Tetracoordinate Co(II) complexes with semi-coordination as stable single-ion magnets for deposition on graphene
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
PubMed
37901907
PubMed Central
PMC10631493
DOI
10.1039/d3cp01426f
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
We present a theoretical and experimental study of two tetracoordinate Co(II)-based complexes with semi-coordination interactions, i.e., non-covalent interactions involving the central atom. We argue that such interactions enhance the thermal and structural stability of the compounds, making them appropriate for deposition on substrates, as demonstrated by their successful deposition on graphene. DC magnetometry and high-frequency electron spin resonance (HF-ESR) experiments revealed an axial magnetic anisotropy and weak intermolecular antiferromagnetic coupling in both compounds, supported by theoretical predictions from complete active space self-consistent field calculations complemented by N-electron valence state second-order perturbation theory (CASSCF-NEVPT2), and broken-symmetry density functional theory (BS-DFT). AC magnetometry demonstrated that the compounds are field-induced single-ion magnets (SIMs) at applied static magnetic fields, with slow relaxation of magnetization governed by a combination of quantum tunneling, Orbach, and direct relaxation mechanisms. The structural stability under ambient conditions and after deposition was confirmed by X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. Theoretical modeling by DFT of different configurations of these systems on graphene revealed n-type doping of graphene originating from electron transfer from the deposited molecules, confirmed by electrical transport measurements and Raman spectroscopy.
Central European Institute of Technology CEITEC BUT Purkyňova 656 123 61200 Brno Czech Republic
Department of Physics Georgetown University Washington DC USA
Institute of Physics of Materials Czech Academy of Sciences Žižkova 22 61662 Brno Czech Republic
Zobrazit více v PubMed
Tanaka D. Aketa N. Tanaka H. Horike S. Fukumori M. Tamaki T. Inose T. Akai T. Toyama H. Sakata O. Tajiri H. Ogawa T. Dalton Trans. 2019;48:7074–7079. doi: 10.1039/C8DT02923G. PubMed DOI
Ardavan A. Rival O. Morton J. J. Blundell S. J. Tyryshkin A. M. Timco G. A. Winpenny R. E. Phys. Rev. Lett. 2007;98:057201. doi: 10.1103/PhysRevLett.98.057201. PubMed DOI
Urdampilleta M. Klyatskaya S. Cleuziou J. P. Ruben M. Wernsdorfer W. Nat. Mater. 2011;10:502–506. doi: 10.1038/nmat3050. PubMed DOI
Coronado E. Nat. Rev. Mat. 2020;5:87–104. doi: 10.1038/s41578-019-0146-8. DOI
