Computational evidence for nitro derivatives of quinoline and quinoline N-oxide as low-cost alternative for the treatment of SARS-CoV-2 infection
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33737545
PubMed Central
PMC7973710
DOI
10.1038/s41598-021-85280-9
PII: 10.1038/s41598-021-85280-9
Knihovny.cz E-zdroje
- MeSH
- chinoliny chemie terapeutické užití MeSH
- farmakoterapie COVID-19 MeSH
- počítačová simulace MeSH
- preklinické hodnocení léčiv MeSH
- SARS-CoV-2 chemie MeSH
- simulace molekulární dynamiky MeSH
- simulace molekulového dockingu MeSH
- teorie funkcionálu hustoty MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- chinoliny MeSH
- quinoline MeSH Prohlížeč
A new and more aggressive strain of coronavirus, known as SARS-CoV-2, which is highly contagious, has rapidly spread across the planet within a short period of time. Due to its high transmission rate and the significant time-space between infection and manifestation of symptoms, the WHO recently declared this a pandemic. Because of the exponentially growing number of new cases of both infections and deaths, development of new therapeutic options to help fight this pandemic is urgently needed. The target molecules of this study were the nitro derivatives of quinoline and quinoline N-oxide. Computational design at the DFT level, docking studies, and molecular dynamics methods as a well-reasoned strategy will aid in elucidating the fundamental physicochemical properties and molecular functions of a diversity of compounds, directly accelerating the process of discovering new drugs. In this study, we discovered isomers based on the nitro derivatives of quinoline and quinoline N-oxide, which are biologically active compounds and may be low-cost alternatives for the treatment of infections induced by SARS-CoV-2.
Zobrazit více v PubMed
Zhou P, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579:270–273. doi: 10.1038/s41586-020-2012-7. PubMed DOI PMC
Wu F, et al. A new coronavirus associated with human respiratory disease in China. Nature. 2020;579:265–269. doi: 10.1038/s41586-020-2008-3. PubMed DOI PMC
Zhang L, et al. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science (80-) 2020;3405:eabb3405. PubMed PMC
Park M, Thwaites RS, Openshaw PJM. COVID-19: lessons from SARS and MERS. Eur. J. Immunol. 2020;50:308–311. doi: 10.1002/eji.202070035. PubMed DOI
Lu R, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020;395:565–574. doi: 10.1016/S0140-6736(20)30251-8. PubMed DOI PMC
Lu H, Stratton CW, Tang Y-W. Outbreak of pneumonia of unknown etiology in Wuhan, China: the mystery and the miracle. J. Med. Virol. 2020;92:401–402. doi: 10.1002/jmv.25678. PubMed DOI PMC
Zhang L, Liu Y. Potential interventions for novel coronavirus in China: a systematic review. J. Med. Virol. 2020;92:479–490. doi: 10.1002/jmv.25707. PubMed DOI PMC
Munster VJ, Koopmans M, van Doremalen N, van Riel D, de Wit E. A novel coronavirus emerging in China—key questions for impact assessment. N. Engl. J. Med. 2020;382:692–694. doi: 10.1056/NEJMp2000929. PubMed DOI
Arabi YM, Murthy S, Webb S. COVID-19: a novel coronavirus and a novel challenge for critical care. Intensive Care Med. 2020 doi: 10.1007/s00134-020-05955-1. PubMed DOI PMC
Heymann DL, Shindo N. COVID-19: what is next for public health? Lancet. 2020;395:542–545. doi: 10.1016/S0140-6736(20)30374-3. PubMed DOI PMC
Yoo JH. The fight against the 2019-nCoV outbreak: an arduous march has just begun. J. Korean Med. Sci. 2020;35:e56. doi: 10.3346/jkms.2020.35.e56. PubMed DOI PMC
Dey SK, Rahman MM, Siddiqi UR, Howlader A. Analyzing the epidemiological outbreak of COVID-19: a visual exploratory data analysis approach. J. Med. Virol. 2020 doi: 10.1002/jmv.25743. PubMed DOI PMC
Chan JF-W, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet. 2020;395:514–523. doi: 10.1016/S0140-6736(20)30154-9. PubMed DOI PMC
Huang C, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395:497–506. doi: 10.1016/S0140-6736(20)30183-5. PubMed DOI PMC
