Tetracoordinate Co(II) complexes with semi-coordination as stable single-ion magnets for deposition on graphene

. 2023 Nov 08 ; 25 (43) : 29516-29530. [epub] 20231108

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37901907

We present a theoretical and experimental study of two tetracoordinate Co(II)-based complexes with semi-coordination interactions, i.e., non-covalent interactions involving the central atom. We argue that such interactions enhance the thermal and structural stability of the compounds, making them appropriate for deposition on substrates, as demonstrated by their successful deposition on graphene. DC magnetometry and high-frequency electron spin resonance (HF-ESR) experiments revealed an axial magnetic anisotropy and weak intermolecular antiferromagnetic coupling in both compounds, supported by theoretical predictions from complete active space self-consistent field calculations complemented by N-electron valence state second-order perturbation theory (CASSCF-NEVPT2), and broken-symmetry density functional theory (BS-DFT). AC magnetometry demonstrated that the compounds are field-induced single-ion magnets (SIMs) at applied static magnetic fields, with slow relaxation of magnetization governed by a combination of quantum tunneling, Orbach, and direct relaxation mechanisms. The structural stability under ambient conditions and after deposition was confirmed by X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. Theoretical modeling by DFT of different configurations of these systems on graphene revealed n-type doping of graphene originating from electron transfer from the deposited molecules, confirmed by electrical transport measurements and Raman spectroscopy.

Zobrazit více v PubMed

Tanaka D. Aketa N. Tanaka H. Horike S. Fukumori M. Tamaki T. Inose T. Akai T. Toyama H. Sakata O. Tajiri H. Ogawa T. Dalton Trans. 2019;48:7074–7079. doi: 10.1039/C8DT02923G. PubMed DOI

Ardavan A. Rival O. Morton J. J. Blundell S. J. Tyryshkin A. M. Timco G. A. Winpenny R. E. Phys. Rev. Lett. 2007;98:057201. doi: 10.1103/PhysRevLett.98.057201. PubMed DOI

Urdampilleta M. Klyatskaya S. Cleuziou J. P. Ruben M. Wernsdorfer W. Nat. Mater. 2011;10:502–506. doi: 10.1038/nmat3050. PubMed DOI

Coronado E. Nat. Rev. Mat. 2020;5:87–104. doi: 10.1038/s41578-019-0146-8. DOI

Dugay J. Aarts M. Gimenez-Marqués M. Kozlova T. Zandbergen H. W. Coronado E. Van Der Zant H. S. Nano Lett. 2017;17:186–193. doi: 10.1021/acs.nanolett.6b03780. PubMed DOI

Rahman T. S. Berkley R. S. Hooshmand Z. Jiang T. Le D. Hebard A. F. J. Phys. Chem. C. 2020;124:28186–28200. doi: 10.1021/acs.jpcc.0c08420. DOI

Holmberg R. J. Murugesu M. J. Mater. Chem. C. 2015;3:11986–11998. doi: 10.1039/C5TC03225C. DOI

Bunting P. C. Atanasov M. Damgaard-Møller E. Perfetti M. Crassee I. Orlita M. Overgaard J. Van Slageren J. Neese F. Long J. R. Science. 2018;362:eaat7319. doi: 10.1126/science.aat7319. PubMed DOI

Yang F. Zhou Q. Zhang Y. Zeng G. Li G. Shi Z. Wang B. Feng S. Chem. Commun. 2013;49:5289–5291. doi: 10.1039/C3CC00277B. PubMed DOI

Wu T. Zhai Y. Q. Deng Y. F. Chen W. P. Zhang T. Zheng Y. Z. Dalton Trans. 2019;48:15419–15426. doi: 10.1039/C9DT01296F. PubMed DOI

Böhme M. Ziegenbalg S. Aliabadi A. Schnegg A. Görls H. Plass W. Dalton Trans. 2018;47:10861–10873. doi: 10.1039/C8DT01530A. PubMed DOI

Vaidya S. Shukla P. Tripathi S. Rivière E. Mallah T. Rajaraman G. Shanmugam M. Inorg. Chem. 2018;57:3371–3386. doi: 10.1021/acs.inorgchem.8b00160. PubMed DOI