Dugay J. Aarts M. Gimenez-Marqués M. Kozlova T. Zandbergen H. W. Coronado E. Van Der Zant H. S. Nano Lett. 2017;17:186–193. doi: 10.1021/acs.nanolett.6b03780. PubMed DOI
Rahman T. S. Berkley R. S. Hooshmand Z. Jiang T. Le D. Hebard A. F. J. Phys. Chem. C. 2020;124:28186–28200. doi: 10.1021/acs.jpcc.0c08420. DOI
Holmberg R. J. Murugesu M. J. Mater. Chem. C. 2015;3:11986–11998. doi: 10.1039/C5TC03225C. DOI
Bunting P. C. Atanasov M. Damgaard-Møller E. Perfetti M. Crassee I. Orlita M. Overgaard J. Van Slageren J. Neese F. Long J. R. Science. 2018;362:eaat7319. doi: 10.1126/science.aat7319. PubMed DOI
Yang F. Zhou Q. Zhang Y. Zeng G. Li G. Shi Z. Wang B. Feng S. Chem. Commun. 2013;49:5289–5291. doi: 10.1039/C3CC00277B. PubMed DOI
Wu T. Zhai Y. Q. Deng Y. F. Chen W. P. Zhang T. Zheng Y. Z. Dalton Trans. 2019;48:15419–15426. doi: 10.1039/C9DT01296F. PubMed DOI
Böhme M. Ziegenbalg S. Aliabadi A. Schnegg A. Görls H. Plass W. Dalton Trans. 2018;47:10861–10873. doi: 10.1039/C8DT01530A. PubMed DOI
Vaidya S. Shukla P. Tripathi S. Rivière E. Mallah T. Rajaraman G. Shanmugam M. Inorg. Chem. 2018;57:3371–3386. doi: 10.1021/acs.inorgchem.8b00160. PubMed DOI
Zhai Y. Q. Deng Y. F. Zheng Y. Z. Dalton Trans. 2018;47:8874–8878. doi: 10.1039/C8DT01683F. PubMed DOI
Jurca T. Farghal A. Lin P. H. Korobkov I. Murugesu M. Richeson D. S. J. Am. Chem. Soc. 2011;133:15814–15817. doi: 10.1021/ja204562m. PubMed DOI
Nemec I. Liu H. Herchel R. Zhang X. Trávnícek Z. Synth. Met. 2016;215:158–163. doi: 10.1016/j.synthmet.2016.02.014. DOI
Ruamps R. Batchelor L. J. Guillot R. Zakhia G. Barra A. L. Wernsdorfer W. Guihéry N. Mallah T. Chem. Sci. 2014;5:3418–3424. doi: 10.1039/C4SC00984C. DOI
Schweinfurth D. Krzystek J. Atanasov M. Klein J. Hohloch S. Telser J. Demeshko S. Meyer F. Neese F. Sarkar B. Inorg. Chem. 2017;56:5253–5265. doi: 10.1021/acs.inorgchem.7b00371. PubMed DOI
Schweinfurth D. Sommer M. G. Atanasov M. Demeshko S. Hohloch S. Meyer F. Neese F. Sarkar B. J. Am. Chem. Soc. 2015;137:1993–2005. doi: 10.1021/ja512232f. PubMed DOI
El-Khatib F. Cahier B. Shao F. López-Jordà M. Guillot R. Rivière E. Hafez H. Saad Z. Girerd J. J. Guihéry N. Mallah T. Inorg. Chem. 2017;56:4601–4608. doi: 10.1021/acs.inorgchem.7b00205. PubMed DOI
Juráková J. Dubnická Midlíková J. Hrubý J. Kliuikov A. Santana V. T. Pavlik J. Moncol J. C̆ižmár E. Orlita M. Mohelský I. Neugebauer P. Gentili D. Cavallini M. Šalitroš I. Inorg. Chem. Front. 2022;9:1179–1194. doi: 10.1039/D1QI01350E. DOI
Novikov V. V. Pavlov A. A. Nelyubina Y. V. Boulon M. E. Varzatskii O. A. Voloshin Y. Z. Winpenny R. E. J. Am. Chem. Soc. 2015;137:9792–9795. doi: 10.1021/jacs.5b05739. PubMed DOI
