Theoretical insights into the effect of halogenated substituent on the electronic structure and spectroscopic properties of the favipiravir tautomeric forms and its implications for the treatment of COVID-19

. 2021 Oct 28 ; 11 (56) : 35228-35244. [epub] 20211101

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35493173

In this study, we systematically investigated the electronic structure, spectroscopic (nuclear magnetic resonance, infrared, Raman, electron ionization mass spectrometry, UV-Vis, circular dichroism, and emission) properties, and tautomerism of halogenated favipiravir compounds (fluorine, chlorine, and bromine) from a computational perspective. Additionally, the effects of hydration on the proton transfer mechanism of the tautomeric forms of the halogenated favipiravir compounds are discussed. Our results suggest that spectroscopic properties allow for the elucidation of such tautomeric forms. As is well-known, the favipiravir compound has excellent antiviral properties and hence was recently tested for the treatment of new coronavirus (SARS-CoV-2). Through in silico modeling, in the current study, we evaluate the role of such tautomeric forms in order to consider the effect of drug-metabolism in the inhibition process of the main protease (Mpro) and RNA-dependent RNA polymerase (RdRp) of SARS-CoV-2 virus. According to the molecular docking, all halogenated compounds presented a better interaction energy than the co-crystallized active ligand (-3.5 kcal mol-1) in the viral RdRp, in both wild-type (-6.3 to -6.5 kcal mol-1) and variant (-5.4 to -5.6 kcal mol-1) models. The variant analyzed for RdRp (Y176C) decreases the affinity of the keto form of the compounds in the active site, and prevented the ligands from interacting with RNA. These findings clearly indicated that all these compounds are promising as drug candidates for this molecular target.

Zobrazit více v PubMed

Assis L. C. de Castro A. A. de Jesus J. P. A. Nepovimova E. Kuca K. de C. Ramalho T. La Porta F. A. Sci. Rep. 2021;11:6397. doi: 10.1038/s41598-021-85280-9. PubMed DOI PMC

Li G. De Clercq E. Nat. Rev. Drug Discovery. 2020;19:149–150. doi: 10.1038/d41573-020-00016-0. PubMed DOI

Zhou P. Lou Yang X. Wang X. G. Hu B. Zhang L. Zhang W. Si H. R. Zhu Y. Li B. Huang C. L. Chen H. D. Chen J. Luo Y. Guo H. Di Jiang R. Liu M. Q. Chen Y. Shen X. R. Wang X. Zheng X. S. Zhao K. Chen Q. J. Deng F. Liu L. L. Yan B. Zhan F. X. Wang Y. Y. Xiao G. F. Shi Z. L. Nature. 2020;579:270–273. doi: 10.1038/s41586-020-2012-7. PubMed DOI PMC

Campos E. V. R. Pereira A. E. S. de Oliveira J. L. Carvalho L. B. Guilger-Casagrande M. de Lima R. Fraceto L. F. J. Nanobiotechnol. 2020;18:125. doi: 10.1186/s12951-020-00685-4. PubMed DOI PMC

Daré J. K. Silva D. R. Ramalho T. C. Freitas M. P. Mol. Simul. 2020;46:1055–1061. doi: 10.1080/08927022.2020.1800691. PubMed DOI PMC

Ton A. Gentile F. Hsing M. Ban F. Cherkasov A. Mol. Inf. 2020;39:2000028. doi: 10.1002/minf.202000028. PubMed DOI PMC

Elfiky A. A. J. Biomol. Struct. Dyn. 2020:1–9. PubMed PMC

Aftab S. O. Ghouri M. Z. Masood M. U. Haider Z. Khan Z. Ahmad A. Munawar N. J. Transl. Med. 2020;18:275. doi: 10.1186/s12967-020-02439-0. PubMed DOI PMC

Alexpandi R. De Mesquita J. F. Pandian S. K. Ravi A. V. Front. Microb. 2020;11(1796) PubMed PMC

Eastman R. T. Roth J. S. Brimacombe K. R. Simeonov A. Shen M. Patnaik S. Hall M. D. ACS Cent. Sci. 2020;6:672–683. doi: 10.1021/acscentsci.0c00489. PubMed DOI PMC