Chen N, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395:507–513. doi: 10.1016/S0140-6736(20)30211-7. PubMed DOI PMC
Arabi YM, et al. Critically Ill patients with the middle east respiratory syndrome: a multicenter retrospective cohort study. Crit. Care Med. 2017;45:1683–1695. doi: 10.1097/CCM.0000000000002621. PubMed DOI
Zhang T, et al. Clinical trials for the treatment of coronavirus disease 2019 (COVID-19): a rapid response to urgent need. Sci. China Life Sci. 2020 doi: 10.1007/s11427-020-1660-2. PubMed DOI PMC
Deng S-Q, Peng H-J. Characteristics of and public health responses to the coronavirus disease 2019 Outbreak in China. J. Clin. Med. 2020;9:575. doi: 10.3390/jcm9020575. PubMed DOI PMC
Wang D, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA J. Am. Med. Assoc. 2020;323:1061–1069. doi: 10.1001/jama.2020.1585. PubMed DOI PMC
Drosten C, et al. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N. Engl. J. Med. 2003;348:1967–1976. doi: 10.1056/NEJMoa030747. PubMed DOI
Anand K, Ziebuhr J, Wadhwani P, Mesters JR, Hilgenfeld R. (3CL pro) structure: basis for design of anti-SARS drugs. Science (80-) 2003;300:1763–1767. doi: 10.1126/science.1085658. PubMed DOI
Kumar V, Tan K-P, Wang Y-M, Lin S-W, Liang P-H. Identification, synthesis and evaluation of SARS-CoV and MERS-CoV 3C-like protease inhibitors. Bioorg. Med. Chem. 2016;24:3035–3042. doi: 10.1016/j.bmc.2016.05.013. PubMed DOI PMC
Tan J, et al. pH-dependent conformational flexibility of the SARS-CoV main proteinase (Mpro) dimer: molecular dynamics simulations and multiple X-ray structure analyses. J. Mol. Biol. 2005;354:25–40. doi: 10.1016/j.jmb.2005.09.012. PubMed DOI PMC
Hilgenfeld R. From SARS to MERS: crystallographic studies on coronaviral proteases enable antiviral drug design. FEBS J. 2014;281:4085–4096. doi: 10.1111/febs.12936. PubMed DOI PMC
Anand K, et al. Structure of coronavirus main proteinase reveals combination of a chymotrypsin fold with an extra α-helical domain. EMBO J. 2002;21:3213–3224. doi: 10.1093/emboj/cdf327. PubMed DOI PMC
Yang H, et al. The crystal structures of severe acute respiratory syndrome virus main protease and its complex with an inhibitor. Proc. Natl. Acad. Sci. USA. 2003;100:13190–13195. doi: 10.1073/pnas.1835675100. PubMed DOI PMC
Jin Z, et al. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature. 2020;582:289–293. doi: 10.1038/s41586-020-2223-y. PubMed DOI
Kneller DW, et al. Structural plasticity of SARS-CoV-2 3CL Mpro active site cavity revealed by room temperature X-ray crystallography. Nat. Commun. 2020;11:3202. doi: 10.1038/s41467-020-16954-7. PubMed DOI PMC
Mengist HM, Fan X, Jin T. Designing of improved drugs for COVID-19: crystal structure of SARS-CoV-2 main protease Mpro. Signal Transduct. Target. Ther. 2020;5:67. doi: 10.1038/s41392-020-0178-y. PubMed DOI PMC
Berman HM, et al. The protein data bank. Nucleic Acids Res. 2000;28:235–242. doi: 10.1093/nar/28.1.235. PubMed DOI PMC
Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010;31:455–461. PubMed PMC
Maia EHB, Medaglia LR, da Silva AM, Taranto AG. Molecular architect: a user-friendly workflow for virtual screening. ACS Omega. 2020;5:6628–6640. doi: 10.1021/acsomega.9b04403. PubMed DOI PMC
Savarino A, Di Trani L, Donatelli I, Cauda R, Cassone A. New insights into the antiviral effects of chloroquine. Lancet Infect. Dis. 2006;6:67–69. doi: 10.1016/S1473-3099(06)70361-9. PubMed DOI PMC
Wang M, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020;30:269–271. doi: 10.1038/s41422-020-0282-0. PubMed DOI PMC
Dong L, Hu S, Gao J. Discovering drugs to treat coronavirus disease 2019 (COVID-19) Drug Discov. Ther. 2020;14:58–60. doi: 10.5582/ddt.2020.01012. PubMed DOI
Cortopassi WA, et al. Docking studies on the binding of quinoline derivatives and hematin to plasmodium falciparum lactate dehydrogenase. J. Biomol. Struct. Dyn. 2011;29:207–218. doi: 10.1080/07391102.2011.10507383. PubMed DOI
La Porta FA, Taft CA. Emerging Research in Science and Engineering Based on Advanced Experimental and Computational Strategies. Cham: Springer; 2020.