Pavlov A. A. Nelyubina Y. V. Kats S. V. Penkova L. V. Efimov N. N. Dmitrienko A. O. Vologzhanina A. V. Belov A. S. Voloshin Y. Z. Novikov V. V. J. Phys. Chem. Lett. 2016;7:4111–4116. doi: 10.1021/acs.jpclett.6b02091. PubMed DOI
Gomez-Coca S. Cremades E. Aliaga-Alcalde N. Ruiz E. J. Am. Chem. Soc. 2013;135:7010–7018. doi: 10.1021/ja4015138. PubMed DOI
Ozumerzifon T. J. Bhowmick I. Spaller W. C. Rappé A. K. Shores M. P. Chem. Commun. 2017;53:4211–4214. doi: 10.1039/C7CC01172E. PubMed DOI
Yao B. Deng Y. F. Li T. Xiong J. Wang B. W. Zheng Z. Zhang Y. Z. Inorg. Chem. 2018;57:14047–14051. doi: 10.1021/acs.inorgchem.8b02692. PubMed DOI
Zhu Y. Y. Cui C. Zhang Y. Q. Jia J. H. Guo X. Gao C. Qian K. Jiang S. D. Wang B. W. Wang Z. M. Gao S. Chem. Sci. 2013;4:1802–1806. doi: 10.1039/C3SC21893G. DOI
Yao B. Singh M. K. Deng Y. F. Wang Y. N. Dunbar K. R. Zhang Y. Z. Inorg. Chem. 2020;59:8505–8513. doi: 10.1021/acs.inorgchem.0c00950. PubMed DOI
Frost J. M. Harriman K. L. Murugesu M. Chem. Sci. 2016;7:2470–2491. doi: 10.1039/C5SC03224E. PubMed DOI PMC
Juráková J. Šalitroš I. Monatsh. Chem. 2022;153:1001–1036. doi: 10.1007/s00706-022-02920-0. PubMed DOI PMC
Zadrozny J. M. Long J. R. J. Am. Chem. Soc. 2011;133:20732–20734. doi: 10.1021/ja2100142. PubMed DOI
Suturina E. A. Nehrkorn J. Zadrozny J. M. Liu J. Atanasov M. Weyhermüller T. Maganas D. Hill S. Schnegg A. Bill E. Long J. R. Neese F. Inorg. Chem. 2017;56:3102–3118. doi: 10.1021/acs.inorgchem.7b00097. PubMed DOI
Zadrozny J. M. Telser J. Long J. R. Polyhedron. 2013;64:209–217. doi: 10.1016/j.poly.2013.04.008. DOI
Vaidya S. Tewary S. Singh S. K. Langley S. K. Murray K. S. Lan Y. Wernsdorfer W. Rajaraman G. Shanmugam M. Inorg. Chem. 2016;55:9564–9578. doi: 10.1021/acs.inorgchem.6b01073. PubMed DOI
Fataftah M. S. Zadrozny J. M. Rogers D. M. Freedman D. E. Inorg. Chem. 2014;53:10716–10721. doi: 10.1021/ic501906z. PubMed DOI
Rechkemmer Y. Breitgoff F. D. Van Der Meer M. Atanasov M. Hakl M. Orlita M. Neugebauer P. Neese F. Sarkar B. Van Slageren J. Nat. Commun. 2016;7:1–8. PubMed PMC
Ziegenbalg S. Hornig D. Görls H. Plass W. Inorg. Chem. 2016;55:4047–4058. doi: 10.1021/acs.inorgchem.6b00373. PubMed DOI
Yao X. N. Yang M. W. Xiong J. Liu J. J. Gao C. Meng Y. S. Jiang S. D. Wang B. W. Gao S. Inorg. Chem. Front. 2017;4:701–705. doi: 10.1039/C6QI00543H. DOI
Hrubý J. Vavrec̆ková Š. Masaryk L. Sojka A. Navarro-Giraldo J. Bartoš M. Herchel R. Moncol J. Nemec I. Neugebauer P. Molecules. 2020;25:5021. doi: 10.3390/molecules25215021. PubMed DOI PMC
Hrubý J. Dvor̆ák D. Squillantini L. Mannini M. Van Slageren J. Herchel R. Nemec I. Neugebauer P. Dalton Trans. 2020;49:11697–11707. doi: 10.1039/D0DT01512A. PubMed DOI
Nemec I. Fellner O. F. Havlíc̆ek L. Herchel R. Acta Crystallogr., Sect. A: Found. Adv. 2021;77:C344.