Jin Z. Du X. Xu Y. Deng Y. Liu M. Zhao Y. Zhang B. Li X. Zhang L. Peng C. Duan Y. Yu J. Wang L. Yang K. Liu F. Jiang R. Yang X. You T. Liu X. Yang X. Bai F. Liu H. Liu X. Guddat L. W. Xu W. Xiao G. Qin C. Shi Z. Jiang H. Rao Z. Yang H. Nature. 2020;582:289–293. doi: 10.1038/s41586-020-2223-y. PubMed DOI

Hoffmann M. Kleine-Weber H. Schroeder S. Krüger N. Herrler T. Erichsen S. Schiergens T. S. Herrler G. Wu N.-H. Nitsche A. Müller M. A. Drosten C. Pöhlmann S. Cell. 2020;181:271–280. doi: 10.1016/j.cell.2020.02.052. PubMed DOI PMC

Zhang H. Penninger J. M. Li Y. Zhong N. Slutsky A. S. Intensive Care Med. 2020;46:586–590. doi: 10.1007/s00134-020-05985-9. PubMed DOI PMC

Letko M. Marzi A. Munster V. Nat. Microbiol. 2020;5:562–569. doi: 10.1038/s41564-020-0688-y. PubMed DOI PMC

Khan R. J. Jha R. K. Amera G. M. Jain M. Singh E. Pathak A. Singh R. P. Muthukumaran J. Singh A. K. J. Biomol. Struct. Dyn. 2020:1–14. PubMed

Ruch T. R. Machamer C. E. Viruses. 2012;4:363–382. doi: 10.3390/v4030363. PubMed DOI PMC

Li G. De Clercq E. Nat. Rev. Drug Discovery. 2020;19:149–150. doi: 10.1038/d41573-020-00016-0. PubMed DOI

Gao Y. Yan L. Huang Y. Liu F. Zhao Y. Cao L. Wang T. Sun Q. Ming Z. Zhang L. Ge J. Zheng L. Zhang Y. Wang H. Zhu Y. Zhu C. Hu T. Hua T. Zhang B. Yang X. Li J. Yang H. Liu Z. Xu W. Guddat L. W. Wang Q. Lou Z. Rao Z. Science. 2020;368:779–782. doi: 10.1126/science.abb7498. PubMed DOI PMC

Wu C. Liu Y. Yang Y. Zhang P. Zhong W. Wang Y. Wang Q. Xu Y. Li M. Li X. Zheng M. Chen L. Li H. Acta Pharm. Sin. B. 2020;10:766–788. doi: 10.1016/j.apsb.2020.02.008. PubMed DOI PMC

Park M. Thwaites R. S. Openshaw P. J. M. Eur. J. Immunol. 2020;50:308–311. doi: 10.1002/eji.202070035. DOI

Dong L. Hu S. Gao J. Drug Discoveries Ther. 2020;14:58–60. doi: 10.5582/ddt.2020.01012. PubMed DOI

de Castro A. A. Assis L. C. Ramalho T. de C. La Porta F. de A. ResearchSquare. 2020 doi: 10.21203/rs.3.rs-66640/v1.. DOI

De Clercq E. Chem.–Asian J. 2019;14:3962–3968. doi: 10.1002/asia.201900841. PubMed DOI PMC

Furuta Y. Komeno T. Nakamura T. Proc. Jpn. Acad., Ser. B. 2017;93:449–463. doi: 10.2183/pjab.93.027. PubMed DOI PMC

Mifsud E. J. Hayden F. G. Hurt A. C. Antiviral Res. 2019;169:104545. doi: 10.1016/j.antiviral.2019.104545. PubMed DOI

Jin Z. Smith L. K. Rajwanshi V. K. Kim B. Deval J. PLoS One. 2013;8:e68347. doi: 10.1371/journal.pone.0068347. PubMed DOI PMC

Abuo-Rahma G. E.-D. A. Mohamed M. F. A. Ibrahim T. S. Shoman M. E. Samir E. Abd El-Baky R. M. RSC Adv. 2020;10:26895–26916. doi: 10.1039/D0RA05821A. PubMed DOI PMC

Kiso M. Takahashi K. Sakai-Tagawa Y. Shinya K. Sakabe S. Le Q. M. Ozawa M. Furuta Y. Kawaoka Y. Proc. Natl. Acad. Sci. 2010;107:882–887. doi: 10.1073/pnas.0909603107. PubMed DOI PMC

Furuta Y. Takahashi K. Shiraki K. Sakamoto K. Smee D. F. Barnard D. L. Gowen B. B. Julander J. G. Morrey J. D. Antiviral Res. 2009;82:95–102. doi: 10.1016/j.antiviral.2009.02.198. PubMed DOI PMC

