Effect of drug metabolism in the treatment of SARS-CoV-2 from an entirely computational perspective
Language English Country England, Great Britain Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
34620963
PubMed Central
PMC8497625
DOI
10.1038/s41598-021-99451-1
PII: 10.1038/s41598-021-99451-1
Knihovny.cz E-resources
- MeSH
- Adenine adverse effects analogs & derivatives metabolism pharmacology MeSH
- Adenosine adverse effects analogs & derivatives metabolism pharmacology MeSH
- Adenosine Monophosphate adverse effects analogs & derivatives metabolism pharmacology MeSH
- Alanine adverse effects analogs & derivatives metabolism pharmacology MeSH
- Amides adverse effects metabolism pharmacology MeSH
- Antiviral Agents adverse effects metabolism pharmacology MeSH
- Chloroquine adverse effects analogs & derivatives metabolism pharmacology MeSH
- COVID-19 metabolism MeSH
- Nitro Compounds adverse effects metabolism pharmacology MeSH
- COVID-19 Drug Treatment * MeSH
- Humans MeSH
- Metabolic Networks and Pathways MeSH
- Drug Discovery * MeSH
- Pyrazines adverse effects metabolism pharmacology MeSH
- Pyrrolidines adverse effects metabolism pharmacology MeSH
- Drug Design MeSH
- Ribavirin adverse effects metabolism pharmacology MeSH
- SARS-CoV-2 drug effects metabolism MeSH
- Molecular Docking Simulation MeSH
- Thiazoles adverse effects metabolism pharmacology MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Adenine MeSH
- Adenosine MeSH
- Adenosine Monophosphate MeSH
- Alanine MeSH
- Amides MeSH
- Antiviral Agents MeSH
- Chloroquine MeSH
- Nitro Compounds MeSH
- favipiravir MeSH Browser
- galidesivir MeSH Browser
- nitazoxanide MeSH Browser
- Pyrazines MeSH
- Pyrrolidines MeSH
- remdesivir MeSH Browser
- Ribavirin MeSH
- Thiazoles MeSH
Understanding the effects of metabolism on the rational design of novel and more effective drugs is still a considerable challenge. To the best of our knowledge, there are no entirely computational strategies that make it possible to predict these effects. From this perspective, the development of such methodologies could contribute to significantly reduce the side effects of medicines, leading to the emergence of more effective and safer drugs. Thereby, in this study, our strategy is based on simulating the electron ionization mass spectrometry (EI-MS) fragmentation of the drug molecules and combined with molecular docking and ADMET models in two different situations. In the first model, the drug is docked without considering the possible metabolic effects. In the second model, each of the intermediates from the EI-MS results is docked, and metabolism occurs before the drug accesses the biological target. As a proof of concept, in this work, we investigate the main antiviral drugs used in clinical research to treat COVID-19. As a result, our strategy made it possible to assess the biological activity and toxicity of all potential by-products. We believed that our findings provide new chemical insights that can benefit the rational development of novel drugs in the future.
See more in PubMed
WHO . WHO Coronavirus Disease (COVID-19) Dashboard. World Health Organization; 2021. PubMed
Hoffmann M, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181:271–280.e8. doi: 10.1016/j.cell.2020.02.052. PubMed DOI PMC
Báez-Santos YM, St. John SE, Mesecar AD. The SARS-coronavirus papain-like protease: Structure, function and inhibition by designed antiviral compounds. Antiviral Res. 2015;115:21–38. doi: 10.1016/j.antiviral.2014.12.015. PubMed DOI PMC
