jhazmat.2007.12.099. PubMed DOI
Hanselman D., Littlefield B. Mastering MATLAB 5: A Comprehensive Tutorial and Reference. Prentice-Hall; Bergen, NJ, USA: 1998.
Lima W.E.A., Pereira A.F., Castro A.A., Cunha E.F.F., Ramalho T.C. Flexibility in the Molecular Design of Acetylcholinesterase Reactivators: Probing Representative Conformations by Chemometric Techniques and Docking/QM Calculations. Lett. Drug Des. Discov. 2016;13:360–371. doi: 10.2174/1570180812666150918191550. DOI
Castro A.A., Assis L.C., Silva D.R., Corrêa S., Assis T.M., Gajo G.C., Soares F.V., Ramalho T.C. Computational enzymology for degradation of chemical warfare agents: Promising technologies for remediation processes. AIMS Microbiol. 2017;3:108–135. doi: 10.3934/microbiol.2017.1.108. PubMed DOI PMC
Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Petersson G.A., Nakatsuji H., et al. Gaussian 09, Revision A.02. Gaussian, Inc.; Wallingford, CT, USA: 2016.
Thomsen R., Christensen M.H. MolDock: A New Technique for High-Accuracy Molecular Docking. J. Med. Chem. 2006;49:3315–3321. doi: 10.1021/jm051197e. PubMed DOI
Silva T.C., Pires M.S., Castro A.A., Cunha E.F.F., Caetano M.S., Ramalho T.C. Molecular insight into the inhibition mechanism of plant and rat 4-hydroxyphenylpyruvate dioxygenase by molecular docking and DFT calculations. Med. Chem. Res. 2015;24:3958–3971. doi: 10.1007/s00044-015-1436-3. DOI
Guimarães A.P., Oliveira A.A., Cunha E.F.F., Ramalho T.C., França T.C.C. Analysis of Bacillus anthracis nucleoside hydrolase via in silico docking with inhibitors and molecular dynamics simulation. J. Mol. Model. 2011;17:2939–2951. doi: 10.1007/s00894-011-0968-9. PubMed DOI
Matos K.S., Mancini D.T., Cunha E.F.F., Kuca K., França T.C.C., Ramalho T.C. Molecular aspects of the reactivation process of acetylcholinesterase inhibited by cyclosarin. J. Braz. Chem. Soc. 2011;22:1999–2004. doi: 10.1590/S0103-50532011001000023. DOI
Ramalho T.C., Caetano M.S., Cunha E.F.F., Souza T.C.S., Rocha M.V.J. Construction and Assessment of Reaction Models of Class I EPSP Synthase: Molecular Docking and Density Functional Theoretical Calculations. J. Biomol. Struct. Dyn. 2009;27:195–207. doi: 10.1080/07391102.2009.10507309. PubMed DOI
Cunha E.F.F., Barbosa E.F., Oliveira A.A., Ramalho T.C. Molecular Modeling of Mycobacterium Tuberculosis DNA Gyrase and its Molecular Docking Study with Gatifloxacin Inhibitors. J. Biomol. Struct. Dyn. 2010;27:619–625. doi: 10.1080/07391102.2010.10508576. PubMed DOI
Souza T.C.S., Josa D., Ramalho T.C., Caetano M.S., Cunha E.F.F. Molecular modelling of Mycobacterium tuberculosis acetolactate synthase catalytic subunit and its molecular docking study with inhibitors. Mol. Simul. 2008;34:707–713. doi: 10.1080/08927020802129974. DOI
Goncalves A.S., França T.C.C., Caetano M.S., Ramalho T.C. Reactivation steps by 2-PAM of tabun-inhibited human acetylcholinesterase: Reducing the computational cost in hybrid QM/MM methods. J. Biomol. Struct. Dyn. 2014;32:301–307. doi: 10.1080/07391102.2013.765361. PubMed DOI
Matos K.S., Cunha E.F.F., Abagyan R., Ramalho T.C. Computational Evidence for the Reactivation Process of Human Acetylcholinesterase Inhibited by Carbamates. Comb. Chem. High Throughput Screen. 2014;17:554–564. doi: 10.2174/1386207316666131217100416. PubMed DOI
Ramalho T.C., Alencastro R.B., La-Scalea M.A., Figueroa-Villar J.D. Theoretical evaluation of adiabatic and vertical electron affinity of some radiosensitizers in solution using FEP, ab initio and DFT methods. Biophys. Chem. 2004;110:267–279. doi: 10.1016/j.bpc.2004.03.002. PubMed DOI
Besler B.H., Merz K.M., Kollman P.A. Atomic charges derived from semiempirical methods. J. Comput. Chem. 1990;11:431–439. doi: 10.1002/jcc.540110404. DOI
Singh U.C., Kollman P.A. An approach to computing electrostatic charges for molecules. J. Comput. Chem. 1984;5:129–145. doi: 10.1002/jcc.540050204. DOI
Gustin D.J., Mattei P., Kast P., Wiest O., Lee L., Cleland W.W., Hilvert D. Heavy Atom Isotope Effects Reveal a Highly Polarized Transition State for Chorismate Mutase. J. Am. Chem. Soc. 1999;121:1756–1757. doi: 10.1021/ja9841759. DOI
Giacoppo J.O.S., Mancini D.T., Guimarães A.P., Gonçalves A.S., Cunha E.F.F., França T.C.C., Ramalho T.C. Molecular modeling toward selective inhibitors of dihydrofolate reductase from the biological warfare agent Bacillus anthracis. Eur. J. Med. Chem. 2015;91:63–71. doi: 10.1016/j.ejmech.2014.06.025. PubMed DOI
Li R., Liu Y., Zhang J., Chen K., Li S., Jiang J. An isofenphos-methyl hydrolase (Imh) capable of hydrolyzing the P–O–Z moiety of organophosphorus pesticides containing an aryl or heterocyclic group. Appl. Microbiol. Biotechnol. 2012;94:1553–1564. doi: 10.1007/s00253-011-3709-1. PubMed DOI
Cunha E.F.F., Ramalho T.C., Reynolds R.C. Binding Mode Analysis of 2,4-diamino-5-methyl-5-deaza-6-substituted Pteridines with Mycobacterium tuberculosis and Human Dihydrofolate Reductases. J. Biomol. Struct. Dyn. 2008;25:377–385. doi: 10.1080/07391102.2008.10507186. PubMed DOI
Van der Kamp M.W., Mulholland A.J. Combined Quantum Mechanics/Molecular Mechanics (QM/MM) Methods in Computational Enzymology. Biochemistry. 2013;52:2708–2728. doi: 10.1021/bi400215w. PubMed DOI
Lonsdale R., Ranaghan K.E., Mulholland A.J. Computational enzymology. Chem. Commun. 2010;46:2354–2372. doi: 10.1039/b925647d. PubMed DOI
Senthilkumar K., Mujika J.I., Ranaghan K.E., Manby F.R., Mulholland A.J., Harvey J.N. Analysis of polarization in QM/MM modelling of biologically relevant hydrogen bonds. J. R. Soc. Interface. 2008;5:S207–S216. doi: 10.1098/rsif.2008.0243.focus. PubMed DOI PMC
Trends in the Recent Patent Literature on Cholinesterase Reactivators (2016-2019)