Xu L. Mironov Y. V. Qi X. Kim S. J. J. Struct. Chem. 2006;47:998–1001. doi: 10.1007/s10947-006-0418-1. DOI
Groom C. R. Bruno I. J. Lightfoot M. P. Ward S. C. Acta Crystallogr. B. 2016;72:171–179. doi: 10.1107/S2052520616003954. PubMed DOI PMC
Efimenko Z. M. Novikov A. S. Ivanov D. M. Piskunov A. V. Vereshchagin A. A. Levin O. V. Bokach N. A. Kukushkin V. Y. Inorg. Chem. 2020:2316–2327. doi: 10.1021/acs.inorgchem.9b03132. PubMed DOI
Ananyev I. V. Bokach N. A. Kukushkinc V. Y. Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater. 2020;76:436–449. doi: 10.1107/S2052520620005685. PubMed DOI
Bourhis L. J. Dolomanov O. V. Gildea R. J. Howard J. A. Puschmann H. Acta Crystallogr., Sect. A: Found. Adv. 2015;71:59–75. doi: 10.1107/S2053273314022207. PubMed DOI PMC
Sheldrick G. M. Acta Crystallogr., Sect. C: Struct. Chem. 2015;71:3–8. PubMed PMC
Dolomanov O. V. Bourhis L. J. Gildea R. J. Howard J. A. Puschmann H. J. Appl. Crystallogr. 2009;42:339–341. doi: 10.1107/S0021889808042726. PubMed DOI PMC
MacRae C. F. Sovago I. Cottrell S. J. Galek P. T. McCabe P. Pidcock E. Platings M. Shields G. P. Stevens J. S. Towler M. Wood P. A. J. Appl. Crystallogr. 2020;53:226–235. doi: 10.1107/S1600576719014092. PubMed DOI PMC
Geim A. K. Novoselov K. S. Nat. Mater. 2007;6:183–191. doi: 10.1038/nmat1849. PubMed DOI
Du X. Skachko I. Andrei E. Y. Barker A. Nat. Nanotechnol. 2008;3:491–495. doi: 10.1038/nnano.2008.199. PubMed DOI
Lee C. Wei X. Kysar J. W. Hone J. Science. 2008;321:385–388. doi: 10.1126/science.1157996. PubMed DOI
Seol J. H. Jo I. Moore A. L. Lindsay L. Aitken Z. H. Pettes M. T. Li X. Yao Z. Huang R. Broido D. Mingo N. Ruoff R. S. Shi L. Science. 2010;328:213–216. doi: 10.1126/science.1184014. PubMed DOI
Neugebauer P. Orlita M. Faugeras C. Barra A. L. Potemski M. Phys. Rev. Lett. 2009;103:136403. doi: 10.1103/PhysRevLett.103.136403. PubMed DOI
El Fatimy A. Myers-Ward R. L. Boyd A. K. Daniels K. M. Gaskill D. K. Barbara P. Nat. Nanotechnol. 2016;11:335–338. doi: 10.1038/nnano.2015.303. PubMed DOI
Marie L. S. El Fatimy A. Hrubý J. Nemec I. Hunt J. Myers-Ward R. Gaskill D. K. Kruskopf M. Yang Y. Elmquist R. Marx R. van Slageren J. Neugebauer P. Barbara P. J. Phys. Mater. 2020;3:014013. doi: 10.1088/2515-7639/ab6af8. DOI
Zhan B. Li C. Yang J. Jenkins G. Huang W. Dong X. Small. 2014;10:4042–4065. doi: 10.1002/smll.201400463. PubMed DOI
Neese F. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2018;8:e1327. doi: 10.1002/wcms.1327. PubMed DOI PMC
Neese F. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2022;12:e1606. doi: 10.1002/wcms.1606. PubMed DOI PMC
Malmqvist P. Å. Roos B. O. Chem. Phys. Lett. 1989;155:189–194. doi: 10.1016/0009-2614(89)85347-3. DOI
Angeli C. Cimiraglia R. Evangelisti S. Leininger T. Malrieu J. P. J. Chem. Phys. 2001;114:10252. doi: 10.1063/1.1361246. PubMed DOI
Angeli C. Cimiraglia R. Malrieu J. P. Chem. Phys. Lett. 2001;350:297–305. doi: 10.1016/S0009-2614(01)01303-3. DOI
Kleemiss F. Dolomanov O. V. Bodensteiner M. Peyerimhoff N. Midgley L. Bourhis L. J. Genoni A. Malaspina L. A. Jayatilaka D. Spencer J. L. White F. Grundkötter-Stock B. Steinhauer S. Lentz D. Puschmann H. Grabowsky S. Chem. Sci. 2021;12:1675–1692. doi: 10.1039/D0SC05526C. PubMed DOI PMC
Weigend F. Ahlrichs R. Phys. Chem. Chem. Phys. 2005;7:3297–3305. doi: 10.1039/B508541A. PubMed DOI
Weigend F. Phys. Chem. Chem. Phys. 2006;8:1057–1065. doi: 10.1039/B515623H. PubMed DOI
Hellweg A. Hättig C. Höfener S. Klopper W. Theor. Chem. Acc. 2007;117:587–597.
