Molecular Modeling Insights on the Pharmaceuticals and Hypotheses of Alzheimer's Disease

. 2025 ; 32 (25) : 5110-5138.

Jazyk angličtina Země Spojené arabské emiráty Médium print

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid39238388

Grantová podpora
371610/2023-0, 305381/2022-9, 150744/2022-6 Conselho Nacional de Desenvolvimento Científico e Tecnológico - Brazil (CNPq)
0038/21, 0288/22 Financiadora de Estudos e Projetos - Brazil (FINEP)
2024/01071-3 Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Alzheimer's disease (AD) stands as the predominant contributor to dementia cases. The ongoing developments in our understanding of its pathogenesis have sparked the interest of researchers, driving them to explore innovative treatment approaches. Existing therapies incorporating cholinesterase inhibitors and/or NMDA antagonists have shown limited improvement in alleviating symptoms. This, in turn, highlights the urgency for the pursuit of more effective therapeutic options. Given the annual rise in the number of individuals affected by dementia, it is imperative to allocate resources and efforts towards the exploration of novel therapeutic options. This review aims to provide a comprehensive overview of the AD-related hypotheses, along with the computational approaches employed in research within each hypothesis. In this comprehensive review, the authors shed light on using various computational tools, including diverse case studies, in the pursuit of finding efficacious treatments for AD. The development of more sophisticated diagnostic techniques is crucial, enabling early detection and intervention in the battle against this challenging condition. The potential treatments investigated in this analysis are poised to assume ever more significant functions in both preventing and treating AD, ultimately enhancing the management of the condition and the overall well-being of individuals affected by AD.

Zobrazit více v PubMed

Knopman D.S.; Amieva H.; Petersen R.C.; Chételat G.; Holtzman D.M.; Hyman B.T.; Nixon R.A.; Jones D.T.; Alzheimer disease. Nat Rev Dis Primers 2021,7(1),33 PubMed DOI

DeTure M.A.; Dickson D.W.; The neuropathological diagnosis of Alzheimer’s disease. Mol Neurodegener 2019,14(1),32 PubMed DOI

de Castro A.A.; Soares F.V.; Pereira A.F.; Polisel D.A.; Caetano M.S.; Leal D.H.S.; da Cunha E.F.F.; Nepovimova E.; Kuca K.; Ramalho T.C.; Non-conventional compounds with potential therapeutic effects against Alzheimer’s disease. Expert Rev Neurother 2019,19(5),375-395 PubMed DOI

Chen Z.R.; Huang J.B.; Yang S.L.; Hong F.F.; Role of cholinergic signaling in Alzheimer’s disease. Molecules 2022,27(6),1816 PubMed DOI

Scheltens P.; De Strooper B.; Kivipelto M.; Holstege H.; Chételat G.; Teunissen C.E.; Cummings J.; van der Flier W.M.; Alzheimer’s disease. Lancet 2021,397(10284),1577-1590 PubMed DOI

Yiannopoulou K.G.; Papageorgiou S.G.; Current and future treatments in alzheimer disease: An update. J Cent Nerv Syst Dis 2020,12 PubMed DOI

Tatulian S.A.; Challenges and hopes for Alzheimer’s disease. Drug Discov Today 2022,27(4),1027-1043 PubMed DOI

Dubois B.; Hampel H.; Feldman H.H.; Scheltens P.; Aisen P.; Andrieu S.; Bakardjian H.; Benali H.; Bertram L.; Blennow K.; Broich K.; Cavedo E.; Crutch S.; Dartigues J.F.; Duyckaerts C.; Epelbaum S.; Frisoni G.B.; Gauthier S.; Genthon R.; Gouw A.A.; Habert M.O.; Holtzman D.M.; Kivipelto M.; Lista S.; Molinuevo J.L.; O’Bryant S.E.; Rabinovici G.D.; Rowe C.; Salloway S.; Schneider L.S.; Sperling R.; Teichmann M.; Carrillo M.C.; Cummings J.; Jack C.R.; Proceedings of the meeting of the international working group (IWG) and the American alzheimer’s association on “the preclinical state of AD”; July 23, 2015; wshington DC, USA. preclinical alzheimer’s disease: Definition, natural history, and diagnostic criteria. Alzheimers Dement 2016,12(3),292-323 PubMed DOI

Alzheimer’s disease facts and figures. Alzheimers Dement 2021,17(3),327-406 PubMed DOI

Heneka M.T.; Carson M.J.; Khoury J.E.; Landreth G.E.; Brosseron F.; Feinstein D.L.; Jacobs A.H.; Wyss-Coray T.; Vitorica J.; Ransohoff R.M.; Herrup K.; Frautschy S.A.; Finsen B.; Brown G.C.; Verkhratsky A.; Yamanaka K.; Koistinaho J.; Latz E.; Halle A.; Petzold G.C.; Town T.; Morgan D.; Shinohara M.L.; Perry V.H.; Holmes C.; Bazan N.G.; Brooks D.J.; Hunot S.; Joseph B.; Deigendesch N.; Garaschuk O.; Boddeke E.; Dinarello C.A.; Breitner J.C.; Cole G.M.; Golenbock D.T.; Kummer M.P.; Neuroinflammation in Alzheimer’s disease. Lancet Neurol 2015,14(4),388-405 PubMed DOI

Li H.M.; Yu S.P.; Fan T.Y.; Zhong Y.; Gu T.; Wu W.Y.; Zhao C.; Chen Z.; Chen M.; Li N.G.; Wang X.L.; Design, synthesis, and biological activity evaluation of BACE1 inhibitors with antioxidant activity. Drug Dev Res 2020,81(2),206-214 PubMed DOI

Nascimento I.J.S.; de Aquino T.M.; da Silva-Júnior E.F.; The new era of drug discovery: The power of computer-aided drug design (CADD). Lett Drug Des Discov 2022,19(11),951-955 DOI