Surrey AR, Cutler RA. The synthesis of some 3-nitro- and 3-amino-4-dialkylaminoalkylaminoquinoline derivatives. J. Am. Chem. Soc. 1951;73:2413–2416. doi: 10.1021/ja01150a002. DOI
Narwal S, Kumar S, Verma PK. Synthesis and therapeutic potential of quinoline derivatives. Res. Chem. Intermed. 2017;43:2765–2798. doi: 10.1007/s11164-016-2794-2. DOI
Liu Y, Wang C, Lv N, Liu Z, Zhang Y. Synthesis of quinoline N-oxides by cobalt-catalyzed annulation of arylnitrones and alkynes. Adv. Synth. Catal. 2017;359:1351–1358. doi: 10.1002/adsc.201600834. DOI
Okuma K, Seto J, Nagahora N, Shioji K. Chemoselective synthesis of quinoline N-oxides from 3-(2-nitrophenyl)-3-hydroxypropanones. J. Heterocycl. Chem. 2010;47:1372–1378. doi: 10.1002/jhet.485. DOI
Doddaga S, Peddakonda R. Chloroquine-N-oxide, a major oxidative degradation product of chloroquine: identification, synthesis and characterization. J. Pharm. Biomed. Anal. 2013;81–82:118–125. doi: 10.1016/j.jpba.2013.04.004. PubMed DOI
Sliwoski G, Kothiwale S, Meiler J, Lowe EW. Computational methods in drug discovery. Pharmacol. Rev. 2014;66:334LP–395LP. doi: 10.1124/pr.112.007336. PubMed DOI PMC
da Silva RR, Ramalho TC, Santos JM, Figueroa-Villar JD. On the limits of highest-occupied molecular orbital driven reactions: the frontier effective-for-reaction molecular orbital concept. J. Phys. Chem. A. 2006;110:1031–1040. doi: 10.1021/jp054434y. PubMed DOI
La Porta FA, Ramalho TC, Santiago RT, Rocha MVJ, da Cunha EFF. Orbital signatures as a descriptor of regioselectivity and chemical reactivity: the role of the frontier orbitals on 1,3-dipolar cycloadditions. J. Phys. Chem. A. 2011;115:824–833. doi: 10.1021/jp108790w. PubMed DOI
La Porta FA, Santiago RT, Ramalho TC, Freitas MP, Da Cunha EFF. The role of the Frontier orbitals in acid–base chemistry of organic amines probed by ab initio and chemometric techniques. Int. J. Quantum Chem. 2010;110:2015–2023. doi: 10.1002/qua.22676. DOI
da Silva RR, Santos JM, Ramalho TC, Figueroa-Villar JD. Concerning the FERMO concept and Pearson’s hard and soft acid-base principle. J. Braz. Chem. Soc. 2006;17:223–226.
Jin, Z. et al. Structure of Mpro from COVID-19 virus and discovery of its inhibitors. bioRxiv 2020.02.26.964882 (2020) 10.1101/2020.02.26.964882.
