Computational evidence for nitro derivatives of quinoline and quinoline N-oxide as low-cost alternative for the treatment of SARS-CoV-2 infection

. 2021 Mar 18 ; 11 (1) : 6397. [epub] 20210318

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33737545
Odkazy

PubMed 33737545
PubMed Central PMC7973710
DOI 10.1038/s41598-021-85280-9
PII: 10.1038/s41598-021-85280-9
Knihovny.cz E-zdroje

A new and more aggressive strain of coronavirus, known as SARS-CoV-2, which is highly contagious, has rapidly spread across the planet within a short period of time. Due to its high transmission rate and the significant time-space between infection and manifestation of symptoms, the WHO recently declared this a pandemic. Because of the exponentially growing number of new cases of both infections and deaths, development of new therapeutic options to help fight this pandemic is urgently needed. The target molecules of this study were the nitro derivatives of quinoline and quinoline N-oxide. Computational design at the DFT level, docking studies, and molecular dynamics methods as a well-reasoned strategy will aid in elucidating the fundamental physicochemical properties and molecular functions of a diversity of compounds, directly accelerating the process of discovering new drugs. In this study, we discovered isomers based on the nitro derivatives of quinoline and quinoline N-oxide, which are biologically active compounds and may be low-cost alternatives for the treatment of infections induced by SARS-CoV-2.

Zobrazit více v PubMed

Zhou P, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579:270–273. doi: 10.1038/s41586-020-2012-7. PubMed DOI PMC

Wu F, et al. A new coronavirus associated with human respiratory disease in China. Nature. 2020;579:265–269. doi: 10.1038/s41586-020-2008-3. PubMed DOI PMC

Zhang L, et al. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science (80-) 2020;3405:eabb3405. PubMed PMC

Park M, Thwaites RS, Openshaw PJM. COVID-19: lessons from SARS and MERS. Eur. J. Immunol. 2020;50:308–311. doi: 10.1002/eji.202070035. PubMed DOI

Lu R, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020;395:565–574. doi: 10.1016/S0140-6736(20)30251-8. PubMed DOI PMC

Lu H, Stratton CW, Tang Y-W. Outbreak of pneumonia of unknown etiology in Wuhan, China: the mystery and the miracle. J. Med. Virol. 2020;92:401–402. doi: 10.1002/jmv.25678. PubMed DOI PMC

Zhang L, Liu Y. Potential interventions for novel coronavirus in China: a systematic review. J. Med. Virol. 2020;92:479–490. doi: 10.1002/jmv.25707. PubMed DOI PMC

Munster VJ, Koopmans M, van Doremalen N, van Riel D, de Wit E. A novel coronavirus emerging in China—key questions for impact assessment. N. Engl. J. Med. 2020;382:692–694. doi: 10.1056/NEJMp2000929. PubMed DOI

Arabi YM, Murthy S, Webb S. COVID-19: a novel coronavirus and a novel challenge for critical care. Intensive Care Med. 2020 doi: 10.1007/s00134-020-05955-1. PubMed DOI PMC

Heymann DL, Shindo N. COVID-19: what is next for public health? Lancet. 2020;395:542–545. doi: 10.1016/S0140-6736(20)30374-3. PubMed DOI PMC

Yoo JH. The fight against the 2019-nCoV outbreak: an arduous march has just begun. J. Korean Med. Sci. 2020;35:e56. doi: 10.3346/jkms.2020.35.e56. PubMed DOI PMC

Dey SK, Rahman MM, Siddiqi UR, Howlader A. Analyzing the epidemiological outbreak of COVID-19: a visual exploratory data analysis approach. J. Med. Virol. 2020 doi: 10.1002/jmv.25743. PubMed DOI PMC

Chan JF-W, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet. 2020;395:514–523. doi: 10.1016/S0140-6736(20)30154-9. PubMed DOI PMC

Huang C, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395:497–506. doi: 10.1016/S0140-6736(20)30183-5. PubMed DOI PMC

Chen N, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395:507–513. doi: 10.1016/S0140-6736(20)30211-7. PubMed DOI PMC