Cai Q. Yang M. Liu D. Chen J. Shu D. Xia J. Liao X. Gu Y. Cai Q. Yang Y. Shen C. Li X. Peng L. Huang D. Zhang J. Zhang S. Wang F. Liu J. Chen L. Chen S. Wang Z. Zhang Z. Cao R. Zhong W. Liu Y. Liu L. Engineering. 2020;6(10):1192–1198. doi: 10.1016/j.eng.2020.03.007. PubMed DOI PMC

Harismah K. Mirzaei M. Adv. J. Chem. B. 2020;2:55–60.

Antonov L. Theor. Chem. Acc. 2020;139:145. PubMed PMC

Mendes J. de Almeida K. J. Neto J. L. Ramalho T. C. Duarte H. A. Spectrochim. Acta, Part A. 2017;184:308–317. doi: 10.1016/j.saa.2017.05.025. PubMed DOI

Timm R. A. Bonacin J. A. Formiga A. L. B. Toma H. E. J. Braz. Chem. Soc. 2008;19:287–292. doi: 10.1590/S0103-50532008000200013. DOI

Erdoğan Ş. Işın D. Ö. Chem. Heterocycl. Compd. 2014;50:986–997. doi: 10.1007/s10593-014-1554-8. DOI

Pliego J. Rufino V. Arkivoc. 2020:34–52.

Puzzarini C. Barone V. Acc. Chem. Res. 2018;51:548–556. doi: 10.1021/acs.accounts.7b00603. PubMed DOI

Umar Y. J. Taibah Univ. Sci. 2020;14:1613–1625. doi: 10.1080/16583655.2020.1848982. DOI

Alver Ö. Parlak C. Umar Y. Ramasami P. Main Group Met. Chem. 2019;42:143–149.

Celik I. Erol M. Duzgun Z. Mol. Diversity. 2021:1–14. PubMed PMC

Sada M. Saraya T. Ishii H. Okayama K. Hayashi Y. Tsugawa T. Nishina A. Murakami K. Kuroda M. Ryo A. Kimura H. Microorganisms. 2020;8:1–9. doi: 10.3390/microorganisms8101610. PubMed DOI PMC

Eweas A. F. Alhossary A. A. Abdel-Moneim A. S. Front. Microbiol. 2021;11:3602. PubMed PMC

Satyanarayana M. V. Reddy A. G. Yedukondalu M. Tej M. B. Hossain K. A. Rao M. V. B. Pal M. J. Mol. Struct. 2021 doi: 10.1016/j.molstruc.2021.129981. PubMed DOI PMC

Vishveshwara S. Resonance. 2014;19:347–367. doi: 10.1007/s12045-014-0040-z. DOI

Pierrefixe S. C. A. H. Poater J. Im C. Bickelhaupt F. M. Chemistry. 2008;14:6901–6911. doi: 10.1002/chem.200800013. PubMed DOI

Frisch M. J., Trucks G. W., B Schlegel H., E Scuseria G., Robb M., Cheeseman J., Scalmani G., Barone V., Mennucci B., Petersson G. A. H., Nakatsuji H., Caricato M., Li X., P Hratchian H., F Izmaylov A., Bloino J., Zheng G., L Sonnenberg J., Hada M. and Fox D., Gaussian 09, Revision A02, 2009

Miertuš S. Scrocco E. Tomasi J. Chem. Phys. 1981;55:117–129. doi: 10.1016/0301-0104(81)85090-2. DOI

Miertuš S. Tomasi J. Chem. Phys. 1982;65:239–245. doi: 10.1016/0301-0104(82)85072-6. DOI

London F. J. Phys. Radium. 1937;8:397–409. doi: 10.1051/jphysrad:01937008010039700. DOI

McWeeny R. Phys. Rev. 1962;126:1028–1034. doi: 10.1103/PhysRev.126.1028. DOI

Ditchfield R. Mol. Phys. 1974;27:789–807. doi: 10.1080/00268977400100711. DOI

Wolinski K. Hinton J. F. Pulay P. J. Am. Chem. Soc. 1990;112:8251–8260. doi: 10.1021/ja00179a005. DOI

Cheeseman J. R. Trucks G. W. Keith T. A. Frisch M. J. J. Chem. Phys. 1996;104:5497–5509. doi: 10.1063/1.471789. DOI