Zhai Y. Q. Deng Y. F. Zheng Y. Z. Dalton Trans. 2018;47:8874–8878. doi: 10.1039/C8DT01683F. PubMed DOI

Jurca T. Farghal A. Lin P. H. Korobkov I. Murugesu M. Richeson D. S. J. Am. Chem. Soc. 2011;133:15814–15817. doi: 10.1021/ja204562m. PubMed DOI

Nemec I. Liu H. Herchel R. Zhang X. Trávnícek Z. Synth. Met. 2016;215:158–163. doi: 10.1016/j.synthmet.2016.02.014. DOI

Ruamps R. Batchelor L. J. Guillot R. Zakhia G. Barra A. L. Wernsdorfer W. Guihéry N. Mallah T. Chem. Sci. 2014;5:3418–3424. doi: 10.1039/C4SC00984C. DOI

Schweinfurth D. Krzystek J. Atanasov M. Klein J. Hohloch S. Telser J. Demeshko S. Meyer F. Neese F. Sarkar B. Inorg. Chem. 2017;56:5253–5265. doi: 10.1021/acs.inorgchem.7b00371. PubMed DOI

Schweinfurth D. Sommer M. G. Atanasov M. Demeshko S. Hohloch S. Meyer F. Neese F. Sarkar B. J. Am. Chem. Soc. 2015;137:1993–2005. doi: 10.1021/ja512232f. PubMed DOI

El-Khatib F. Cahier B. Shao F. López-Jordà M. Guillot R. Rivière E. Hafez H. Saad Z. Girerd J. J. Guihéry N. Mallah T. Inorg. Chem. 2017;56:4601–4608. doi: 10.1021/acs.inorgchem.7b00205. PubMed DOI

Juráková J. Dubnická Midlíková J. Hrubý J. Kliuikov A. Santana V. T. Pavlik J. Moncol J. C̆ižmár E. Orlita M. Mohelský I. Neugebauer P. Gentili D. Cavallini M. Šalitroš I. Inorg. Chem. Front. 2022;9:1179–1194. doi: 10.1039/D1QI01350E. DOI

Novikov V. V. Pavlov A. A. Nelyubina Y. V. Boulon M. E. Varzatskii O. A. Voloshin Y. Z. Winpenny R. E. J. Am. Chem. Soc. 2015;137:9792–9795. doi: 10.1021/jacs.5b05739. PubMed DOI

Pavlov A. A. Nelyubina Y. V. Kats S. V. Penkova L. V. Efimov N. N. Dmitrienko A. O. Vologzhanina A. V. Belov A. S. Voloshin Y. Z. Novikov V. V. J. Phys. Chem. Lett. 2016;7:4111–4116. doi: 10.1021/acs.jpclett.6b02091. PubMed DOI

Gomez-Coca S. Cremades E. Aliaga-Alcalde N. Ruiz E. J. Am. Chem. Soc. 2013;135:7010–7018. doi: 10.1021/ja4015138. PubMed DOI

Ozumerzifon T. J. Bhowmick I. Spaller W. C. Rappé A. K. Shores M. P. Chem. Commun. 2017;53:4211–4214. doi: 10.1039/C7CC01172E. PubMed DOI

Yao B. Deng Y. F. Li T. Xiong J. Wang B. W. Zheng Z. Zhang Y. Z. Inorg. Chem. 2018;57:14047–14051. doi: 10.1021/acs.inorgchem.8b02692. PubMed DOI

Zhu Y. Y. Cui C. Zhang Y. Q. Jia J. H. Guo X. Gao C. Qian K. Jiang S. D. Wang B. W. Wang Z. M. Gao S. Chem. Sci. 2013;4:1802–1806. doi: 10.1039/C3SC21893G. DOI

Yao B. Singh M. K. Deng Y. F. Wang Y. N. Dunbar K. R. Zhang Y. Z. Inorg. Chem. 2020;59:8505–8513. doi: 10.1021/acs.inorgchem.0c00950. PubMed DOI

Frost J. M. Harriman K. L. Murugesu M. Chem. Sci. 2016;7:2470–2491. doi: 10.1039/C5SC03224E. PubMed DOI PMC