Terstappen G.C.; Reggiani A.; In silico research in drug discovery. Trends Pharmacol Sci 2001,22(1),23-26 PubMed DOI

Lonsdale R.; Ranaghan K.E.; Mulholland A.J.; Computational enzymology. Chem Commun 2010,46(14),2354-2372 PubMed DOI

Nemukhin A.V.; Grigorenko B.L.; Lushchekina S.V.; Varfolomeev S.D.; Quantum chemical modelling in the research of molecular mechanisms of enzymatic catalysis. Russ Chem Rev 2012,81(11),1011-1025 DOI

Ramalho T.C.; de Castro A.A.; Leal D.H.S.; Teixeira J.P.; da Cunha E.F.F.; Kuca K.; Assessing the therapeutic and toxicological profile of novel acetylcholinesterase reactivators: Value of in silico and in vitro Data. Curr Med Chem 2023,30(36),4149-4166 PubMed DOI

Oliveira S.S.C.; Correia C.A.; Santos V.S.; da Cunha E.F.F.; de Castro A.A.; Ramalho T.C.; Devereux M.; McCann M.; Branquinha M.H.; Santos A.L.S.; Silver(I) and copper(ii) 1,10-phenanthroline-5,6-dione complexes as promising antivirulence strategy against leishmania: Focus on Gp63 (Leishmanolysin). Trop Med Infect Dis 2023,8(7),348 PubMed DOI

Kuca K.; Musilek K.; Jun D.; Nepovimova E.; Soukup O.; Korabecny J.; França T.C.C.; de Castro A.A.; Krejcar O.; da Cunha E.F.F.; Ramalho T.C.; Oxime K074 – in vitro and in silico reactivation of acetylcholinesterase inhibited by nerve agents and pesticides. Toxin Rev 2020,39(2),157-166 DOI

Assis L.C.; de Castro A.A.; de Jesus J.P.A.; da Cunha E.F.F.; Nepovimova E.; Krejcar O.; Kuca K.; Ramalho T.C.; La Porta F.A.; Theoretical insights into the effect of halogenated substituent on the electronic structure and spectroscopic properties of the favipiravir tautomeric forms and its implications for the treatment of COVID-19. RSC Adv 2021,11(56),35228-35244 PubMed DOI

de Jesus J.P.A.; Assis L.C.; de Castro A.A.; da Cunha E.F.F.; Nepovimova E.; Kuca K.; de Castro Ramalho T.; de Almeida La Porta F.; Effect of drug metabolism in the treatment of SARS-CoV-2 from an entirely computational perspective. Sci Rep 2021,11(1),19998 PubMed DOI

de Castro A.A.; Assis L.C.; da Cunha E.F.F.; Ramalho T.C.; La Porta F.A.; New in silico insights into the application of (hydroxy)chloroquine with macrolide antibiotic co-crystals against the SARS-CoV-2 virus. 2022,2

da Silva A.P.; de Angelo R.M.; de Paula H.; Honório K.M.; da Silva A.B.F.; Drug design of new 5-HT6 antagonists: A QSAR study of arylsulfonamide derivatives. Struct Chem 2020,31(4),1585-1597 DOI

Chiari L.P.A.; da Silva A.P.; de Oliveira A.A.; Lipinski C.F.; Honório K.M.; da Silva A.B.F.; Drug design of new sigma-1 antagonists against neuropathic pain: A QSAR study using partial least squares and artificial neural networks. J Mol Struct 2021,1223,129156 DOI

Pantaleao S.Q.; Fujii D.G.V.; Maltarollo V.G.; da C Silva D.; Trossini G.H.G.; Weber K.C.; Scott L.P.B.; Honorio K.M.; The role of QSAR and virtual screening studies in type 2 diabetes drug discovery. Med Chem 2017,13(8),706-720 PubMed

de Castro A.A.; Caetano M.S.; Silva T.C.; Mancini D.T.; Rocha E.P.; da Cunha E.F.F.; Ramalho T.C.; Molecular docking, metal substitution and hydrolysis reaction of chiral substrates of phosphotriesterase. Comb Chem High Throughput Screen 2016,19(4),334-344 PubMed DOI

Castro A.A.; de ; Prandi I.G.; Kuca K.; Ramalho T.C.; Organophosphate-degrading enzymes: Molecular basis and perspectives for enzymatic bioremediation of agrochemicals. Agrotechnical Sci 2017,41,471-482 DOI

de Castro A.A.; Assis L.C.; Silva D.R.; Corrêa S.; Assis T.M.; Gajo G.C.; Soares F.V.; Ramalho T.C.; Computational enzymology for degradation of chemical warfare agents: promising technologies for remediation processes. AIMS Microbiol 2017,3(1),108-135 PubMed DOI

Soares F.V.; De Castro A.A.; Pereira A.F.; Leal D.H.S.; Mancini D.T.; Krejcar O.; Ramalho T.C.; Da Cunha E.F.F.; Kuca K.; Theoretical studies applied to the evaluation of the DFPase bioremediation potential against chemical warfare agents intoxication. Int J Mol Sci 2018,19(4),1257 PubMed DOI

Pereira A.F.; de Castro A.A.; Soares F.V.; Soares Leal D.H.; da Cunha E.F.F.; Mancini D.T.; Ramalho T.C.; Development of technologies applied to the biodegradation of warfare nerve agents: Theoretical evidence for asymmetric homogeneous catalysis. Chem Biol Interact 2019,308,323-331 PubMed DOI

Polisel D.A.; de Castro A.A.; Mancini D.T.; da Cunha E.F.F.; França T.C.C.; Ramalho T.C.; Kuca K.; Slight difference in the isomeric oximes K206 and K203 makes huge difference for the reactivation of organophosphorus-inhibited AChE: Theoretical and experimental aspects. Chem Biol Interact 2019,309,108671 PubMed DOI

de Castro A.A.; Soares F.V.; Pereira A.F.; Silva T.C.; Silva D.R.; Mancini D.T.; Caetano M.S.; da Cunha E.F.F.; Ramalho T.C.; Asymmetric biodegradation of the nerve agents Sarin and VX by human dUTPase: Chemometrics, molecular docking and hybrid QM/MM calculations. J Biomol Struct Dyn 2019,37(8),2154-2164 PubMed DOI

van der Kamp M.W.; Mulholland A.J.; Combined quantum mechanics/molecular mechanics (QM/MM) methods in computational enzymology. Biochemistry 2013,52(16),2708-2728 PubMed DOI