Morse JS, Lalonde T, Xu S, Liu WR. Learning from the Past: Possible urgent prevention and treatment options for severe acute respiratory infections caused by 2019-nCoV. ChemBioChem. 2020;21:730–738. doi: 10.1002/cbic.202000047. PubMed DOI PMC
Shang J, et al. Structural basis of receptor recognition by SARS-CoV-2. Nature. 2020;581:221–224. doi: 10.1038/s41586-020-2179-y. PubMed DOI PMC
Lan J, et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature. 2020;581:215–220. doi: 10.1038/s41586-020-2180-5. PubMed DOI
Li H, et al. Overview of therapeutic drug research for COVID-19 in China. Acta Pharmacol. Sin. 2020;41:1133–1140. doi: 10.1038/s41401-020-0438-y. PubMed DOI PMC
Bobrowski T, et al. Discovery of synergistic and antagonistic drug combinations against SARS-CoV-2 in vitro. SSRN Electron. J. 2020 doi: 10.2139/ssrn.3666250. PubMed DOI PMC
Elfiky AA. Ribavirin, remdesivir, sofosbuvir, galidesivir, and tenofovir against SARS-CoV-2 RNA dependent RNA polymerase (RdRp): A molecular docking study. Life Sci. 2020;253:117592. doi: 10.1016/j.lfs.2020.117592. PubMed DOI PMC
Wang Y, Li W, Jiang Z, Xi X, Zhu Y. Assessment of the efficacy and safety of Ribavirin in treatment of coronavirus-related pneumonia (SARS, MERS and COVID-19) Medicine. 2020;99:e22379. doi: 10.1097/MD.0000000000022379. PubMed DOI PMC
Wang M, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020;30:269–271. doi: 10.1038/s41422-020-0282-0. PubMed DOI PMC
Assis, L. C., de Castro, A. A., de Jesus, J. P. A., de Ramalho, T. C. & de A. La Porta, F. Theoretical insights into the effect of halogenated substituent on the electronic structure and spectroscopic properties of the favipiravir tautomeric forms and its implications on the treatment of COVID-19. ChemRxiv (2020). PubMed PMC
de Castro A, Assis L, Ramalho T, Porta FL. New in silico insights into the application of the (hydroxy)chloroquine with macrolide antibiotics co-crystals against the SARS-CoV-2 virus. Medicine. 2020 doi: 10.21203/rs.3.rs-66640/v1. PubMed DOI
Döring B, Petzinger E. Phase 0 and phase III transport in various organs: Combined concept of phases in xenobiotic transport and metabolism. Drug Metab. Rev. 2014;46:261–282. doi: 10.3109/03602532.2014.882353. PubMed DOI
Williams RT. Detoxification Mechanisms: The Metabolism and Detoxification of Drugs, Toxic Substances and Other Organic Compounds. Chapman and Hall; 1959.
Gillette JR. Metabolism of drugs and other foreign compounds by enzymatic mechanisms. Progress Drug Res. 1963 doi: 10.1007/978-3-0348-7050-4_1. DOI
Ishikawa T. The ATP-dependent glutathione S-conjugate export pump. Trends Biochem. Sci. 1992;17:463–468. doi: 10.1016/0968-0004(92)90489-V. PubMed DOI
Frisch, M. J. et al. Gaussian, Inc. (2009).
Grimme S. Towards first principles calculation of electron impact mass spectra of molecules. Angew. Chem. Int. Ed. 2013;52:6306–6312. doi: 10.1002/anie.201300158. PubMed DOI
Koopman J, Grimme S. Calculation of electron ionization mass spectra with semiempirical GFNn-xTB methods. ACS Omega. 2019;4:15120–15133. doi: 10.1021/acsomega.9b02011. PubMed DOI PMC
Hanwell MD, et al. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform. 2012;4:17. doi: 10.1186/1758-2946-4-17. PubMed DOI PMC
Trott O, Olson AJ. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010;31:455–461. PubMed PMC
Maia EHB, Medaglia LR, da Silva AM, Taranto AG. Molecular architect: A user-friendly workflow for virtual screening. ACS Omega. 2020;5:6628–6640. doi: 10.1021/acsomega.9b04403. PubMed DOI PMC
Assis LC, et al. Nitro derivatives of quinoline and quinoline N-oxide as low-cost alternative for the treatment of SARS-CoV-2 infection. ACS Omega. 2020 doi: 10.21203/rs.3.rs-32468/v1. PubMed DOI PMC