Arabi YM, et al. Critically Ill patients with the middle east respiratory syndrome: a multicenter retrospective cohort study. Crit. Care Med. 2017;45:1683–1695. doi: 10.1097/CCM.0000000000002621. PubMed DOI

Zhang T, et al. Clinical trials for the treatment of coronavirus disease 2019 (COVID-19): a rapid response to urgent need. Sci. China Life Sci. 2020 doi: 10.1007/s11427-020-1660-2. PubMed DOI PMC

Deng S-Q, Peng H-J. Characteristics of and public health responses to the coronavirus disease 2019 Outbreak in China. J. Clin. Med. 2020;9:575. doi: 10.3390/jcm9020575. PubMed DOI PMC

Wang D, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA J. Am. Med. Assoc. 2020;323:1061–1069. doi: 10.1001/jama.2020.1585. PubMed DOI PMC

Drosten C, et al. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N. Engl. J. Med. 2003;348:1967–1976. doi: 10.1056/NEJMoa030747. PubMed DOI

Anand K, Ziebuhr J, Wadhwani P, Mesters JR, Hilgenfeld R. (3CL pro) structure: basis for design of anti-SARS drugs. Science (80-) 2003;300:1763–1767. doi: 10.1126/science.1085658. PubMed DOI

Kumar V, Tan K-P, Wang Y-M, Lin S-W, Liang P-H. Identification, synthesis and evaluation of SARS-CoV and MERS-CoV 3C-like protease inhibitors. Bioorg. Med. Chem. 2016;24:3035–3042. doi: 10.1016/j.bmc.2016.05.013. PubMed DOI PMC

Tan J, et al. pH-dependent conformational flexibility of the SARS-CoV main proteinase (Mpro) dimer: molecular dynamics simulations and multiple X-ray structure analyses. J. Mol. Biol. 2005;354:25–40. doi: 10.1016/j.jmb.2005.09.012. PubMed DOI PMC

Hilgenfeld R. From SARS to MERS: crystallographic studies on coronaviral proteases enable antiviral drug design. FEBS J. 2014;281:4085–4096. doi: 10.1111/febs.12936. PubMed DOI PMC

Anand K, et al. Structure of coronavirus main proteinase reveals combination of a chymotrypsin fold with an extra α-helical domain. EMBO J. 2002;21:3213–3224. doi: 10.1093/emboj/cdf327. PubMed DOI PMC

Yang H, et al. The crystal structures of severe acute respiratory syndrome virus main protease and its complex with an inhibitor. Proc. Natl. Acad. Sci. USA. 2003;100:13190–13195. doi: 10.1073/pnas.1835675100. PubMed DOI PMC

Jin Z, et al. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature. 2020;582:289–293. doi: 10.1038/s41586-020-2223-y. PubMed DOI

Kneller DW, et al. Structural plasticity of SARS-CoV-2 3CL Mpro active site cavity revealed by room temperature X-ray crystallography. Nat. Commun. 2020;11:3202. doi: 10.1038/s41467-020-16954-7. PubMed DOI PMC

Mengist HM, Fan X, Jin T. Designing of improved drugs for COVID-19: crystal structure of SARS-CoV-2 main protease Mpro. Signal Transduct. Target. Ther. 2020;5:67. doi: 10.1038/s41392-020-0178-y. PubMed DOI PMC

Berman HM, et al. The protein data bank. Nucleic Acids Res. 2000;28:235–242. doi: 10.1093/nar/28.1.235. PubMed DOI PMC

Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010;31:455–461. PubMed PMC

Maia EHB, Medaglia LR, da Silva AM, Taranto AG. Molecular architect: a user-friendly workflow for virtual screening. ACS Omega. 2020;5:6628–6640. doi: 10.1021/acsomega.9b04403. PubMed DOI PMC

Savarino A, Di Trani L, Donatelli I, Cauda R, Cassone A. New insights into the antiviral effects of chloroquine. Lancet Infect. Dis. 2006;6:67–69. doi: 10.1016/S1473-3099(06)70361-9. PubMed DOI PMC

Wang M, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020;30:269–271. doi: 10.1038/s41422-020-0282-0. PubMed DOI PMC