Juráková J. Šalitroš I. Monatsh. Chem. 2022;153:1001–1036. doi: 10.1007/s00706-022-02920-0. PubMed DOI PMC

Zadrozny J. M. Long J. R. J. Am. Chem. Soc. 2011;133:20732–20734. doi: 10.1021/ja2100142. PubMed DOI

Suturina E. A. Nehrkorn J. Zadrozny J. M. Liu J. Atanasov M. Weyhermüller T. Maganas D. Hill S. Schnegg A. Bill E. Long J. R. Neese F. Inorg. Chem. 2017;56:3102–3118. doi: 10.1021/acs.inorgchem.7b00097. PubMed DOI

Zadrozny J. M. Telser J. Long J. R. Polyhedron. 2013;64:209–217. doi: 10.1016/j.poly.2013.04.008. DOI

Vaidya S. Tewary S. Singh S. K. Langley S. K. Murray K. S. Lan Y. Wernsdorfer W. Rajaraman G. Shanmugam M. Inorg. Chem. 2016;55:9564–9578. doi: 10.1021/acs.inorgchem.6b01073. PubMed DOI

Fataftah M. S. Zadrozny J. M. Rogers D. M. Freedman D. E. Inorg. Chem. 2014;53:10716–10721. doi: 10.1021/ic501906z. PubMed DOI

Rechkemmer Y. Breitgoff F. D. Van Der Meer M. Atanasov M. Hakl M. Orlita M. Neugebauer P. Neese F. Sarkar B. Van Slageren J. Nat. Commun. 2016;7:1–8. PubMed PMC

Ziegenbalg S. Hornig D. Görls H. Plass W. Inorg. Chem. 2016;55:4047–4058. doi: 10.1021/acs.inorgchem.6b00373. PubMed DOI

Yao X. N. Yang M. W. Xiong J. Liu J. J. Gao C. Meng Y. S. Jiang S. D. Wang B. W. Gao S. Inorg. Chem. Front. 2017;4:701–705. doi: 10.1039/C6QI00543H. DOI

Hrubý J. Vavrec̆ková Š. Masaryk L. Sojka A. Navarro-Giraldo J. Bartoš M. Herchel R. Moncol J. Nemec I. Neugebauer P. Molecules. 2020;25:5021. doi: 10.3390/molecules25215021. PubMed DOI PMC

Hrubý J. Dvor̆ák D. Squillantini L. Mannini M. Van Slageren J. Herchel R. Nemec I. Neugebauer P. Dalton Trans. 2020;49:11697–11707. doi: 10.1039/D0DT01512A. PubMed DOI

Nemec I. Fellner O. F. Havlíc̆ek L. Herchel R. Acta Crystallogr., Sect. A: Found. Adv. 2021;77:C344.

Xu L. Mironov Y. V. Qi X. Kim S. J. J. Struct. Chem. 2006;47:998–1001. doi: 10.1007/s10947-006-0418-1. DOI

Groom C. R. Bruno I. J. Lightfoot M. P. Ward S. C. Acta Crystallogr. B. 2016;72:171–179. doi: 10.1107/S2052520616003954. PubMed DOI PMC

Efimenko Z. M. Novikov A. S. Ivanov D. M. Piskunov A. V. Vereshchagin A. A. Levin O. V. Bokach N. A. Kukushkin V. Y. Inorg. Chem. 2020:2316–2327. doi: 10.1021/acs.inorgchem.9b03132. PubMed DOI

Ananyev I. V. Bokach N. A. Kukushkinc V. Y. Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater. 2020;76:436–449. doi: 10.1107/S2052520620005685. PubMed DOI

Bourhis L. J. Dolomanov O. V. Gildea R. J. Howard J. A. Puschmann H. Acta Crystallogr., Sect. A: Found. Adv. 2015;71:59–75. doi: 10.1107/S2053273314022207. PubMed DOI PMC

Sheldrick G. M. Acta Crystallogr., Sect. C: Struct. Chem. 2015;71:3–8. PubMed PMC

