Theoretical insights into the effect of halogenated substituent on the electronic structure and spectroscopic properties of the favipiravir tautomeric forms and its implications for the treatment of COVID-19
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35493173
PubMed Central
PMC9042810
DOI
10.1039/d1ra06309j
PII: d1ra06309j
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
In this study, we systematically investigated the electronic structure, spectroscopic (nuclear magnetic resonance, infrared, Raman, electron ionization mass spectrometry, UV-Vis, circular dichroism, and emission) properties, and tautomerism of halogenated favipiravir compounds (fluorine, chlorine, and bromine) from a computational perspective. Additionally, the effects of hydration on the proton transfer mechanism of the tautomeric forms of the halogenated favipiravir compounds are discussed. Our results suggest that spectroscopic properties allow for the elucidation of such tautomeric forms. As is well-known, the favipiravir compound has excellent antiviral properties and hence was recently tested for the treatment of new coronavirus (SARS-CoV-2). Through in silico modeling, in the current study, we evaluate the role of such tautomeric forms in order to consider the effect of drug-metabolism in the inhibition process of the main protease (Mpro) and RNA-dependent RNA polymerase (RdRp) of SARS-CoV-2 virus. According to the molecular docking, all halogenated compounds presented a better interaction energy than the co-crystallized active ligand (-3.5 kcal mol-1) in the viral RdRp, in both wild-type (-6.3 to -6.5 kcal mol-1) and variant (-5.4 to -5.6 kcal mol-1) models. The variant analyzed for RdRp (Y176C) decreases the affinity of the keto form of the compounds in the active site, and prevented the ligands from interacting with RNA. These findings clearly indicated that all these compounds are promising as drug candidates for this molecular target.
Zobrazit více v PubMed
Assis L. C. de Castro A. A. de Jesus J. P. A. Nepovimova E. Kuca K. de C. Ramalho T. La Porta F. A. Sci. Rep. 2021;11:6397. doi: 10.1038/s41598-021-85280-9. PubMed DOI PMC
Li G. De Clercq E. Nat. Rev. Drug Discovery. 2020;19:149–150. doi: 10.1038/d41573-020-00016-0. PubMed DOI
Zhou P. Lou Yang X. Wang X. G. Hu B. Zhang L. Zhang W. Si H. R. Zhu Y. Li B. Huang C. L. Chen H. D. Chen J. Luo Y. Guo H. Di Jiang R. Liu M. Q. Chen Y. Shen X. R. Wang X. Zheng X. S. Zhao K. Chen Q. J. Deng F. Liu L. L. Yan B. Zhan F. X. Wang Y. Y. Xiao G. F. Shi Z. L. Nature. 2020;579:270–273. doi: 10.1038/s41586-020-2012-7. PubMed DOI PMC
Campos E. V. R. Pereira A. E. S. de Oliveira J. L. Carvalho L. B. Guilger-Casagrande M. de Lima R. Fraceto L. F. J. Nanobiotechnol. 2020;18:125. doi: 10.1186/s12951-020-00685-4. PubMed DOI PMC
Daré J. K. Silva D. R. Ramalho T. C. Freitas M. P. Mol. Simul. 2020;46:1055–1061. doi: 10.1080/08927022.2020.1800691. PubMed DOI PMC
Ton A. Gentile F. Hsing M. Ban F. Cherkasov A. Mol. Inf. 2020;39:2000028. doi: 10.1002/minf.202000028. PubMed DOI PMC
Elfiky A. A. J. Biomol. Struct. Dyn. 2020:1–9. PubMed PMC
Aftab S. O. Ghouri M. Z. Masood M. U. Haider Z. Khan Z. Ahmad A. Munawar N. J. Transl. Med. 2020;18:275. doi: 10.1186/s12967-020-02439-0. PubMed DOI PMC
Alexpandi R. De Mesquita J. F. Pandian S. K. Ravi A. V. Front. Microb. 2020;11(1796) PubMed PMC