Sharma H.; Raju B.; Narendra G.; Motiwale M.; Sharma B.; Verma H.; Silakari O.; QM/MM studies on enzyme catalysis and insight into designing of new inhibitors by ONIOM approach: Recent update. ChemistrySelect 2023,8(1),e202203319 DOI

Huang S.Y.; Zou X.; Advances and challenges in protein-ligand docking. Int J Mol Sci 2010,11(8),3016-3034 PubMed DOI

Jones G.; Willett P.; Glen R.C.; Leach A.R.; Taylor R.; Development and validation of a genetic algorithm for flexible docking. J Mol Biol 1997,267(3),727-748 PubMed DOI

Goodsell D.S.; Olson A.J.; Automated docking of substrates to proteins by simulated annealing. Proteins 1990,8(3),195-202 PubMed DOI

Goodsell D.S.; Morris G.M.; Olson A.J.; Automated docking of flexible ligands: Applications of autodock. J Mol Recognit 1996,9(1),1-5 PubMed DOI

Rarey M.; Kramer B.; Lengauer T.; Klebe G.; A fast flexible docking method using an incremental construction algorithm. J Mol Biol 1996,261(3),470-489 PubMed DOI

Thomsen R.; Christensen M.H.; MolDock: A new technique for high-accuracy molecular docking. J Med Chem 2006,49(11),3315-3321 PubMed DOI

Kitchen D.B.; Decornez H.; Furr J.R.; Bajorath J.; Docking and scoring in virtual screening for drug discovery: Methods and applications. Nat Rev Drug Discov 2004,3(11),935-949 PubMed DOI

Hollingsworth, S.A.; Dror, R.O. Molecular dynamics simulation for all. Neuron 2018,99(6),1129-1143 PubMed DOI

Durrant J.D.; McCammon J.A.; Molecular dynamics simulations and drug discovery. BMC Biol 2011,9(1),71 PubMed DOI

Vidal-Limon A.; Aguilar-Toalá J.E.; Liceaga A.M.; Integration of molecular docking analysis and molecular dynamics simulations for studying food proteins and bioactive peptides. J Agric Food Chem 2022,70(4),934-943 PubMed DOI

Filipe H.A.L.; Loura L.M.S.; Molecular dynamics simulations: Advances and applications. Molecules 2022,27(7),2105 PubMed DOI

Wu X.; Xu L.Y.; Li E.M.; Dong G.; Application of molecular dynamics simulation in biomedicine. Chem Biol Drug Des 2022,99(5),789-800 PubMed DOI

Fu H.; Chen H.; Blazhynska M.; Goulard Coderc de Lacam E.; Szczepaniak F.; Pavlova A.; Shao X.; Gumbart J.C.; Dehez F.; Roux B.; Cai W.; Chipot C.; Accurate determination of protein:ligand standard binding free energies from molecular dynamics simulations. Nat Protoc 2022,17(4),1114-1141 PubMed DOI

Wang M.; Incecik A.; Yang C.; Gupta M.K.; Królczyk G.; Andriukaitis D.; Li Z.; A critical review on molecular dynamics applied to structure fracture and failure analysis. Eng Anal Bound Elem 2023,150,413-422 DOI

Guimarães A.P.; Ramalho T.C.; França T.C.C.; Preventing the return of smallpox: Molecular modeling studies on thymidylate kinase from Variola virus. J Biomol Struct Dyn 2014,32(10),1601-1612 PubMed DOI

Karplus M.; McCammon J.A.; Molecular dynamics simulations of biomolecules. Nat Struct Biol 2002,9(9),646-652 PubMed DOI

Alonso H.; Bliznyuk A.A.; Gready J.E.; Combining docking and molecular dynamic simulations in drug design. Med Res Rev 2006,26(5),531-568 PubMed DOI

Weiner P.K.; Kollman P.A.; : Assisted model building with energy refinement. A general program for modeling molecules and their interactions. J Comput Chem 1981,2(3),287-303 DOI

Brooks B.R.; Bruccoleri R.E.; Olafson B.D.; States D.J.; Swaminathan S.; Karplus M.; : A program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem 1983,4(2),187-217 DOI

Kalé L.; Skeel R.; Bhandarkar M.; Brunner R.; Gursoy A.; Krawetz N.; Phillips J.; Shinozaki A.; Varadarajan K.; Schulten K.; NAMD2: Greater scalability for parallel molecular dynamics. J Comput Phys 1999,151(1),283-312 DOI

Phillips J.C.; Braun R.; Wang W.; Gumbart J.; Tajkhorshid E.; Villa E.; Chipot C.; Skeel R.D.; Kalé L.; Schulten K.; Scalable molecular dynamics with NAMD. J Comput Chem 2005,26(16),1781-1802 PubMed DOI

Scott W.R.P.; Hünenberger P.H.; Tironi I.G.; Mark A.E.; Billeter S.R.; Fennen J.; Torda A.E.; Huber T.; Krüger P.; van Gunsteren W.F.; The GROMOS biomolecular simulation program package. J Phys Chem A 1999,103(19),3596-3607 DOI

Ramalho T.C.; de Castro A.A.; Silva D.R.; Silva M.C.; Franca T.C.C.; Bennion B.J.; Kuca K.; Computational enzymology and organophosphorus degrading enzymes: Promising approaches toward remediation technologies of warfare agents and pesticides. Curr Med Chem 2016,23(10),1041-1061 PubMed DOI