Assis LC, et al. Computational evidence for nitro derivatives of quinoline and quinoline N-oxide as low-cost alternative for the treatment of SARS-CoV-2 infection. Sci. Rep. 2021;11:6397. doi: 10.1038/s41598-021-85280-9. PubMed DOI PMC
Scott WRP, et al. The GROMOS biomolecular simulation program package. J. Phys. Chem. A. 1999;103:3596–3607. doi: 10.1021/jp984217f. DOI
Deepa G, Sivakumar KC, Sajeevan TP. Molecular simulation and in vitro evaluation of chitosan nanoparticles as drug delivery systems for the controlled release of anticancer drug cytarabine against solid tumours. Biotech. 2018;8:493. PubMed PMC
Humphrey W, Dalke A, Schulten KVMD. Visual molecular dynamics. J. Mol. Graph. 1996;14:33–38. doi: 10.1016/0263-7855(96)00018-5. PubMed DOI
Ducharme J, Farinotti R. Clinical pharmacokinetics and metabolism of chloroquine. Clin. Pharmacokinet. 1996;31:257–274. doi: 10.2165/00003088-199631040-00003. PubMed DOI
Ette EI, Essien EE, Thomas WOA, Brown-Awala EA. Pharmacokinetics of chloroquine and some of its metabolites in healthy volunteers: A single dose study. J. Clin. Pharmacol. 1989;29:457–462. doi: 10.1002/j.1552-4604.1989.tb03362.x. PubMed DOI
McChesney EW, Banks WF, Sullivan DJ. Metabolism of chloroquine and hydroxychloroquine in albino and pigmented rats. Toxicol. Appl. Pharmacol. 1965;7:627–636. doi: 10.1016/0041-008X(65)90050-5. PubMed DOI
Reingruber H, Pontel LB. Formaldehyde metabolism and its impact on human health. Curr. Opin. Toxicol. 2018;9:28–34. doi: 10.1016/j.cotox.2018.07.001. DOI
Eells JT. Formaldehyde poisoning. JAMA. 1981;246:1237. doi: 10.1001/jama.1981.03320110049029. PubMed DOI
Roberts JM, et al. Isocyanic acid in the atmosphere and its possible link to smoke-related health effects. Proc. Natl. Acad. Sci. 2011;108:8966–8971. doi: 10.1073/pnas.1103352108. PubMed DOI PMC
Wang Z, et al. Protein carbamylation links inflammation, smoking, uremia and atherogenesis. Nat. Med. 2007;13:1176–1184. doi: 10.1038/nm1637. PubMed DOI
Vogel SN, Sultan TR, Ten Eyck RP. Cyanide poisoning. Clin. Toxicol. 1981;18:367–383. doi: 10.3109/15563658108990043. PubMed DOI
Jenkins WJ, Peters TJ. selectively reduced hepatic acetaldehyde dehydrogenase in alcoholics. Lancet. 1980;315:628–629. doi: 10.1016/S0140-6736(80)91121-6. PubMed DOI
Stevens JF, Maier CS. Acrolein: Sources, metabolism, and biomolecular interactions relevant to human health and disease. Mol. Nutr. Food Res. 2008;52:7–25. doi: 10.1002/mnfr.200700412. PubMed DOI PMC
Schröder D, et al. Ethylenedione: An intrinsically short-lived molecule. Chem. A Eur. J. 1998;4:2550–2557. doi: 10.1002/(SICI)1521-3765(19981204)4:12<2550::AID-CHEM2550>3.0.CO;2-E. DOI
Baker EL, et al. Phenol poisoning due to contaminated drinking water. Arch. Environ. Health An Int. J. 1978;33:89–94. doi: 10.1080/00039896.1978.10667314. PubMed DOI
Saladino R, Crestini C, Ciciriello F, Costanzo G, Di Mauro E. Formamide chemistry and the origin of informational polymers. Chem. Biodivers. 2007;4:694–720. doi: 10.1002/cbdv.200790059. PubMed DOI
Costanzo G, Saladino R, Crestini C, Ciciriello F, Di Mauro E. Nucleoside phosphorylation by phosphate minerals. J. Biol. Chem. 2007;282:16729–16735. doi: 10.1074/jbc.M611346200. PubMed DOI
Saladino R, Crestini C, Pino S, Costanzo G, Di Mauro E. Formamide and the origin of life. Phys. Life Rev. 2012;9:84–104. doi: 10.1016/j.plrev.2011.12.002. PubMed DOI
Huang J-F, Zhu D-M, Ma J-F, Zhong M. Acute respiratory distress syndrome due to exposure to high-concentration mixture of ethenone and crotonaldehyde. Toxicol. Ind. Health. 2015;31:585–587. doi: 10.1177/0748233713480205. PubMed DOI