Dolomanov O. V. Bourhis L. J. Gildea R. J. Howard J. A. Puschmann H. J. Appl. Crystallogr. 2009;42:339–341. doi: 10.1107/S0021889808042726. PubMed DOI PMC

MacRae C. F. Sovago I. Cottrell S. J. Galek P. T. McCabe P. Pidcock E. Platings M. Shields G. P. Stevens J. S. Towler M. Wood P. A. J. Appl. Crystallogr. 2020;53:226–235. doi: 10.1107/S1600576719014092. PubMed DOI PMC

Geim A. K. Novoselov K. S. Nat. Mater. 2007;6:183–191. doi: 10.1038/nmat1849. PubMed DOI

Du X. Skachko I. Andrei E. Y. Barker A. Nat. Nanotechnol. 2008;3:491–495. doi: 10.1038/nnano.2008.199. PubMed DOI

Lee C. Wei X. Kysar J. W. Hone J. Science. 2008;321:385–388. doi: 10.1126/science.1157996. PubMed DOI

Seol J. H. Jo I. Moore A. L. Lindsay L. Aitken Z. H. Pettes M. T. Li X. Yao Z. Huang R. Broido D. Mingo N. Ruoff R. S. Shi L. Science. 2010;328:213–216. doi: 10.1126/science.1184014. PubMed DOI

Neugebauer P. Orlita M. Faugeras C. Barra A. L. Potemski M. Phys. Rev. Lett. 2009;103:136403. doi: 10.1103/PhysRevLett.103.136403. PubMed DOI

El Fatimy A. Myers-Ward R. L. Boyd A. K. Daniels K. M. Gaskill D. K. Barbara P. Nat. Nanotechnol. 2016;11:335–338. doi: 10.1038/nnano.2015.303. PubMed DOI

Marie L. S. El Fatimy A. Hrubý J. Nemec I. Hunt J. Myers-Ward R. Gaskill D. K. Kruskopf M. Yang Y. Elmquist R. Marx R. van Slageren J. Neugebauer P. Barbara P. J. Phys. Mater. 2020;3:014013. doi: 10.1088/2515-7639/ab6af8. DOI

Zhan B. Li C. Yang J. Jenkins G. Huang W. Dong X. Small. 2014;10:4042–4065. doi: 10.1002/smll.201400463. PubMed DOI

Neese F. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2018;8:e1327. doi: 10.1002/wcms.1327. PubMed DOI PMC

Neese F. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2022;12:e1606. doi: 10.1002/wcms.1606. PubMed DOI PMC

Malmqvist P. Å. Roos B. O. Chem. Phys. Lett. 1989;155:189–194. doi: 10.1016/0009-2614(89)85347-3. DOI

Angeli C. Cimiraglia R. Evangelisti S. Leininger T. Malrieu J. P. J. Chem. Phys. 2001;114:10252. doi: 10.1063/1.1361246. PubMed DOI

Angeli C. Cimiraglia R. Malrieu J. P. Chem. Phys. Lett. 2001;350:297–305. doi: 10.1016/S0009-2614(01)01303-3. DOI

Kleemiss F. Dolomanov O. V. Bodensteiner M. Peyerimhoff N. Midgley L. Bourhis L. J. Genoni A. Malaspina L. A. Jayatilaka D. Spencer J. L. White F. Grundkötter-Stock B. Steinhauer S. Lentz D. Puschmann H. Grabowsky S. Chem. Sci. 2021;12:1675–1692. doi: 10.1039/D0SC05526C. PubMed DOI PMC

Weigend F. Ahlrichs R. Phys. Chem. Chem. Phys. 2005;7:3297–3305. doi: 10.1039/B508541A. PubMed DOI

Weigend F. Phys. Chem. Chem. Phys. 2006;8:1057–1065. doi: 10.1039/B515623H. PubMed DOI

Hellweg A. Hättig C. Höfener S. Klopper W. Theor. Chem. Acc. 2007;117:587–597.