Jorgensen W.L.; Foundations of biomolecular modeling. Cell 2013,155(6),1199-1202 PubMed DOI

da Silva Gonçalves A.; França T.C.C.; Caetano M.S.; Ramalho T.C.; Reactivation steps by 2-PAM of tabun-inhibited human acetylcholinesterase: Reducing the computational cost in hybrid QM/MM methods. J Biomol Struct Dyn 2014,32(2),301-307 PubMed DOI

Brunk E.; Rothlisberger U.; Mixed quantum mechanical/molecular mechanical molecular dynamics simulations of biological systems in ground and electronically excited states. Chem Rev 2015,115(12),6217-6263 PubMed DOI

Warshel A.; Levitt M.; Theoretical studies of enzymic reactions: Dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme. J Mol Biol 1976,103(2),227-249 PubMed DOI

Malaspina T.; Coutinho K.; Canuto S.; Ab initio calculation of hydrogen bonds in liquids: A sequential Monte Carlo quantum mechanics study of pyridine in water. J Chem Phys 2002,117(4),1692-1699 DOI

Abdolmaleki A.; Ghasemi F.; Ghasemi J.B.; Computer-aided drug design to explore cyclodextrin therapeutics and biomedical applications. Chem Biol Drug Des 2017,89(2),257-268 PubMed DOI

Giordano D.; Biancaniello C.; Argenio M.A.; Facchiano A.; Drug design by pharmacophore and virtual screening approach. Pharmaceuticals 2022,15(5),646 PubMed DOI

Jiang Y.; Gao H.; Pharmacophore-based drug design for potential AChE inhibitors from traditional chinese medicine database. Bioorg Chem 2018,76,400-414 PubMed DOI

Maia E.H.B.; Assis L.C.; de Oliveira T.A.; da Silva A.M.; Taranto A.G.; Structure-based virtual screening: from classical to artificial intelligence. Front Chem 2020,8,343 PubMed DOI

Lionta E.; Spyrou G.; Vassilatis D.; Cournia Z.; Structure-based virtual screening for drug discovery: Principles, applications and recent advances. Curr Top Med Chem 2014,14(16),1923-1938 PubMed DOI

Ittner L.M.; Ke Y.D.; Delerue F.; Bi M.; Gladbach A.; van Eersel J.; Wölfing H.; Chieng B.C.; Christie M.J.; Napier I.A.; Eckert A.; Staufenbiel M.; Hardeman E.; Götz J.; Dendritic function of tau mediates amyloid-beta toxicity in Alzheimer’s disease mouse models. Cell 2010,142(3),387-397 PubMed DOI

Corbett A.; Pickett J.; Burns A.; Corcoran J.; Dunnett S.B.; Edison P.; Hagan J.J.; Holmes C.; Jones E.; Katona C.; Kearns I.; Kehoe P.; Mudher A.; Passmore A.; Shepherd N.; Walsh F.; Ballard C.; Drug repositioning for Alzheimer’s disease. Nat Rev Drug Discov 2012,11(11),833-846 PubMed DOI

Ballard C.; Corbett A.; Sharp S.; Aligning the evidence with practice: NICE guidelines for drug treatment of Alzheimer’s disease. Expert Rev Neurother 2011,11(3),327-329 PubMed DOI

Liu P.P.; Xie Y.; Meng X.Y.; Kang J.S.; History and progress of hypotheses and clinical trials for Alzheimer’s disease. Signal Transduct Target Ther 2019,4(1),29 PubMed DOI

Contestabile A.; The history of the cholinergic hypothesis. Behav Brain Res 2011,221(2),334-340 PubMed DOI

Davies P.; Maloney A.J.; Selective loss of central cholinergic neurons in Alzheimer’s disease. Lancet 1976,308(8000),1403 PubMed DOI

Hörnberg A.; Tunemalm A.K.; Ekström F.; Crystal structures of acetylcholinesterase in complex with organophosphorus compounds suggest that the acyl pocket modulates the aging reaction by precluding the formation of the trigonal bipyramidal transition state. Biochemistry 2007,46(16),4815-4825 PubMed DOI

Bowen D.M.; Smith C.B.; White P.; Davison A.N.; Neurotransmitter-related enzymes and indices of hypoxia in senile dementia and other abiotrophies. Brain 1976,99(3),459-496 PubMed DOI

Kar S.; Issa A.M.; Seto D.; Auld D.S.; Collier B.; Quirion R.; Amyloid beta-peptide inhibits high-affinity choline uptake and acetylcholine release in rat hippocampal slices. J Neurochem 1998,70(5),2179-2187 PubMed DOI

Auld D.S.; Kar S.; Quirion R.; β-Amyloid peptides as direct cholinergic neuromodulators: A missing link? Trends Neurosci 1998,21(1),43-49 PubMed DOI

Nordberg A.; Alafuzoff I.; Winblad B.; Nicotinic and muscarinic subtypes in the human brain: Changes with aging and dementia. J Neurosci Res 1992,31(1),103-111 PubMed DOI

Barage S.H.; Sonawane K.D.; Amyloid cascade hypothesis: Pathogenesis and therapeutic strategies in Alzheimer’s disease. Neuropeptides 2015,52,1-18 PubMed DOI

Franklin M.C.; Rudolph M.J.; Ginter C.; Cassidy M.S.; Cheung J.; Structures of paraoxon-inhibited human acetylcholinesterase reveal perturbations of the acyl loop and the dimer interface. Proteins 2016,84(9),1246-1256 PubMed DOI

Reitz C.; Brayne C.; Mayeux R.; Epidemiology of Alzheimer disease. Nat Rev Neurol 2011,7(3),137-152 PubMed DOI

Lleó A.; Greenberg S.M.; Growdon J.H.; Current pharmacotherapy for Alzheimer’s disease. Annu Rev Med 2006,57(1),513-533 PubMed DOI

Hebert L.E.; Scherr P.A.; Bienias J.L.; Bennett D.A.; Evans D.A.; Alzheimer disease in the US population: prevalence estimates using the 2000 census. Arch Neurol 2003,60(8),1119-1122 PubMed DOI