Dong L, Hu S, Gao J. Discovering drugs to treat coronavirus disease 2019 (COVID-19) Drug Discov. Ther. 2020;14:58–60. doi: 10.5582/ddt.2020.01012. PubMed DOI

Cortopassi WA, et al. Docking studies on the binding of quinoline derivatives and hematin to plasmodium falciparum lactate dehydrogenase. J. Biomol. Struct. Dyn. 2011;29:207–218. doi: 10.1080/07391102.2011.10507383. PubMed DOI

La Porta FA, Taft CA. Emerging Research in Science and Engineering Based on Advanced Experimental and Computational Strategies. Cham: Springer; 2020.

Surrey AR, Cutler RA. The synthesis of some 3-nitro- and 3-amino-4-dialkylaminoalkylaminoquinoline derivatives. J. Am. Chem. Soc. 1951;73:2413–2416. doi: 10.1021/ja01150a002. DOI

Narwal S, Kumar S, Verma PK. Synthesis and therapeutic potential of quinoline derivatives. Res. Chem. Intermed. 2017;43:2765–2798. doi: 10.1007/s11164-016-2794-2. DOI

Liu Y, Wang C, Lv N, Liu Z, Zhang Y. Synthesis of quinoline N-oxides by cobalt-catalyzed annulation of arylnitrones and alkynes. Adv. Synth. Catal. 2017;359:1351–1358. doi: 10.1002/adsc.201600834. DOI

Okuma K, Seto J, Nagahora N, Shioji K. Chemoselective synthesis of quinoline N-oxides from 3-(2-nitrophenyl)-3-hydroxypropanones. J. Heterocycl. Chem. 2010;47:1372–1378. doi: 10.1002/jhet.485. DOI

Doddaga S, Peddakonda R. Chloroquine-N-oxide, a major oxidative degradation product of chloroquine: identification, synthesis and characterization. J. Pharm. Biomed. Anal. 2013;81–82:118–125. doi: 10.1016/j.jpba.2013.04.004. PubMed DOI

Sliwoski G, Kothiwale S, Meiler J, Lowe EW. Computational methods in drug discovery. Pharmacol. Rev. 2014;66:334LP–395LP. doi: 10.1124/pr.112.007336. PubMed DOI PMC

da Silva RR, Ramalho TC, Santos JM, Figueroa-Villar JD. On the limits of highest-occupied molecular orbital driven reactions: the frontier effective-for-reaction molecular orbital concept. J. Phys. Chem. A. 2006;110:1031–1040. doi: 10.1021/jp054434y. PubMed DOI

La Porta FA, Ramalho TC, Santiago RT, Rocha MVJ, da Cunha EFF. Orbital signatures as a descriptor of regioselectivity and chemical reactivity: the role of the frontier orbitals on 1,3-dipolar cycloadditions. J. Phys. Chem. A. 2011;115:824–833. doi: 10.1021/jp108790w. PubMed DOI

La Porta FA, Santiago RT, Ramalho TC, Freitas MP, Da Cunha EFF. The role of the Frontier orbitals in acid–base chemistry of organic amines probed by ab initio and chemometric techniques. Int. J. Quantum Chem. 2010;110:2015–2023. doi: 10.1002/qua.22676. DOI

da Silva RR, Santos JM, Ramalho TC, Figueroa-Villar JD. Concerning the FERMO concept and Pearson’s hard and soft acid-base principle. J. Braz. Chem. Soc. 2006;17:223–226.

Jin, Z. et al. Structure of Mpro from COVID-19 virus and discovery of its inhibitors. bioRxiv 2020.02.26.964882 (2020) 10.1101/2020.02.26.964882.