Eastman R. T. Roth J. S. Brimacombe K. R. Simeonov A. Shen M. Patnaik S. Hall M. D. ACS Cent. Sci. 2020;6:672–683. doi: 10.1021/acscentsci.0c00489. PubMed DOI PMC
Jin Z. Du X. Xu Y. Deng Y. Liu M. Zhao Y. Zhang B. Li X. Zhang L. Peng C. Duan Y. Yu J. Wang L. Yang K. Liu F. Jiang R. Yang X. You T. Liu X. Yang X. Bai F. Liu H. Liu X. Guddat L. W. Xu W. Xiao G. Qin C. Shi Z. Jiang H. Rao Z. Yang H. Nature. 2020;582:289–293. doi: 10.1038/s41586-020-2223-y. PubMed DOI
Hoffmann M. Kleine-Weber H. Schroeder S. Krüger N. Herrler T. Erichsen S. Schiergens T. S. Herrler G. Wu N.-H. Nitsche A. Müller M. A. Drosten C. Pöhlmann S. Cell. 2020;181:271–280. doi: 10.1016/j.cell.2020.02.052. PubMed DOI PMC
Zhang H. Penninger J. M. Li Y. Zhong N. Slutsky A. S. Intensive Care Med. 2020;46:586–590. doi: 10.1007/s00134-020-05985-9. PubMed DOI PMC
Letko M. Marzi A. Munster V. Nat. Microbiol. 2020;5:562–569. doi: 10.1038/s41564-020-0688-y. PubMed DOI PMC
Khan R. J. Jha R. K. Amera G. M. Jain M. Singh E. Pathak A. Singh R. P. Muthukumaran J. Singh A. K. J. Biomol. Struct. Dyn. 2020:1–14. PubMed
Ruch T. R. Machamer C. E. Viruses. 2012;4:363–382. doi: 10.3390/v4030363. PubMed DOI PMC
Li G. De Clercq E. Nat. Rev. Drug Discovery. 2020;19:149–150. doi: 10.1038/d41573-020-00016-0. PubMed DOI
Gao Y. Yan L. Huang Y. Liu F. Zhao Y. Cao L. Wang T. Sun Q. Ming Z. Zhang L. Ge J. Zheng L. Zhang Y. Wang H. Zhu Y. Zhu C. Hu T. Hua T. Zhang B. Yang X. Li J. Yang H. Liu Z. Xu W. Guddat L. W. Wang Q. Lou Z. Rao Z. Science. 2020;368:779–782. doi: 10.1126/science.abb7498. PubMed DOI PMC
Wu C. Liu Y. Yang Y. Zhang P. Zhong W. Wang Y. Wang Q. Xu Y. Li M. Li X. Zheng M. Chen L. Li H. Acta Pharm. Sin. B. 2020;10:766–788. doi: 10.1016/j.apsb.2020.02.008. PubMed DOI PMC
Park M. Thwaites R. S. Openshaw P. J. M. Eur. J. Immunol. 2020;50:308–311. doi: 10.1002/eji.202070035. DOI
Dong L. Hu S. Gao J. Drug Discoveries Ther. 2020;14:58–60. doi: 10.5582/ddt.2020.01012. PubMed DOI
de Castro A. A. Assis L. C. Ramalho T. de C. La Porta F. de A. ResearchSquare. 2020 doi: 10.21203/rs.3.rs-66640/v1.. DOI
De Clercq E. Chem.–Asian J. 2019;14:3962–3968. doi: 10.1002/asia.201900841. PubMed DOI PMC
Furuta Y. Komeno T. Nakamura T. Proc. Jpn. Acad., Ser. B. 2017;93:449–463. doi: 10.2183/pjab.93.027. PubMed DOI PMC
Mifsud E. J. Hayden F. G. Hurt A. C. Antiviral Res. 2019;169:104545. doi: 10.1016/j.antiviral.2019.104545. PubMed DOI
Jin Z. Smith L. K. Rajwanshi V. K. Kim B. Deval J. PLoS One. 2013;8:e68347. doi: 10.1371/journal.pone.0068347. PubMed DOI PMC
Abuo-Rahma G. E.-D. A. Mohamed M. F. A. Ibrahim T. S. Shoman M. E. Samir E. Abd El-Baky R. M. RSC Adv. 2020;10:26895–26916. doi: 10.1039/D0RA05821A. PubMed DOI PMC
Kiso M. Takahashi K. Sakai-Tagawa Y. Shinya K. Sakabe S. Le Q. M. Ozawa M. Furuta Y. Kawaoka Y. Proc. Natl. Acad. Sci. 2010;107:882–887. doi: 10.1073/pnas.0909603107. PubMed DOI PMC
Furuta Y. Takahashi K. Shiraki K. Sakamoto K. Smee D. F. Barnard D. L. Gowen B. B. Julander J. G. Morrey J. D. Antiviral Res. 2009;82:95–102. doi: 10.1016/j.antiviral.2009.02.198. PubMed DOI PMC
Cai Q. Yang M. Liu D. Chen J. Shu D. Xia J. Liao X. Gu Y. Cai Q. Yang Y. Shen C. Li X. Peng L. Huang D. Zhang J. Zhang S. Wang F. Liu J. Chen L. Chen S. Wang Z. Zhang Z. Cao R. Zhong W. Liu Y. Liu L. Engineering. 2020;6(10):1192–1198. doi: 10.1016/j.eng.2020.03.007. PubMed DOI PMC
Harismah K. Mirzaei M. Adv. J. Chem. B. 2020;2:55–60.