Doody R.S.; Stevens J.C.; Beck C.; Dubinsky R.M.; Kaye J.A.; Gwyther L.; Mohs R.C.; Thal L.J.; Whitehouse P.J.; DeKosky S.T.; Cummings J.L.; Practice parameter: management of dementia (an evidence-based review). Report of the quality standards subcommittee of the american academy of neurology. Neurology 2001,56(9),1154-1166 PubMed DOI

Giacobini E.; Cholinesterases: new roles in brain function and in Alzheimer’s disease. Neurochem Res 2003,28(3/4),515-522 PubMed DOI

Giacobini E.; Long-term stabilizing effect of cholinesterase inhibitors in the therapy of Alzheimer’ disease. J Neural Transm Suppl 2002,62(62),181-187 PubMed DOI

Rogers S.L.; Farlow M.R.; Doody R.S.; Mohs R.; Friedhoff L.T.; Donepezil Study Group.A 24-week, double-blind, placebo-controlled trial of donepezil in patients with Alzheimer’s disease. Neurology 1998,50(1),136-145 PubMed DOI

Corey-Bloom J.; Anand R.; Veach J.; A randomized trial evaluating the efficacy and safety of ENA 713 (rivastigmine tartrate), a new acetylcholinesterase inhibitor, in patients with mild to moderately severe Alzheimer's disease. Int J Geriatr Psychiatry 1998,1(2),55-65

Tariot P.N.; Solomon P.R.; Morris J.C.; Kershaw P.; Lilienfeld S.; Ding C.; A 5-month, randomized, placebo- controlled trial of galantamine in AD. Neurology 2000,54(12),2269-2276 PubMed DOI

Cummings J.L.; Cholinesterase inhibitors: A new class of psychotropic compounds. Am J Psychiatry 2000,157(1),4-15 PubMed DOI

Ryan J.; Scali J.; Carriere I.; Ritchie K.; Ancelin M.L.; Hormonal treatment, mild cognitive impairment and Alzheimer’s disease. Int Psychogeriatr 2008,20(1),47-56 PubMed DOI

Gauthier S.; Juby A.; Dalziel W.; Réhel B.; Schecter R.; EXPLORE investigators. Effects of rivastigmine on common symptomatology of Alzheimer’s disease (EXPLORE). Curr Med Res Opin 2010,26(5),1149-1160 PubMed DOI

Lockhart I.A.; Mitchell S.A.; Kelly S.; Safety and tolerability of donepezil, rivastigmine and galantamine for patients with Alzheimer’s disease: Systematic review of the ‘real-world’ evidence. Dement Geriatr Cogn Disord 2009,28(5),478-492 PubMed DOI

Holtzman D.M.; Morris J.C.; Goate A.M.; Alzheimer’s disease: The challenge of the second century. Sci Transl Med 2011,3(77),77sr1 PubMed DOI

Giacobini E.; Cholinesterase inhibitors stabilize Alzheimer’s disease. Ann N Y Acad Sci 2000,920(1),321-327 PubMed DOI

Crismon M.L.; Tacrine: First drug approved for Alzheimer’s disease. Ann Pharmacother 1994,28(6),744-751 PubMed DOI

Mehta M.; Adem A.; Sabbagh M.; New acetylcholinesterase inhibitors for Alzheimer’s disease. Int J Alzheimer’s Dis 2012 DOI

Cacabelos R.; Donepezil in Alzheimer’s disease: From conventional trials to pharmacogenetics. Neuropsychiatr Dis Treat 2007,3(3),303-333 PubMed

Birks J.S.; Harvey R.J.; Donepezil for dementia due to Alzheimer’s disease. Cochrane Libr 2018,2018(6),CD001190 PubMed DOI

Ballard C.G.; Advances in the treatment of Alzheimer’s disease: benefits of dual cholinesterase inhibition. Eur Neurol 2002,47(1),64-70 PubMed DOI

Gao H.; Jiang Y.; Zhan J.; Sun Y.; Pharmacophore-based drug design of AChE and BChE dual inhibitors as potential anti-Alzheimer’s disease agents. Bioorg Chem 2021,114,105149 PubMed DOI

Irwin J.J.; Shoichet B.K.; ZINC-a free database of commercially available compounds for virtual screening. J Chem Inf Model 2005,45(1),177-182 PubMed DOI

Jiang Y.; Gao H.; Pharmacophore-based drug design for the identification of novel butyrylcholinesterase inhibitors against Alzheimer’s disease. Phytomedicine 2019,54,278-290 PubMed DOI

Joubert J.; Kapp E.; Discovery of 9-phenylacridinediones as highly selective butyrylcholinesterase inhibitors through structure-based virtual screening. Bioorg Med Chem Lett 2020,30(9),127075 PubMed DOI

Codony S.; Pont C.; Griñán-Ferré C.; Di Pede-Mattatelli A.; Calvó-Tusell C.; Feixas F.; Osuna S.; Jarné-Ferrer J.; Naldi M.; Bartolini M.; Loza M.I.; Brea J.; Pérez B.; Bartra C.; Sanfeliu C.; Juárez-Jiménez J.; Morisseau C.; Hammock B.D.; Pallàs M.; Vázquez S.; Muñoz-Torrero D.; Discovery and in vivo proof of concept of a highly potent dual inhibitor of soluble epoxide hydrolase and acetylcholinesterase for the treatment of Alzheimer’s disease. J Med Chem 2022,65(6),4909-4925 PubMed DOI

Ahmed Ali Abdusalam A.; Vikneswaran M.; Novel acetylcholinesterase inhibitors identified from zinc database using docking-based virtual screening for Alzheimer’s disease. ChemistrySelect 2020,5(12),3593-3599 DOI

