A four-coordinate cobalt(II) single-ion magnet with coercivity and a very high energy barrier
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26883902
PubMed Central
PMC4757785
DOI
10.1038/ncomms10467
PII: ncomms10467
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Single-molecule magnets display magnetic bistability of molecular origin, which may one day be exploited in magnetic data storage devices. Recently it was realised that increasing the magnetic moment of polynuclear molecules does not automatically lead to a substantial increase in magnetic bistability. Attention has thus increasingly focussed on ions with large magnetic anisotropies, especially lanthanides. In spite of large effective energy barriers towards relaxation of the magnetic moment, this has so far not led to a big increase in magnetic bistability. Here we present a comprehensive study of a mononuclear, tetrahedrally coordinated cobalt(II) single-molecule magnet, which has a very high effective energy barrier and displays pronounced magnetic bistability. The combined experimental-theoretical approach enables an in-depth understanding of the origin of these favourable properties, which are shown to arise from a strong ligand field in combination with axial distortion. Our findings allow formulation of clear design principles for improved materials.
Institut für Physikalische Chemie Universität Stuttgart Pfaffenwaldring 55 Stuttgart D 70569 Germany
Institute of General and Inorganic Chemistry Bulgarian Academy of Sciences Sofia 1113 Bulgaria
Institute of Physics Charles University Prague Prague CZ 12116 Czech Republic
Laboratoire national des champs magnétiques intenses CNRS UJF UPS INS Grenoble F 38042 France
Zobrazit více v PubMed
Gatteschi D. & Sessoli R. Quantum tunneling of magnetization and related phenomena in molecular materials. Angew. Chem. Int. Ed. 42, 268–297 (2003) . PubMed
Gatteschi D., Sessoli R. & Villain J. Molecular Nanomagnets Oxford Univ. Press (2006) .
Ako A. M. et al.. A ferromagnetically coupled Mn-19 aggregate with a record S=83/2 ground spin state. Angew. Chem. Int. Ed. 45, 4926–4929 (2006) . PubMed
Sessoli R., Gatteschi D., Caneschi A. & Novak M. A. Magnetic bistability in a metal-ion cluster. Nature 365, 141–143 (1993) .
Milios C. J. et al.. A record anisotropy barrier for a single-molecule magnet. J. Am. Chem. Soc. 129, 2754–2755 (2007) . PubMed
Bencini A. & Gatteschi D. EPR of Exchange Coupled Systems Springer-Verlag (1990) .
Waldmann O. A criterion for the anisotropy barrier in single-molecule magnets. Inorg. Chem. 46, 10035–10037 (2007) . PubMed
Sessoli R. Molecular nanomagnetism in Florence: advancements and perspectives. Inorg. Chim. Acta 361, 3356–3364 (2008) .
Woodruff D. N., Winpenny R. E. P. & Layfield R. A. Lanthanide single-molecule magnets. Chem. Rev. 113, 5110–5148 (2013) . PubMed
Blagg R. J. et al.. Magnetic relaxation pathways in lanthanide single-molecule magnets. Nat. Chem. 5, 673–678 (2013) . PubMed
Demir S., Jeon I.-R., Long J. R. & Harris T. D. Radical ligand-containing single-molecule magnets. Coord. Chem. Rev. 289–290, 149–176 (2015) .
Rinehart J. D., Fang M., Evans W. J. & Long J. R. Strong exchange and magnetic blocking in N23−-radical-bridged lanthanide complexes. Nat. Chem. 3, 538–542 (2011) . PubMed
Demir S., Zadrozny J. M., Nippe M. & Long J. R. Exchange coupling and magnetic blocking in bipyrimidyl radical-bridged dilanthanide complexes. J. Am. Chem. Soc. 134, 18546–18549 (2012) . PubMed
Craig G. A. & Murrie M. 3d single-ion magnets. Chem. Soc. Rev. 44, 2135–2147 (2015) . PubMed
Gómez-Coca S., Aravena D., Morales R. & Ruiz E. Large magnetic anisotropy in mononuclear metal complexes. Coord. Chem. Rev. 289–290, 379–392 (2015) .