Antonov L. Theor. Chem. Acc. 2020;139:145. PubMed PMC
Mendes J. de Almeida K. J. Neto J. L. Ramalho T. C. Duarte H. A. Spectrochim. Acta, Part A. 2017;184:308–317. doi: 10.1016/j.saa.2017.05.025. PubMed DOI
Timm R. A. Bonacin J. A. Formiga A. L. B. Toma H. E. J. Braz. Chem. Soc. 2008;19:287–292. doi: 10.1590/S0103-50532008000200013. DOI
Erdoğan Ş. Işın D. Ö. Chem. Heterocycl. Compd. 2014;50:986–997. doi: 10.1007/s10593-014-1554-8. DOI
Pliego J. Rufino V. Arkivoc. 2020:34–52.
Puzzarini C. Barone V. Acc. Chem. Res. 2018;51:548–556. doi: 10.1021/acs.accounts.7b00603. PubMed DOI
Umar Y. J. Taibah Univ. Sci. 2020;14:1613–1625. doi: 10.1080/16583655.2020.1848982. DOI
Alver Ö. Parlak C. Umar Y. Ramasami P. Main Group Met. Chem. 2019;42:143–149.
Celik I. Erol M. Duzgun Z. Mol. Diversity. 2021:1–14. PubMed PMC
Sada M. Saraya T. Ishii H. Okayama K. Hayashi Y. Tsugawa T. Nishina A. Murakami K. Kuroda M. Ryo A. Kimura H. Microorganisms. 2020;8:1–9. doi: 10.3390/microorganisms8101610. PubMed DOI PMC
Eweas A. F. Alhossary A. A. Abdel-Moneim A. S. Front. Microbiol. 2021;11:3602. PubMed PMC
Satyanarayana M. V. Reddy A. G. Yedukondalu M. Tej M. B. Hossain K. A. Rao M. V. B. Pal M. J. Mol. Struct. 2021 doi: 10.1016/j.molstruc.2021.129981. PubMed DOI PMC
Vishveshwara S. Resonance. 2014;19:347–367. doi: 10.1007/s12045-014-0040-z. DOI
Pierrefixe S. C. A. H. Poater J. Im C. Bickelhaupt F. M. Chemistry. 2008;14:6901–6911. doi: 10.1002/chem.200800013. PubMed DOI
Frisch M. J., Trucks G. W., B Schlegel H., E Scuseria G., Robb M., Cheeseman J., Scalmani G., Barone V., Mennucci B., Petersson G. A. H., Nakatsuji H., Caricato M., Li X., P Hratchian H., F Izmaylov A., Bloino J., Zheng G., L Sonnenberg J., Hada M. and Fox D., Gaussian 09, Revision A02, 2009
Miertuš S. Scrocco E. Tomasi J. Chem. Phys. 1981;55:117–129. doi: 10.1016/0301-0104(81)85090-2. DOI
Miertuš S. Tomasi J. Chem. Phys. 1982;65:239–245. doi: 10.1016/0301-0104(82)85072-6. DOI
London F. J. Phys. Radium. 1937;8:397–409. doi: 10.1051/jphysrad:01937008010039700. DOI
McWeeny R. Phys. Rev. 1962;126:1028–1034. doi: 10.1103/PhysRev.126.1028. DOI
Ditchfield R. Mol. Phys. 1974;27:789–807. doi: 10.1080/00268977400100711. DOI
Wolinski K. Hinton J. F. Pulay P. J. Am. Chem. Soc. 1990;112:8251–8260. doi: 10.1021/ja00179a005. DOI
Cheeseman J. R. Trucks G. W. Keith T. A. Frisch M. J. J. Chem. Phys. 1996;104:5497–5509. doi: 10.1063/1.471789. DOI
Grimme S. Angew. Chem., Int. Ed. 2013;52:6306–6312. doi: 10.1002/anie.201300158. PubMed DOI