Son M.; Park C.; Rampogu S.; Zeb A.; Lee K.W.; Discovery of novel acetylcholinesterase inhibitors as potential candidates for the treatment of Alzheimer’s disease. Int J Mol Sci 2019,20(4),1000 PubMed DOI

Fatiha Muhammad E.; Kumar A.; Wahab H.A.; Zhang K.Y.J.; Identification of 1,2,4-triazolylthioethanone scaffold for the design of new acetylcholinesterase inhibitors. Mol Inform 2021,40(8),2100020 PubMed DOI

Reiss A.B.; Arain H.A.; Stecker M.M.; Siegart N.M.; Kasselman L.J.; Amyloid toxicity in Alzheimer’s disease. Rev Neurosci 2018,29(6),613-627 PubMed DOI

Imbimbo B.P.; Ippati S.; Watling M.; Imbimbo C.; Role of monomeric amyloid-β in cognitive performance in Alzheimer’s disease: Insights from clinical trials with secretase inhibitors and monoclonal antibodies. Pharmacol Res 2023,187,106631 PubMed DOI

Uddin M.S.; Kabir M.T.; Rahman M.S.; Behl T.; Jeandet P.; Ashraf G.M.; Najda A.; Bin-Jumah M.N.; El-Seedi H.R.; Abdel-Daim M.M.; Revisiting the amyloid cascade hypothesis: From anti-aβ therapeutics to auspicious new ways for Alzheimer’s disease. Int J Mol Sci 2020,21(16),5858 PubMed DOI

Chen G.; Xu T.; Yan Y.; Zhou Y.; Jiang Y.; Melcher K.; Xu H.E.; Amyloid beta: Structure, biology and structure-based therapeutic development. Acta Pharmacol Sin 2017,38(9),1205-1235 PubMed DOI

Papadopoulos N.; Suelves N.; Perrin F.; Vadukul D.M.; Vrancx C.; Constantinescu S.N.; Kienlen-Campard P.; Structural determinant of β-amyloid formation: from transmembrane protein dimerization to β-amyloid aggregates. Biomedicines 2022,10(11),2753 PubMed DOI

Hampel H.; Hardy J.; Blennow K.; Chen C.; Perry G.; Kim S.H.; Villemagne V.L.; Aisen P.; Vendruscolo M.; Iwatsubo T.; Masters C.L.; Cho M.; Lannfelt L.; Cummings J.L.; Vergallo A.; The amyloid-β pathway in Alzheimer’s disease. Mol Psychiatry 2021,26(10),5481-5503 PubMed DOI

Gulisano W.; Maugeri D.; Baltrons M.A.; Fà M.; Amato A.; Palmeri A.; D’Adamio L.; Grassi C.; Devanand D.P.; Honig L.S.; Puzzo D.; Arancio O.; Role of amyloid-β and tau proteins in Alzheimer’s disease: Confuting the amyloid cascade. J Alzheimers Dis 2018,64(s1),S611-S631 PubMed DOI

Shaker B.; Ahmad S.; Lee J.; Jung C.; Na D.; In silico methods and tools for drug discovery. Comput Biol Med 2021,137,104851 PubMed DOI

Youn K.; Park J.H.; Lee S.; Lee S.; Lee J.; Yun E.Y.; Jeong W.S.; Jun M.; BACE1 inhibition by genistein: Biological evaluation, kinetic analysis, and molecular docking simulation. J Med Food 2018,21(4),416-420 PubMed DOI

Egan M.F.; Kost J.; Voss T.; Mukai Y.; Aisen P.S.; Cummings J.L.; Tariot P.N.; Vellas B.; van Dyck C.H.; Boada M.; Zhang Y.; Li W.; Furtek C.; Mahoney E.; Harper Mozley L.; Mo Y.; Sur C.; Michelson D.; Randomized trial of verubecestat for prodromal Alzheimer’s disease. N Engl J Med 2019,380(15),1408-1420 PubMed DOI

Saravanan K.; Sivanandam M.; Hunday G.; Mathiyalagan L.; Kumaradhas P.; Investigation of intermolecular interactions and stability of verubecestat in the active site of BACE1: Development of first model from QM/MM-based charge density and MD analysis. J Biomol Struct Dyn 2019,37(9),2339-2354 PubMed DOI

Ali M.A.; Vuree S.; Goud H.; Hussain T.; Nayarisseri A.; Singh S.K.; Identification of high-affinity small molecules targeting gamma secretase for the treatment of Alzheimer’s disease. Curr Top Med Chem 2019,19(13),1173-1187 PubMed DOI

Jabir N.R.; Rehman M.T.; Alsolami K.; Shakil S.; Zughaibi T.A.; Alserihi R.F.; Khan M.S.; AlAjmi M.F.; Tabrez S.; Concatenation of molecular docking and molecular simulation of BACE-1, γ-secretase targeted ligands: In pursuit of Alzheimer’s treatment. Ann Med 2021,53(1),2332-2344 PubMed DOI

Jabir N.R.; Shakil S.; Tabrez S.; Khan M.S.; Rehman M.T.; Ahmed B.A.; In silico screening of glycogen synthase kinase-3β targeted ligands against acetylcholinesterase and its probable relevance to Alzheimer’s disease. J Biomol Struct Dyn 2021,39(14),5083-5092 PubMed DOI

Jabir N.R.; Rehman M.T.; Tabrez S.; Alserihi R.F.; AlAjmi M.F.; Khan M.S.; Husain F.M.; Ahmed B.A.; Identification of butyrylcholinesterase and monoamine oxidase B targeted ligands and their putative application in Alzheimer’s treatment: A computational strategy. Curr Pharm Des 2021,27(20),2425-2434 PubMed DOI

Chawla P.A.; >In Silico design and evaluation of triazine based 4-thiazolidinone (tbt) analogues as anti Alzheimer’s agents through bace 1 inhibition. Biomed J Sci Tech Res 2022,46(3),37433-37441 DOI

Frost B.; Jacks R.L.; Diamond M.I.; Propagation of tau misfolding from the outside to the inside of a cell. J Biol Chem 2009,284(19),12845-12852 PubMed DOI