Zamyatkin DF, Parra F, Machín A, Grochulski P, Ng KK-S. Binding of 2’-amino-2’-deoxycytidine-5’-triphosphate to norovirus polymerase induces rearrangement of the active site. J. Mol. Biol. 2009;390:10–16. doi: 10.1016/j.jmb.2009.04.069. PubMed DOI
Berman HM, et al. The protein data bank. Nucleic Acids Res. 2000;28:235–242. doi: 10.1093/nar/28.1.235. PubMed DOI PMC
Kumar GN, Surapaneni S. Role of drug metabolism in drug discovery and development. Med. Res. Rev. 2001;21:397–411. doi: 10.1002/med.1016. PubMed DOI
Cuyckens F. Mass spectrometry in drug metabolism and pharmacokinetics: Current trends and future perspectives. Rapid Commun. Mass Spectrom. 2019;33:90–95. doi: 10.1002/rcm.8235. PubMed DOI
Yella JK, Yaddanapudi S, Wang Y, Jegga AG. Changing trends in computational drug repositioning. Pharmaceuticals. 2018;11:1–10. doi: 10.3390/ph11020057. PubMed DOI PMC
Varnek A. Fragment descriptors in structure-property modeling and virtual screening. Methods Mol. Biol. 2011;672:213–243. doi: 10.1007/978-1-60761-839-3_9. PubMed DOI
Maia EHB, Assis LC, de Oliveira TA, da Silva AM, Taranto AG. Structure-based virtual screening: from classical to artificial intelligence. Front. Chem. 2020;8:43. doi: 10.3389/fchem.2020.00343. PubMed DOI PMC
Drwal MN, Griffith R. Combination of ligand- and structure-based methods in virtual screening. Drug Discov. Today Technol. 2013;10:e395–e401. doi: 10.1016/j.ddtec.2013.02.002. PubMed DOI
Dubey KD, Ojha RKT. Recent advances in protein−ligand interactions: Molecular dynamics simulations and binding free energy. Curr. Comput. Aided Drug Des. 2013;9:518–531. doi: 10.2174/15734099113096660036. PubMed DOI
Goodsell DS, Morris GM, Olson AJ. Automated docking of flexible ligands: Applications of AutoDock. J. Mol. Recognit. 1996;9:1–5. doi: 10.1002/(SICI)1099-1352(199601)9:1<1::AID-JMR241>3.0.CO;2-6. PubMed DOI
Azevedo LS, et al. Recent progress of molecular docking simulations applied to development of drugs. Curr. Bioinform. 2012;7:352–365. doi: 10.2174/157489312803901063. DOI
Sant’Anna CMR. Molecular modeling methods in the study and design of bioactive compounds: An introduction. Rev. Virtual Química. 2009;1:1.
Raha K, et al. The role of quantum mechanics in structure-based drug design. Drug Discov. Today. 2007;12:725–731. doi: 10.1016/j.drudis.2007.07.006. PubMed DOI
Lodola A, De Vivo M. The increasing role of QM/MM in drug discovery. Adv. Protein Chem. Struct. Biol. 2012;87:337–362. doi: 10.1016/B978-0-12-398312-1.00011-1. PubMed DOI
Browning, D. J. Pharmacology of Chloroquine and Hydroxychloroquine BT: Hydroxychloroquine and Chloroquine Retinopathy. in (ed. Browning, D. J.) 35–63 (Springer, 2014). doi:10.1007/978-1-4939-0597-3_2.
Hu W, et al. Pharmacokinetics and tissue distribution of remdesivir and its metabolites nucleotide monophosphate, nucleotide triphosphate, and nucleoside in mice. Acta Pharmacol. Sin. 2021;42:1195–1200. doi: 10.1038/s41401-020-00537-9. PubMed DOI PMC
Wiemer AJ. Metabolic efficacy of phosphate prodrugs and the remdesivir paradigm. ACS Pharmacol. Transl. Sci. 2020;3:613–626. doi: 10.1021/acsptsci.0c00076. PubMed DOI PMC
Celik I, Erol M, Duzgun Z. In silico evaluation of potential inhibitory activity of remdesivir, favipiravir, ribavirin and galidesivir active forms on SARS-CoV-2 RNA polymerase. Mol. Divers. 2021 doi: 10.1007/s11030-021-10215-5. PubMed DOI PMC
Brown M, et al. Mass spectrometry tools and metabolite-specific databases for molecular identification in metabolomics. Analyst. 2009;134:1322–1332. doi: 10.1039/b901179j. PubMed DOI