Grimme S. Angew. Chem., Int. Ed. 2013;52:6306–6312. doi: 10.1002/anie.201300158. PubMed DOI

Koopman J. Grimme S. ACS Omega. 2019;4:15120–15133. doi: 10.1021/acsomega.9b02011. PubMed DOI PMC

van Mourik T. Bühl M. Gaigeot M.-P. Philos. Trans. R. Soc., A. 2014;372:20120488. doi: 10.1098/rsta.2012.0488. PubMed DOI PMC

Trott O. Olson A. J. J. Comput. Chem. 2010;31:455–461. PubMed PMC

Maia E. H. B. Medaglia L. R. da Silva A. M. Taranto A. G. ACS Omega. 2020;5:6628–6640. doi: 10.1021/acsomega.9b04403. PubMed DOI PMC

Webb B. Sali A. Curr. Protoc. Bioinf. 2016;54:5.6.1–5.6.37. PubMed PMC

Novoselov K. P. Shirabaikin D. B. Umanskii S. Y. Vladimirov A. S. Minushev A. K. Korkin A. A. J. Comput. Chem. 2002;23:1375–1389. doi: 10.1002/jcc.10105. PubMed DOI

BIOVIA-Discovery Studio R2, Release 4.5, Accelrys, Software Inc., San Diego, 2017

Shi F. Li Z. Kong L. Xie Y. Zhang T. Xu W. Drug Discoveries Ther. 2014;8:117–120. doi: 10.5582/ddt.2014.01028. PubMed DOI

Rhyman L. Tursun M. Abdallah H. H. Choong Y. S. Parlak C. Kharkar P. Ramasami P. Phys. Sci. Rev. 2018;3:20170198.

Sebastian S. H. R. Al-Alshaikh M. A. El-Emam A. A. Panicker C. Y. Zitko J. Dolezal M. VanAlsenoy C. J. Mol. Struct. 2016;1119:188–199. doi: 10.1016/j.molstruc.2016.04.088. DOI

Sahoo H. J. Photochem. Photobiol., C. 2011;12:20–30. doi: 10.1016/j.jphotochemrev.2011.05.001. DOI

Sedgwick A. C. Wu L. Han H.-H. Bull S. D. He X.-P. James T. D. Sessler J. L. Tang B. Z. Tian H. Yoon J. Chem. Soc. Rev. 2018;47:8842–8880. doi: 10.1039/C8CS00185E. PubMed DOI

Zamyatkin D. F. Parra F. Machín A. Grochulski P. Ng K. K.-S. J. Mol. Biol. 2009;390:10–16. doi: 10.1016/j.jmb.2009.04.069. PubMed DOI

Berman H. M. Westbrook J. Feng Z. Gilliland G. Bhat T. N. Weissig H. Shindyalov I. N. Bourne P. E. Nucleic Acids Res. 2000;28:235–242. doi: 10.1093/nar/28.1.235. PubMed DOI PMC

de Jesus J. P. A. Assis L. C. de Castro A. A. da Cunha E. F. F. Nepovimova E. Kuca K. Ramalho T. C. La Porta F. A. Sci. Rep. 2021;11(19998) PubMed PMC

Yashvardhini N. Jha D. K. Bhattacharya S. Arch. Microbiol. 2021;203:5463–5473. doi: 10.1007/s00203-021-02527-9. PubMed DOI PMC

Yang H. Yang M. Ding Y. Liu Y. Lou Z. Zhou Z. Sun L. Mo L. Ye S. Pang H. Gao G. F. Anand K. Bartlam M. Hilgenfeld R. Rao Z. Proc. Natl. Acad. Sci. U. S. A. 2003;100:13190–13195. doi: 10.1073/pnas.1835675100. PubMed DOI PMC

Cheng F. Li W. Zhou Y. Shen J. Wu Z. Liu G. Lee P. W. Tang Y. J. Chem. Inf. Model. 2012;52:3099–3105. doi: 10.1021/ci300367a. PubMed DOI

Lipinski C. A. Lombardo F. Dominy B. W. Feeney P. J. Adv. Drug Delivery Rev. 1997;23:3–25. doi: 10.1016/S0169-409X(96)00423-1. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Effect of drug metabolism in the treatment of SARS-CoV-2 from an entirely computational perspective

. 2021 Oct 07 ; 11 (1) : 19998. [epub] 20211007

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...