Medeiros R.; Baglietto-Vargas D.; LaFerla F.M.; The role of tau in Alzheimer’s disease and related disorders. CNS Neurosci Ther 2011,17(5),514-524 PubMed DOI

Braak H.; Braak E.; Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 1991,82(4),239-259 PubMed DOI

Hutton M.; Lendon C.L.; Rizzu P.; Baker M.; Froelich S.; Houlden H.; Pickering-Brown S.; Chakraverty S.; Isaacs A.; Grover A.; Hackett J.; Adamson J.; Lincoln S.; Dickson D.; Davies P.; Petersen R.C.; Stevens M.; de Graaff E.; Wauters E.; van Baren J.; Hillebrand M.; Joosse M.; Kwon J.M.; Nowotny P.; Che L.K.; Norton J.; Morris J.C.; Reed L.A.; Trojanowski J.; Basun H.; Lannfelt L.; Neystat M.; Fahn S.; Dark F.; Tannenberg T.; Dodd P.R.; Hayward N.; Kwok J.B.J.; Schofield P.R.; Andreadis A.; Snowden J.; Craufurd D.; Neary D.; Owen F.; Oostra B.A.; Hardy J.; Goate A.; van Swieten J.; Mann D.; Lynch T.; Heutink P.; Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17. Nature 1998,393(6686),702-705 PubMed DOI

SantaCruz K.; Lewis J.; Spires T.; Paulson J.; Kotilinek L.; Ingelsson M.; Guimaraes A.; DeTure M.; Ramsden M.; McGowan E.; Forster C.; Yue M.; Orne J.; Janus C.; Mariash A.; Kuskowski M.; Hyman B.; Hutton M.; Ashe K.H.; Tau suppression in a neurodegenerative mouse model improves memory function. Science 2005,309(5733),476-481 PubMed DOI

Clavaguera F.; Bolmont T.; Crowther R.A.; Abramowski D.; Frank S.; Probst A.; Fraser G.; Stalder A.K.; Beibel M.; Staufenbiel M.; Jucker M.; Goedert M.; Tolnay M.; Transmission and spreading of tauopathy in transgenic mouse brain. Nat Cell Biol 2009,11(7),909-913 PubMed DOI

Ballatore C.; Lee V.M.Y.; Trojanowski J.Q.; Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders. Nat Rev Neurosci 2007,8(9),663-672 PubMed DOI

Bakota L.; Brandt R.; Tau biology and tau-directed therapies for Alzheimer’s disease. Drugs 2016,76(3),301-313 PubMed DOI

Pradeepkiran J.A.; Reddy P.H.; Structure based design and molecular docking studies for phosphorylated tau inhibitors in Alzheimer’s disease. Cells 2019,8(3),260 PubMed DOI

Pradeepkiran J.A.; Munikumar M.; Reddy A.P.; Reddy P.H.; Protective effects of a small molecule inhibitor ligand against hyperphosphorylated tau-induced mitochondrial and synaptic toxicities in Alzheimer disease. Hum Mol Genet 2021,31(2),244-261 PubMed DOI

Vilar S.; Cozza G.; Moro S.; Medicinal chemistry and the molecular operating environment (MOE): Application of QSAR and molecular docking to drug discovery. Curr Top Med Chem 2008,8(18),1555-1572 PubMed DOI

Schmidtke P.; Le Guilloux V.; Maupetit J.; Tufféry P.; fpocket: Online tools for protein ensemble pocket detection and tracking. Nucleic Acids Res 2010,38(Web Server),W582-W589 PubMed DOI

Shukla R.; Singh T.R.; Virtual screening, pharmacokinetics, molecular dynamics and binding free energy analysis for small natural molecules against cyclin-dependent kinase 5 for Alzheimer’s disease. J Biomol Struct Dyn 2020,38(1),248-262 PubMed DOI

Trudler D.; Farfara D.; Frenkel D.; Toll-like receptors expression and signaling in glia cells in neuro-amyloidogenic diseases: Towards future therapeutic application. Mediators Inflamm 2010

Odfalk K.F.; Bieniek K.F.; Hopp S.C.; Microglia: Friend and foe in tauopathy. Prog Neurobiol 2022,216,102306 PubMed DOI

Cai Z.; Hussain M.D.; Yan L.J.; Microglia, neuroinflammation, and beta-amyloid protein in Alzheimer’s disease. Int J Neurosci 2014,124(5),307-321 PubMed DOI

Kraft A.D.; Harry G.J.; Features of microglia and neuroinflammation relevant to environmental exposure and neurotoxicity. Int J Environ Res Public Health 2011,8(7),2980-3018 PubMed DOI

Colonna M.; Butovsky O.; Microglia function in the central nervous system during health and neurodegeneration. Annu Rev Immunol 2017,35(1),441-468 PubMed DOI

Gao S.; Tan H.; Li D.; Oridonin suppresses gastric cancer -7901 cell proliferation by targeting the -alpha/androgen receptor/ -beta signalling pathway axis. J Cell Mol Med 2023,27(18),2661-2674 PubMed DOI

Gao S.; Gang J.; Yu M.; Xin G.; Tan H.; Computational analysis for identification of early diagnostic biomarkers and prognostic biomarkers of liver cancer based on GEO and TCGA databases and studies on pathways and biological functions affecting the survival time of liver cancer. BMC Cancer 2021,21(1),791 PubMed DOI

Gao S.; Tan H.; Gang J.; Inhibition of hepatocellular carcinoma cell proliferation through regulation of the cell cycle, age-rage, and leptin signaling pathways by a compound formulation comprised of andrographolide, wogonin, and oroxylin a derived from andrographis paniculata(Burm.f.) Nees. J Ethnopharmacol 2024,329,118001 PubMed DOI

Bak L.K.; Schousboe A.; Waagepetersen H.S.; The glutamate/GABA-glutamine cycle: Aspects of transport, neurotransmitter homeostasis and ammonia transfer. J Neurochem 2006,98(3),641-653 PubMed DOI