Freedman D. E. et al.. Slow magnetic relaxation in a high-spin iron(II) complex. J. Am. Chem. Soc. 132, 1224–1225 (2010) . PubMed
Harman W. H. et al.. Slow magnetic relaxation in a family of trigonal pyramidal iron(II) pyrrolide complexes. J. Am. Chem. Soc. 132, 18115–18126 (2010) . PubMed
Zadrozny J. M. et al.. Magnetic blocking in a linear iron(I) complex. Nat. Chem. 5, 577–581 (2013) . PubMed
Fataftah M. S., Zadrozny J. M., Rogers D. M. & Freedman D. E. A mononuclear transition metal single-molecule magnet in a nuclear spin-free ligand environment. Inorg. Chem. 53, 10716–10721 (2014) . PubMed
Zadrozny J. M., Telser J. & Long J. R. Slow magnetic relaxation in the tetrahedral cobalt(II) complexes Co(EPh)42− (E=O, S, Se). Polyhedron 64, 209–217 (2013) .
Saber M. R. & Dunbar K. R. Ligands effects on the magnetic anisotropy of tetrahedral cobalt complexes. Chem. Commun. 50, 12266–12269 (2014) . PubMed
Šebová M., Jorík V., Moncoľ J., Kožíšek J. & Boča R. Structure and magnetism of Co(II) complexes with bidentate heterocyclic ligand Hsalbim derived from benzimidazole. Polyhedron 30, 1163–1170 (2011) .
Gómez-Coca S. et al.. Origin of slow magnetic relaxation in Kramers ions with non-uniaxial anisotropy. Nat. Commun. 5, 4300 (2014) . PubMed
Carl E., Demeshko S., Meyer F. & Stalke D. Triimidosulfonates as acute bite-angle chelates: slow relaxation of the magnetization in zero field and hysteresis loop of a COII complex. Chem. Eur. J. 21, 10109–10115 (2015) . PubMed
Bhattacharya S., Gupta P., Basuli F. & Pierpont C. G. Structural systematics for o-C6H4XY ligands with X,Y= O, NH, and S donor atoms. o-Iminoquinone and o-Iminothioquinone complexes of ruthenium and osmium. Inorg. Chem. 41, 5810–5816 (2002) . PubMed
Bill E. et al.. Molecular and electronic structure of four- and five-coordinate cobalt complexes containing two o-phenylenediamine- or two o-aminophenol-type ligands at various oxidation levels: an experimental, density functional, and correlated ab initio study. Chem. Eur. J. 11, 204–224 (2005) . PubMed
Zadrozny J. M. & Long J. R. Slow magnetic relaxation at zero field in the tetrahedral complex Co(SPh)42−. J. Am. Chem. Soc. 133, 20732–20734 (2011) . PubMed
Buchholz A., Eseola A. O. & Plass W. Slow magnetic relaxation in mononuclear tetrahedral cobalt(II) complexes with 2-(1H-imidazol-2-yl)phenol based ligands. C. R. Chim. 15, 929–936 (2012) .
Novikov V. V. et al.. A trigonal prismatic mononuclear cobalt(II) complex showing single-molecule magnet behavior. J. Am. Chem. Soc. 137, 9792–9795 (2015) . PubMed
Abragam A. & Bleany B. Electron Paramagnetic Resonance of Transition Ions Dover Publications, Inc. (1986) .
Liddle S. T. & van Slageren J. Improving f element single molecule magnets. Chem. Soc. Rev. 44, 6655–6669 (2015) . PubMed
Zhu Y.-Y. et al.. A family of CoIICoIII3 single-ion magnets with zero-field slow magnetic relaxation: fine tuning of energy barrier by remote substituent and counter cation. Inorg. Chem. 54, 5475–5486 (2015) . PubMed
Zhu Y.-Y. et al.. Zero-field slow magnetic relaxation from single Co(II) ion: a transition metal single-molecule magnet with high anisotropy barrier. Chem. Sci. 4, 1802–1806 (2013) .