Bickelhaupt FM, Houk KN. Analyzing reaction rates with the distortion/interaction–activation strain model. Angew. Chem. Int. Ed. 2017;56:10070–10086. doi: 10.1002/anie.201701486. PubMed DOI PMC

Takezawa H, Shitozawa K, Fujita M. Enhanced reactivity of twisted amides inside a molecular cage. Nat. Chem. 2020 doi: 10.1038/s41557-020-0455-y. PubMed DOI

Zhou L, et al. Isatin compounds as noncovalent SARS coronavirus 3C-like protease inhibitors. J. Med. Chem. 2006;49:3440–3443. doi: 10.1021/jm0602357. PubMed DOI

Yang S, et al. Synthesis, crystal structure, structure-activity relationships, and antiviral activity of a potent SARS coronavirus 3CL protease inhibitor. J. Med. Chem. 2006;49:4971–4980. doi: 10.1021/jm0603926. PubMed DOI

Zhang L, et al. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science (80-) 2020 doi: 10.1126/science.abb3405. PubMed DOI PMC

Cardoso Gajo G, Rodrigues Silva D, Barigye SJ, da Cunha EFF. Multi-objective optimization of benzamide derivatives as rho kinase inhibitors. Mol. Inform. 2018;37:1700080. doi: 10.1002/minf.201700080. PubMed DOI

Liu J, et al. Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell Discov. 2020;6:16. doi: 10.1038/s41421-020-0156-0. PubMed DOI PMC

Paulekuhn GS, Dressman JB, Saal C. Trends in active pharmaceutical ingredient salt selection based on analysis of the orange book database. J. Med. Chem. 2007;50:6665–6672. doi: 10.1021/jm701032y. PubMed DOI

Follmann HDM, et al. Extent of shielding by counterions determines the bactericidal activity of N,N,N-trimethyl chitosan salts. Carbohydr. Polym. 2016;137:418–425. doi: 10.1016/j.carbpol.2015.10.083. PubMed DOI

Moulin B, Ponchon T. A comparative review of use of sulphate and phosphate salts for colonoscopy preparations and their potential for nephrotoxicity. Endosc. Int. Open. 2018;6:E1206–E1213. doi: 10.1055/a-0581-8723. PubMed DOI PMC

Gupta D, Bhatia D, Dave V, Sutariya V, Varghese Gupta S. Salts of therapeutic agents: chemical, physicochemical, and biological considerations. Molecules. 2018;23:1719. doi: 10.3390/molecules23071719. PubMed DOI PMC

Zhang L, et al. α-Ketoamides as broad-spectrum inhibitors of coronavirus and enterovirus replication: structure-based design, synthesis, and activity assessment. J. Med. Chem. 2020;63:4562–4578. doi: 10.1021/acs.jmedchem.9b01828. PubMed DOI

Frisch, M. J. et al. Gaussian 09 (Gaussian Inc., Wallingford, 2009). https://gaussian.com/glossary/g09/.

Webb B, Sali A. Comparative protein structure modeling using modeller. Curr. Protoc. Bioinforma. 2016;54:5.6.1–5.6.37. doi: 10.1002/cpbi.3. PubMed DOI PMC

Novoselov KP, et al. CHIMERA: a software tool for reaction rate calculations and kinetics and thermodynamics analysis. J. Comput. Chem. 2002;23:1375–1389. doi: 10.1002/jcc.10105. PubMed DOI

Accelrys Software. Discovery Studio Modeling Environment, Version 4.5 (Dassault Systèmes, San Diego, 2012). https://discover.3ds.com/discovery-studio-visualizer-download.

Scott WRP, et al. The GROMOS biomolecular simulation program package. J. Phys. Chem. A. 1999;103:3596–3607. doi: 10.1021/jp984217f. DOI

Deepa G, Sivakumar KC, Sajeevan TP. Molecular simulation and in vitro evaluation of chitosan nanoparticles as drug delivery systems for the controlled release of anticancer drug cytarabine against solid tumours. 3 Biotech. 2018;8:493. doi: 10.1007/s13205-018-1510-x. PubMed DOI PMC

Parrinello M, Rahman A. Polymorphic transitions in single crystals: a new molecular dynamics method. J. Appl. Phys. 1981;52:7182–7190. doi: 10.1063/1.328693. DOI

Humphrey W, Dalke A, Schulten KVMD. Visual molecular dynamics. J. Mol. Graph. 1996;14:33–38. doi: 10.1016/0263-7855(96)00018-5. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...