González-Reyes R.E.; Nava-Mesa M.O.; Vargas-Sánchez K.; Ariza-Salamanca D.; Mora-Muñoz L.; Involvement of astrocytes in Alzheimer’s disease from a neuroinflammatory and oxidative stress perspective. Front Mol Neurosci 2017,10,427 PubMed DOI

Maruszak A.; Żekanowski C.; Mitochondrial dysfunction and Alzheimer’s disease. Prog Neuropsychopharmacol Biol Psychiatry 2011,35(2),320-330 PubMed DOI

Rubio-Perez J.M.; Morillas-Ruiz J.M.; A review: Inflammatory process in Alzheimer’s disease, role of cytokines. ScientificWorldJournal 2012,2012,1-15 PubMed DOI

DiSabato D.J.; Quan N.; Godbout J.P.; Neuroinflammation: The devil is in the details. J Neurochem 2016,139(S2)(Suppl. 2),136-153 PubMed DOI

Blennow K.; Davidsson P.; Wallin A.; Ekman R.; Chromogranin A in cerebrospinal fluid: A biochemical marker for synaptic degeneration in Alzheimer’s disease? Dementia 1995,6(6),306-311 PubMed

Clayton K.; Delpech J.C.; Herron S.; Iwahara N.; Ericsson M.; Saito T.; Saido T.C.; Ikezu S.; Ikezu T.; Plaque associated microglia hyper-secrete extracellular vesicles and accelerate tau propagation in a humanized APP mouse model. Mol Neurodegener 2021,16(1),18 PubMed DOI

Karch C.M.; Goate A.M.; Alzheimer’s disease risk genes and mechanisms of disease pathogenesis. Biol Psychiatry 2015,77(1),43-51 PubMed DOI

Navarro V.; Sanchez-Mejias E.; Jimenez S.; Muñoz-Castro C.; Sanchez-Varo R.; Davila J.C.; Vizuete M.; Gutierrez A.; Vitorica J.; Microglia in Alzheimer’s disease: Activated, dysfunctional or degenerative. Front Aging Neurosci 2018,10,140 PubMed DOI

Doorn K.J.; Goudriaan A.; Blits-Huizinga C.; Bol J.G.J.M.; Rozemuller A.J.; Hoogland P.V.J.M.; Lucassen P.J.; Drukarch B.; van de Berg W.D.J.; van Dam A.M.; Increased amoeboid microglial density in the olfactory bulb of Parkinson’s and Alzheimer’s patients. Brain Pathol 2014,24(2),152-165 PubMed DOI

Tischer J.; Krueger M.; Mueller W.; Staszewski O.; Prinz M.; Streit W.J.; Bechmann I.; Inhomogeneous distribution of Iba-1 characterizes microglial pathology in Alzheimer’s disease. Glia 2016,64(9),1562-1572 PubMed DOI

Streit W.J.; Braak H.; Xue Q.S.; Bechmann I.; Dystrophic (senescent) rather than activated microglial cells are associated with tau pathology and likely precede neurodegeneration in Alzheimer’s disease. Acta Neuropathol 2009,118(4),475-485 PubMed DOI

Sanchez-Mejias E.; Navarro V.; Jimenez S.; Sanchez-Mico M.; Sanchez-Varo R.; Nuñez-Diaz C.; Trujillo-Estrada L.; Davila J.C.; Vizuete M.; Gutierrez A.; Vitorica J.; Soluble phospho-tau from Alzheimer’s disease hippocampus drives microglial degeneration. Acta Neuropathol 2016,132(6),897-916 PubMed DOI

Leng F.; Edison P.; Neuroinflammation and microglial activation in Alzheimer disease: Where do we go from here? Nat Rev Neurol 2021,17(3),157-172 PubMed DOI

Leitner G.R.; Wenzel T.J.; Marshall N.; Gates E.J.; Klegeris A.; Targeting toll-like receptor 4 to modulate neuroinflammation in central nervous system disorders. Expert Opin Ther Targets 2019,23(10),865-882 PubMed DOI

Zaffaroni L.; Peri F.; Recent advances on Toll-like receptor 4 modulation: New therapeutic perspectives. Future Med Chem 2018,10(4),461-476 PubMed DOI

Pérez-Regidor L.; Guzmán-Caldentey J.; Oberhauser N.; Punzón C.; Balogh B.; Pedro J.R.; Falomir E.; Nurisso A.; Mátyus P.; Menéndez J.C.; de Andrés B.; Fresno M.; Martín-Santamaría S.; Small molecules as toll-like receptor 4 modulators drug and in-house computational repurposing. Biomedicines 2022,10(9),2326 PubMed DOI

Zusso M.; Lunardi V.; Franceschini D.; Pagetta A.; Lo R.; Stifani S.; Frigo A.C.; Giusti P.; Moro S.; Ciprofloxacin and levofloxacin attenuate microglia inflammatory response via TLR4/NF-kB pathway. J Neuroinflammation 2019,16(1),148 PubMed DOI

Zhang Y.; Liang X.; Bao X.; Xiao W.; Chen G.; Toll- like receptor 4 (TLR4) inhibitors: Current research and prospective. Eur J Med Chem 2022,235,114291 PubMed DOI

Verma R.K.; Chawla P.; Pandey M.; Choudhury H.; Mayuren J.; Bhattamisra S.K.; Gorain B.; Raja M.A.G.; Amjad M.W.; Obaidur Rahman S.; An insight into the role of artificial intelligence in the early diagnosis of Alzheimer’s disease. CNS Neurol Disord Drug Targets 2022,21(10),901-912 PubMed DOI

Chawla P.A.; Kumar A.; Nehra B.; Singh D.; Kumar D.; Recent advances in the development of nitrogen-containing heterocyclic anti-Alzheimer’s agents. Curr Top Med Chem 2023,23(13),1277-1306 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...