Izsák R. Neese F. J. Chem. Phys. 2011;135:144105. doi: 10.1063/1.3646921. PubMed DOI

Neese F. Wennmohs F. Hansen A. Becker U. Chem. Phys. 2009;356:98–109. doi: 10.1016/j.chemphys.2008.10.036. DOI

Molecular Electronic Structures of Transition Metal Complexes II, ed. D. M. P. Mingos, P. Day and J. P. Dahl, Springer Berlin Heidelberg, Berlin, Heidelberg, 2012, vol. 143

Becke A. D. Phys. Rev. A: At., Mol., Opt. Phys. 1988;38:3098–3100. doi: 10.1103/PhysRevA.38.3098. PubMed DOI

Lee C. Yang W. Parr R. G. Phys. Rev. B: Condens. Matter Mater. Phys. 1988;37:785–789. doi: 10.1103/PhysRevB.37.785. PubMed DOI

Stephens P. J. Devlin F. J. Chabalowski C. F. Frisch M. J. J. Phys. Chem. 1994;98:11623–11627. doi: 10.1021/j100096a001. DOI

Adamo C. Barone V. J. Chem. Phys. 1999;110:6158–6170. doi: 10.1063/1.478522. DOI

Hossain S. M. Kamilya S. Ghosh S. Herchel R. Kiskin M. A. Mehta S. Mondal A. Cryst. Growth Des. 2023;11:42.

Havlíc̆ek L. Herchel R. Nemec I. Neugebauer P. Polyhedron. 2022;223:115962. doi: 10.1016/j.poly.2022.115962. DOI

Gusev A. N. Nemec I. Herchel R. Baluda Y. I. Kryukova M. A. Efimov N. N. Kiskin M. A. Linert W. Polyhedron. 2021;196:115017. doi: 10.1016/j.poly.2020.115017. DOI

Bhanja A. Smythe L. Herchel R. Nemec I. Murrie M. Ray D. Dalton Trans. 2021;50:5023–5035. doi: 10.1039/D0DT04168H. PubMed DOI

Rybníc̆ková B. Kuchár J. Antal P. Herchel R. Inorg. Chim. Acta. 2020;509:119689. doi: 10.1016/j.ica.2020.119689. DOI

Šalitroš I. Herchel R. Fuhr O. González-Prieto R. Ruben M. Inorg. Chem. 2019;58:4310–4319. doi: 10.1021/acs.inorgchem.8b03432. PubMed DOI

Vydrov O. A. Van Voorhis T. J. Chem. Phys. 2010;133:244103. doi: 10.1063/1.3521275. PubMed DOI

Hujo W. Grimme S. J. Chem. Theory Comput. 2011;7:3866–3871. doi: 10.1021/ct200644w. PubMed DOI

Bader R. F. W., Atoms in Molecules: A Quantum Theory, Oxford University Press, 1994

Lu T. Chen F. J. Mol. Graphics Modell. 2012;38:314–323. doi: 10.1016/j.jmgm.2012.07.004. PubMed DOI

Lu T. Chen F. J. Comput. Chem. 2012;33:580–592. doi: 10.1002/jcc.22885. PubMed DOI

Kresse G. Hafner J. Phys. Rev. B: Condens. Matter Mater. Phys. 1993;47:558–561. doi: 10.1103/PhysRevB.47.558. PubMed DOI

Kresse G. Furthmüller J. Computational Mater. Sci. 1996;6:15–50. doi: 10.1016/0927-0256(96)00008-0. DOI

Kresse G. Furthmüller J. Phys. Rev. B: Condens. Matter Mater. Phys. 1996;54:11169–11186. doi: 10.1103/PhysRevB.54.11169. PubMed DOI

Kresse G. Joubert D. Phys. Rev. B: Condens. Matter Mater. Phys. 1999;59:1758–1775. doi: 10.1103/PhysRevB.59.1758. DOI

Blöchl P. E. Phys. Rev. B: Condens. Matter Mater. Phys. 1994;50:17953–17979. doi: 10.1103/PhysRevB.50.17953. PubMed DOI

Perdew J. P. Burke K. Ernzerhof M. Phys. Rev. Lett. 1996;77:3865–3868. doi: 10.1103/PhysRevLett.77.3865. PubMed DOI

Perdew J. P. Burke K. Ernzerhof M. Phys. Rev. Lett. 1997;78:1396. doi: 10.1103/PhysRevLett.78.1396. PubMed DOI