Izsák R. Neese F. J. Chem. Phys. 2011;135:144105. doi: 10.1063/1.3646921. PubMed DOI
Neese F. Wennmohs F. Hansen A. Becker U. Chem. Phys. 2009;356:98–109. doi: 10.1016/j.chemphys.2008.10.036. DOI
Molecular Electronic Structures of Transition Metal Complexes II, ed. D. M. P. Mingos, P. Day and J. P. Dahl, Springer Berlin Heidelberg, Berlin, Heidelberg, 2012, vol. 143
Becke A. D. Phys. Rev. A: At., Mol., Opt. Phys. 1988;38:3098–3100. doi: 10.1103/PhysRevA.38.3098. PubMed DOI
Lee C. Yang W. Parr R. G. Phys. Rev. B: Condens. Matter Mater. Phys. 1988;37:785–789. doi: 10.1103/PhysRevB.37.785. PubMed DOI
Stephens P. J. Devlin F. J. Chabalowski C. F. Frisch M. J. J. Phys. Chem. 1994;98:11623–11627. doi: 10.1021/j100096a001. DOI
Adamo C. Barone V. J. Chem. Phys. 1999;110:6158–6170. doi: 10.1063/1.478522. DOI
Hossain S. M. Kamilya S. Ghosh S. Herchel R. Kiskin M. A. Mehta S. Mondal A. Cryst. Growth Des. 2023;11:42.
Havlíc̆ek L. Herchel R. Nemec I. Neugebauer P. Polyhedron. 2022;223:115962. doi: 10.1016/j.poly.2022.115962. DOI
Gusev A. N. Nemec I. Herchel R. Baluda Y. I. Kryukova M. A. Efimov N. N. Kiskin M. A. Linert W. Polyhedron. 2021;196:115017. doi: 10.1016/j.poly.2020.115017. DOI
Bhanja A. Smythe L. Herchel R. Nemec I. Murrie M. Ray D. Dalton Trans. 2021;50:5023–5035. doi: 10.1039/D0DT04168H. PubMed DOI
Rybníc̆ková B. Kuchár J. Antal P. Herchel R. Inorg. Chim. Acta. 2020;509:119689. doi: 10.1016/j.ica.2020.119689. DOI
Šalitroš I. Herchel R. Fuhr O. González-Prieto R. Ruben M. Inorg. Chem. 2019;58:4310–4319. doi: 10.1021/acs.inorgchem.8b03432. PubMed DOI
Vydrov O. A. Van Voorhis T. J. Chem. Phys. 2010;133:244103. doi: 10.1063/1.3521275. PubMed DOI
Hujo W. Grimme S. J. Chem. Theory Comput. 2011;7:3866–3871. doi: 10.1021/ct200644w. PubMed DOI
Bader R. F. W., Atoms in Molecules: A Quantum Theory, Oxford University Press, 1994
Lu T. Chen F. J. Mol. Graphics Modell. 2012;38:314–323. doi: 10.1016/j.jmgm.2012.07.004. PubMed DOI
Lu T. Chen F. J. Comput. Chem. 2012;33:580–592. doi: 10.1002/jcc.22885. PubMed DOI
Kresse G. Hafner J. Phys. Rev. B: Condens. Matter Mater. Phys. 1993;47:558–561. doi: 10.1103/PhysRevB.47.558. PubMed DOI
Kresse G. Furthmüller J. Computational Mater. Sci. 1996;6:15–50. doi: 10.1016/0927-0256(96)00008-0. DOI
Kresse G. Furthmüller J. Phys. Rev. B: Condens. Matter Mater. Phys. 1996;54:11169–11186. doi: 10.1103/PhysRevB.54.11169. PubMed DOI
Kresse G. Joubert D. Phys. Rev. B: Condens. Matter Mater. Phys. 1999;59:1758–1775. doi: 10.1103/PhysRevB.59.1758. DOI
Blöchl P. E. Phys. Rev. B: Condens. Matter Mater. Phys. 1994;50:17953–17979. doi: 10.1103/PhysRevB.50.17953. PubMed DOI