Bickelhaupt FM, Houk KN. Analyzing reaction rates with the distortion/interaction–activation strain model. Angew. Chem. Int. Ed. 2017;56:10070–10086. doi: 10.1002/anie.201701486. PubMed DOI PMC
Takezawa H, Shitozawa K, Fujita M. Enhanced reactivity of twisted amides inside a molecular cage. Nat. Chem. 2020 doi: 10.1038/s41557-020-0455-y. PubMed DOI
Zhou L, et al. Isatin compounds as noncovalent SARS coronavirus 3C-like protease inhibitors. J. Med. Chem. 2006;49:3440–3443. doi: 10.1021/jm0602357. PubMed DOI
Yang S, et al. Synthesis, crystal structure, structure-activity relationships, and antiviral activity of a potent SARS coronavirus 3CL protease inhibitor. J. Med. Chem. 2006;49:4971–4980. doi: 10.1021/jm0603926. PubMed DOI
Zhang L, et al. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science (80-) 2020 doi: 10.1126/science.abb3405. PubMed DOI PMC
Cardoso Gajo G, Rodrigues Silva D, Barigye SJ, da Cunha EFF. Multi-objective optimization of benzamide derivatives as rho kinase inhibitors. Mol. Inform. 2018;37:1700080. doi: 10.1002/minf.201700080. PubMed DOI
Liu J, et al. Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell Discov. 2020;6:16. doi: 10.1038/s41421-020-0156-0. PubMed DOI PMC
Paulekuhn GS, Dressman JB, Saal C. Trends in active pharmaceutical ingredient salt selection based on analysis of the orange book database. J. Med. Chem. 2007;50:6665–6672. doi: 10.1021/jm701032y. PubMed DOI
Follmann HDM, et al. Extent of shielding by counterions determines the bactericidal activity of N,N,N-trimethyl chitosan salts. Carbohydr. Polym. 2016;137:418–425. doi: 10.1016/j.carbpol.2015.10.083. PubMed DOI
Moulin B, Ponchon T. A comparative review of use of sulphate and phosphate salts for colonoscopy preparations and their potential for nephrotoxicity. Endosc. Int. Open. 2018;6:E1206–E1213. doi: 10.1055/a-0581-8723. PubMed DOI PMC
Gupta D, Bhatia D, Dave V, Sutariya V, Varghese Gupta S. Salts of therapeutic agents: chemical, physicochemical, and biological considerations. Molecules. 2018;23:1719. doi: 10.3390/molecules23071719. PubMed DOI PMC
Zhang L, et al. α-Ketoamides as broad-spectrum inhibitors of coronavirus and enterovirus replication: structure-based design, synthesis, and activity assessment. J. Med. Chem. 2020;63:4562–4578. doi: 10.1021/acs.jmedchem.9b01828. PubMed DOI
Frisch, M. J. et al. Gaussian 09 (Gaussian Inc., Wallingford, 2009). https://gaussian.com/glossary/g09/.
Webb B, Sali A. Comparative protein structure modeling using modeller. Curr. Protoc. Bioinforma. 2016;54:5.6.1–5.6.37. doi: 10.1002/cpbi.3. PubMed DOI PMC
Novoselov KP, et al. CHIMERA: a software tool for reaction rate calculations and kinetics and thermodynamics analysis. J. Comput. Chem. 2002;23:1375–1389. doi: 10.1002/jcc.10105. PubMed DOI
Accelrys Software. Discovery Studio Modeling Environment, Version 4.5 (Dassault Systèmes, San Diego, 2012). https://discover.3ds.com/discovery-studio-visualizer-download.
Scott WRP, et al. The GROMOS biomolecular simulation program package. J. Phys. Chem. A. 1999;103:3596–3607. doi: 10.1021/jp984217f. DOI
Deepa G, Sivakumar KC, Sajeevan TP. Molecular simulation and in vitro evaluation of chitosan nanoparticles as drug delivery systems for the controlled release of anticancer drug cytarabine against solid tumours. 3 Biotech. 2018;8:493. doi: 10.1007/s13205-018-1510-x. PubMed DOI PMC
Parrinello M, Rahman A. Polymorphic transitions in single crystals: a new molecular dynamics method. J. Appl. Phys. 1981;52:7182–7190. doi: 10.1063/1.328693. DOI
Humphrey W, Dalke A, Schulten KVMD. Visual molecular dynamics. J. Mol. Graph. 1996;14:33–38. doi: 10.1016/0263-7855(96)00018-5. PubMed DOI