Jiang S.-D., Wang B.-W., Sun H.-L., Wang Z.-M. & Gao S. An organometallic single-ion magnet. J. Am. Chem. Soc. 133, 4730–4733 (2011) . PubMed
Ungur L., Le Roy J. J., Korobkov I., Murugesu M. & Chibotaru L. F. Fine-tuning the local symmetry to attain record blocking temperature and magnetic remanence in a single-ion magnet. Angew. Chem. Int. Ed. 53, 4413–4417 (2014) . PubMed
Pedersen K. S. et al.. Design of single-molecule magnets: insufficiency of the anisotropy barrier as the sole criterion. Inorg. Chem. 54, 7600–7606 (2015) . PubMed
Boulon M. E. et al.. Magnetic anisotropy and spin-parity effect along the series of lanthanide complexes with DOTA. Angew. Chem. Int. Ed. 52, 350–354 (2013) . PubMed
Zadrozny J. M. et al.. Slow magnetization dynamics in a series of two-coordinate iron(II) complexes. Chem. Sci. 4, 125–138 (2013) .
Herchel R., Váhovská L., Potočňák I. & Trávníček Z. Slow magnetic relaxation in octahedral cobalt(II) Field-induced single-ion magnet with positive axial and large rhombic anisotropy. Inorg. Chem. 53, 5896–5898 (2014) . PubMed
Eaton S. S. & Eaton G. R. Relaxation times of organic radicals and transition metal ions. Biol. Magn. Reson. 19, 29–154 (2000) .
Shrivastava K. N. Theory of spin–lattice relaxation. Phys. Stat. Solidi B 117, 437–458 (1983) .
Ungur L., Thewissen M., Costes J. P., Wernsdorfer W. & Chibotaru L. F. Interplay of strongly anisotropic metal ions in magnetic blocking of complexes. Inorg. Chem. 52, 6328–6337 (2013) . PubMed
van Slageren J., Piligkos S. & Neese F. Magnetic circular dichroism spectroscopy on the Cr8 antiferromagnetic ring. Dalton Trans. 39, 4999–5004 (2010) . PubMed
Lever A. B. P. Inorganic Electronic Spectroscopy Elsevier (1984) .
Neese F. & Solomon E. I. MCD C-term signs, saturation behavior, and determination of band polarizations in randomly oriented systems with spin S ⩾1/2. Applications to S=1/2 and S=5/2. Inorg. Chem. 38, 1847–1865 (1999) . PubMed
Ruamps R. et al.. Ising-type magnetic anisotropy and single molecule magnet behaviour in mononuclear trigonal bipyramidal Co(II) complexes. Chem. Sci. 5, 3418–3424 (2014) .
Guo Y. N. et al.. Strong axiality and ising exchange interaction suppress zero-field tunneling of magnetization of an asymmetric Dy2 single-molecule magnet. J. Am. Chem. Soc. 133, 11948–11951 (2011) . PubMed
Boča R. Zero-field splitting in metal complexes. Coord. Chem. Rev. 248, 757–815 (2004) .
Sheldrick, G.M. SHELX-97, Program for Crystal Structure Refinement (Univ. Göttingen, 1997) .
Stoll S. & Schweiger A. EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. J. Magn. Reson. 178, 42–55 (2006) . PubMed
Adamsky, H. AOMX: A FORTRAN Program for the Calculation of dn terms within the Angular Overlap Model with Interelectronic Repulsion and Spin-Orbit Coupling (Institute of Theoretical Chemistry, Heinrich-Heine-Univ., 1995) .
Neese F. The ORCA program system. Wiley Interdiscip. Rev. Comp. Mol. Sci. 2, 73–78 (2012) .
Neese, F., et al.., ORCA: An ab Initio, DFT, and Semiempirical SCF-MO Package, version 3.0 (MPI fur Chemische Energiekonversion, Mulheim an der Ruhr, 2012) .
Schweinfurth D. et al.. The ligand field of the azido ligand: insights into bonding parameters and magnetic anisotropy in a Co(II)–Azido complex. J. Am. Chem. Soc. 137, 1993–2005 (2015) . PubMed
Atanasov M., Ganyushin D., Sivalingam K. & Neese F. Molecular Electronic Structures of Transition Metal Complexes II Vol 143 (eds Mingos D. M. P., Day P., Dahl J. P. 149-220, Springer (2012) .
Atanasov M., Zadrozny J. M., Long J. R. & Neese F. A theoretical analysis of chemical bonding, vibronic coupling, and magnetic anisotropy in linear iron(II) complexes with single-molecule magnet behavior. Chem. Sci. 4, 139–156 (2013) .
Probing spin-electric transitions in a molecular exchange qubit
Co(II) single-ion magnets: synthesis, structure, and magnetic properties
Trigonally Distorted Hexacoordinate Co(II) Single-Ion Magnets