Koopman J. Grimme S. ACS Omega. 2019;4:15120–15133. doi: 10.1021/acsomega.9b02011. PubMed DOI PMC
van Mourik T. Bühl M. Gaigeot M.-P. Philos. Trans. R. Soc., A. 2014;372:20120488. doi: 10.1098/rsta.2012.0488. PubMed DOI PMC
Trott O. Olson A. J. J. Comput. Chem. 2010;31:455–461. PubMed PMC
Maia E. H. B. Medaglia L. R. da Silva A. M. Taranto A. G. ACS Omega. 2020;5:6628–6640. doi: 10.1021/acsomega.9b04403. PubMed DOI PMC
Webb B. Sali A. Curr. Protoc. Bioinf. 2016;54:5.6.1–5.6.37. PubMed PMC
Novoselov K. P. Shirabaikin D. B. Umanskii S. Y. Vladimirov A. S. Minushev A. K. Korkin A. A. J. Comput. Chem. 2002;23:1375–1389. doi: 10.1002/jcc.10105. PubMed DOI
BIOVIA-Discovery Studio R2, Release 4.5, Accelrys, Software Inc., San Diego, 2017
Shi F. Li Z. Kong L. Xie Y. Zhang T. Xu W. Drug Discoveries Ther. 2014;8:117–120. doi: 10.5582/ddt.2014.01028. PubMed DOI
Rhyman L. Tursun M. Abdallah H. H. Choong Y. S. Parlak C. Kharkar P. Ramasami P. Phys. Sci. Rev. 2018;3:20170198.
Sebastian S. H. R. Al-Alshaikh M. A. El-Emam A. A. Panicker C. Y. Zitko J. Dolezal M. VanAlsenoy C. J. Mol. Struct. 2016;1119:188–199. doi: 10.1016/j.molstruc.2016.04.088. DOI
Sahoo H. J. Photochem. Photobiol., C. 2011;12:20–30. doi: 10.1016/j.jphotochemrev.2011.05.001. DOI
Sedgwick A. C. Wu L. Han H.-H. Bull S. D. He X.-P. James T. D. Sessler J. L. Tang B. Z. Tian H. Yoon J. Chem. Soc. Rev. 2018;47:8842–8880. doi: 10.1039/C8CS00185E. PubMed DOI
Zamyatkin D. F. Parra F. Machín A. Grochulski P. Ng K. K.-S. J. Mol. Biol. 2009;390:10–16. doi: 10.1016/j.jmb.2009.04.069. PubMed DOI
Berman H. M. Westbrook J. Feng Z. Gilliland G. Bhat T. N. Weissig H. Shindyalov I. N. Bourne P. E. Nucleic Acids Res. 2000;28:235–242. doi: 10.1093/nar/28.1.235. PubMed DOI PMC
de Jesus J. P. A. Assis L. C. de Castro A. A. da Cunha E. F. F. Nepovimova E. Kuca K. Ramalho T. C. La Porta F. A. Sci. Rep. 2021;11(19998) PubMed PMC
Yashvardhini N. Jha D. K. Bhattacharya S. Arch. Microbiol. 2021;203:5463–5473. doi: 10.1007/s00203-021-02527-9. PubMed DOI PMC
Yang H. Yang M. Ding Y. Liu Y. Lou Z. Zhou Z. Sun L. Mo L. Ye S. Pang H. Gao G. F. Anand K. Bartlam M. Hilgenfeld R. Rao Z. Proc. Natl. Acad. Sci. U. S. A. 2003;100:13190–13195. doi: 10.1073/pnas.1835675100. PubMed DOI PMC
Cheng F. Li W. Zhou Y. Shen J. Wu Z. Liu G. Lee P. W. Tang Y. J. Chem. Inf. Model. 2012;52:3099–3105. doi: 10.1021/ci300367a. PubMed DOI
Lipinski C. A. Lombardo F. Dominy B. W. Feeney P. J. Adv. Drug Delivery Rev. 1997;23:3–25. doi: 10.1016/S0169-409X(96)00423-1. PubMed DOI