Perdew J. P. Burke K. Ernzerhof M. Phys. Rev. Lett. 1996;77:3865–3868. doi: 10.1103/PhysRevLett.77.3865. PubMed DOI
Perdew J. P. Burke K. Ernzerhof M. Phys. Rev. Lett. 1997;78:1396. doi: 10.1103/PhysRevLett.78.1396. PubMed DOI
Grimme S. Antony J. Ehrlich S. Krieg H. J. Chem. Phys. 2010;132:154709. doi: 10.1063/1.3382344. PubMed DOI
Grimme S. Ehrlich S. Goerigk L. J. Comput. Chem. 2011;32:1456–1465. doi: 10.1002/jcc.21759. PubMed DOI
Neugebauer J. Scheffler M. Phys. Rev. B: Condens. Matter Mater. Phys. 1992;46:16067–16080. doi: 10.1103/PhysRevB.46.16067. PubMed DOI
Makov G. Payne M. C. Phys. Rev. B: Condens. Matter Mater. Phys. 1995;51:4014–4022. doi: 10.1103/PhysRevB.51.4014. PubMed DOI
Monkhorst H. J. Pack J. D. Phys. Rev. B: Solid State. 1976;13:5188–5192. doi: 10.1103/PhysRevB.13.5188. DOI
Wang V. Xu N. Liu J.-C. Tang G. Geng W.-T. Comput. Phys. Commun. 2021;267:108033. doi: 10.1016/j.cpc.2021.108033. DOI
Momma K. Izumi F. J. Appl. Crystallogr. 2008;41:653–658. doi: 10.1107/S0021889808012016. DOI
Johnson E. R. Keinan S. Mori-Sánchez P. Contreras-García J. Cohen A. J. Yang W. J. Am. Chem. Soc. 2010;132:6498–6506. doi: 10.1021/ja100936w. PubMed DOI PMC
Humphrey W. Dalke A. Schulten K. J. Mol. Graphics. 1996;14:33–38. doi: 10.1016/0263-7855(96)00018-5. PubMed DOI
Becke A. D. Edgecombe K. E. J. Chem. Phys. 1990;92:5397–5403. doi: 10.1063/1.458517. DOI
Lu T. Chen F. W. Acta Phys. Chim. Sin. 2011;27:2786–2792.
Chi Y. H. Shi J. M. Li H. N. Wei W. Cottrill E. Pan N. Chen H. Liang Y. Yu L. Zhang Y. Q. Hou C. Dalton Trans. 2013;42:15559–15569. doi: 10.1039/C3DT51476E. PubMed DOI
Ruiz E. Cano J. Alvarez S. Alemany P. J. Comput. Chem. 1999;20:1391–1400. doi: 10.1002/(SICI)1096-987X(199910)20:13<1391::AID-JCC6>3.0.CO;2-J. DOI
Soda T. Kitagawa Y. Onishi T. Takano Y. Shigeta Y. Nagao H. Yoshioka Y. Yamaguchi K. Chem. Phys. Lett. 2000;319:223–230. doi: 10.1016/S0009-2614(00)00166-4. DOI
Stoll S. Schweiger A. J. Magn. Reson. 2006;178:42–55. doi: 10.1016/j.jmr.2005.08.013. PubMed DOI
Misochko E. Y. Akimov A. V. Korchagin D. V. Nehrkorn J. Ozerov M. Palii A. V. Clemente-Juan J. M. Aldoshin S. M. Inorg. Chem. 2019;58:16434–16444. doi: 10.1021/acs.inorgchem.9b02195. PubMed DOI
Chibotaru L. F. Ungur L. J. Chem. Phys. 2012;137:64112. doi: 10.1063/1.4739763. PubMed DOI
Yan J. Zhang Y. Kim P. Pinczuk A. Phys. Rev. Lett. 2007;98:166802. doi: 10.1103/PhysRevLett.98.166802. PubMed DOI
Ferrari A. C. Basko D. M. Nat. Nanotechnol. 2013;8:235–246. doi: 10.1038/nnano.2013.46. PubMed DOI
Tang W. Sanville E. Henkelman G. J. Phys.: Condens. Matter. 2009;21:084204. doi: 10.1088/0953-8984/21/8/084204. PubMed DOI
Henkelman G. Arnaldsson A. Jónsson H. Comput. Mater. Sci. 2006;36:354–360. doi: 10.1016/j.commatsci.2005.04.010. DOI