Grimme S. Antony J. Ehrlich S. Krieg H. J. Chem. Phys. 2010;132:154709. doi: 10.1063/1.3382344. PubMed DOI

Grimme S. Ehrlich S. Goerigk L. J. Comput. Chem. 2011;32:1456–1465. doi: 10.1002/jcc.21759. PubMed DOI

Neugebauer J. Scheffler M. Phys. Rev. B: Condens. Matter Mater. Phys. 1992;46:16067–16080. doi: 10.1103/PhysRevB.46.16067. PubMed DOI

Makov G. Payne M. C. Phys. Rev. B: Condens. Matter Mater. Phys. 1995;51:4014–4022. doi: 10.1103/PhysRevB.51.4014. PubMed DOI

Monkhorst H. J. Pack J. D. Phys. Rev. B: Solid State. 1976;13:5188–5192. doi: 10.1103/PhysRevB.13.5188. DOI

Wang V. Xu N. Liu J.-C. Tang G. Geng W.-T. Comput. Phys. Commun. 2021;267:108033. doi: 10.1016/j.cpc.2021.108033. DOI

Momma K. Izumi F. J. Appl. Crystallogr. 2008;41:653–658. doi: 10.1107/S0021889808012016. DOI

Johnson E. R. Keinan S. Mori-Sánchez P. Contreras-García J. Cohen A. J. Yang W. J. Am. Chem. Soc. 2010;132:6498–6506. doi: 10.1021/ja100936w. PubMed DOI PMC

Humphrey W. Dalke A. Schulten K. J. Mol. Graphics. 1996;14:33–38. doi: 10.1016/0263-7855(96)00018-5. PubMed DOI

Becke A. D. Edgecombe K. E. J. Chem. Phys. 1990;92:5397–5403. doi: 10.1063/1.458517. DOI

Lu T. Chen F. W. Acta Phys. Chim. Sin. 2011;27:2786–2792.

Chi Y. H. Shi J. M. Li H. N. Wei W. Cottrill E. Pan N. Chen H. Liang Y. Yu L. Zhang Y. Q. Hou C. Dalton Trans. 2013;42:15559–15569. doi: 10.1039/C3DT51476E. PubMed DOI

Ruiz E. Cano J. Alvarez S. Alemany P. J. Comput. Chem. 1999;20:1391–1400. doi: 10.1002/(SICI)1096-987X(199910)20:13<1391::AID-JCC6>3.0.CO;2-J. DOI

Soda T. Kitagawa Y. Onishi T. Takano Y. Shigeta Y. Nagao H. Yoshioka Y. Yamaguchi K. Chem. Phys. Lett. 2000;319:223–230. doi: 10.1016/S0009-2614(00)00166-4. DOI

Stoll S. Schweiger A. J. Magn. Reson. 2006;178:42–55. doi: 10.1016/j.jmr.2005.08.013. PubMed DOI

Misochko E. Y. Akimov A. V. Korchagin D. V. Nehrkorn J. Ozerov M. Palii A. V. Clemente-Juan J. M. Aldoshin S. M. Inorg. Chem. 2019;58:16434–16444. doi: 10.1021/acs.inorgchem.9b02195. PubMed DOI

Chibotaru L. F. Ungur L. J. Chem. Phys. 2012;137:64112. doi: 10.1063/1.4739763. PubMed DOI

Yan J. Zhang Y. Kim P. Pinczuk A. Phys. Rev. Lett. 2007;98:166802. doi: 10.1103/PhysRevLett.98.166802. PubMed DOI

Ferrari A. C. Basko D. M. Nat. Nanotechnol. 2013;8:235–246. doi: 10.1038/nnano.2013.46. PubMed DOI

Tang W. Sanville E. Henkelman G. J. Phys.: Condens. Matter. 2009;21:084204. doi: 10.1088/0953-8984/21/8/084204. PubMed DOI

Henkelman G. Arnaldsson A. Jónsson H. Comput. Mater. Sci. 2006;36:354–360. doi: 10.1016/j.commatsci.2005.04.010. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...