Determination of the electronic structure of a dinuclear dysprosium single molecule magnet without symmetry idealization
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
30842867
PubMed Central
PMC6375364
DOI
10.1039/c8sc03170c
PII: c8sc03170c
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
We present the in-depth determination of the magnetic properties and electronic structure of the luminescent and volatile dysprosium-based single molecule magnet [Dy2(bpm)(fod)6] (Hfod = 6,6,7,7,8,8,8-heptafluoro-2,2-dimethyl-3,5-octanedione, bpm = 2,2'-bipyrimidine). Ab initio calculations were used to obtain a global picture of the electronic structure and to predict possible single molecule magnet behaviour, confirmed by experiments. The orientation of the susceptibility tensor was determined by means of cantilever torque magnetometry. An experimental determination of the electronic structure of the lanthanide ion was obtained combining Luminescence, Far Infrared and Magnetic Circular Dichroism spectroscopies. Fitting these energies to the full single ion plus crystal field Hamiltonian allowed determination of the eigenstates and crystal field parameters of a lanthanide complex without symmetry idealization. We then discuss the impact of a stepwise symmetry idealization on the modelling of the experimental data. This result is particularly important in view of the misleading outcomes that are often obtained when the symmetry of lanthanide complexes is idealized.
Department of Chemistry University of Copenhagen Universitetsparken 5 2100 Denmark
Institut für Anorganische Chemie Universität Stuttgart Pfaffenwaldring 55 D 70569 Stuttgart Germany
Institut für Organische Chemie Universität Stuttgart Pfaffenwaldring 55 D 70569 Stuttgart Germany
Institute of Physics Charles University Ke Karlovu 5 12116 Praja 2 Czech Republic
Laboratoire National des Champs Magnétiques Intenses CNRS UGA 38042 Grenoble France
Zobrazit více v PubMed
Ishikawa N., Sugita M., Ishikawa T., Koshihara S., Kaizu Y. J. Am. Chem. Soc. 2003;125:8694–8695. PubMed
Woodruff D. N., Winpenny R. E. P., Layfield R. A. Chem. Rev. 2013;113:5110–5148. PubMed
Zhang P., Guo Y.-N., Tang J. Coord. Chem. Rev. 2013;257:1728–1763.
Jiang S.-D., Wang B.-W. and Gao S., in Molecular Nanomagnets and Related Phenomena, ed. S. Gao, Springer Berlin Heidelberg, Berlin, Heidelberg, 2015, pp. 111–141.
Lanthanides and Actinides in Molecular Magnetism, ed. R. Layfield and M. Murugesu, Wiley-VCH, Weinheim, 2015.
Liddle S. T., van Slageren J. Chem. Soc. Rev. 2015;44:6655–6669. PubMed
Layfield R., Guo F.-S., Day B., Chen Y.-C., Tong M.-L., Mansikamäkki A. Angew. Chem., Int. Ed. 2017;56:11445–11449. PubMed
Goodwin C. A., Ortu F., Reta D., Chilton N. F., Mills D. P. Nature. 2017;548:439. PubMed
Ding Y.-S., Chilton N. F., Winpenny R. E. P., Zheng Y.-Z. Angew. Chem., Int. Ed. 2016;55:16071–16074. PubMed
Guo F.-S., Day B. M., Chen Y.-C., Tong M.-L., Mansikkamäki A., Layfield R. A. Science. 2018:eaav0652. PubMed
Sievers J. Z. Phys. B Condens. Matter. 1982;45:289–296.
Rinehart J. D., Long J. R. Chem. Sci. 2011;2:2078–2085.
Ungur L., Chibotaru L. F. Phys. Chem. Chem. Phys. 2011;13:20086–20090. PubMed
Chilton N. F. Inorg. Chem. 2015;54:2097–2099. PubMed
Gregson M., Chilton N. F., Ariciu A.-M., Tuna F., Crowe I. F., Lewis W., Blake A. J., Collison D., McInnes E. J. L., Winpenny R. E. P., Liddle S. T. Chem. Sci. 2016;7:155–165. PubMed PMC
Chen Y.-C., Liu J.-L., Ungur L., Liu J., Li Q.-W., Wang L.-F., Ni Z.-P., Chibotaru L. F., Chen X.-M., Tong M.-L. J. Am. Chem. Soc. 2016;138:2829–2837. PubMed
Gupta S. K., Rajeshkumar T., Rajaraman G., Murugavel R. Chem. Sci. 2016;7:5181–5191. PubMed PMC
Pugh T., Chilton N. F., Layfield R. A. Angew. Chem., Int. Ed. 2016;55:11082–11085. PubMed
Demir S., Zadrozny J. M., Long J. R. Chem.–Eur. J. 2014;20:9524–9529. PubMed
Sessoli R., Powell A. K. Coord. Chem. Rev. 2009;253:2328–2341.
Pointillart F., Cador O., Le Guennic B., Ouahab L. Coord. Chem. Rev. 2017;346:150–175.
Cucinotta G., Perfetti M., Luzon J., Etienne M., Car P. E., Caneschi A., Calvez G., Bernot K., Sessoli R. Angew. Chem., Int. Ed. 2012;51:1606–1610. PubMed
Boulon M. E., Cucinotta G., Luzon J., Degl'Innocenti C., Perfetti M., Bernot K., Calvez G., Caneschi A., Sessoli R. Angew. Chem. 2013;125:368–372. PubMed
Marx R., Moro F., Dörfel M., Ungur L., Waters M., Jiang S.-D., Orlita M., Taylor J., Frey W., Chibotaru L. Chem. Sci. 2014;5:3287–3293.
Blagg R. J., Ungur L., Tuna F., Speak J., Comar P., Collison D., Wernsdorfer W., McInnes E. J. L., Chibotaru L. F., Winpenny R. E. P. Nat. Chem. 2013;5:673–678. PubMed
Moreno Pineda E., Chilton N. F., Marx R., Dörfel M., Sells D. O., Neugebauer P., Jiang S.-D., Collison D., van Slageren J., McInnes E. J. L., Winpenny R. E. P. Nat. Commun. 2014;5:5243. PubMed
Guo Y. N., Xu G. F., Wernsdorfer W., Ungur L., Guo Y., Tang J. K., Zhang H. J., Chibotaru L. F., Powell A. K. J. Am. Chem. Soc. 2011;133:11948–11951. PubMed
Rinehart J. D., Fang M., Evans W. J., Long J. R. J. Am. Chem. Soc. 2011;133:14236–14239. PubMed
Demir S., Zadrozny J. M., Nippe M., Long J. R. J. Am. Chem. Soc. 2012;134:18546–18549. PubMed
Demir S., Nippe M., Gonzalez M. I., Long J. R. Chem. Sci. 2014;5:4701–4711.
Dolinar B. S., Gomez-Coca S., Alexandropoulos D. I., Dunbar K. R. Chem. Commun. 2017;53:2283–2286. PubMed
Flanagan B. M., Bernhardt P. V., Krausz E. R., Lüthi S. R., Riley M. J. Inorg. Chem. 2002;41:5024–5033. PubMed
Flanagan B. M., Bernhardt P. V., Krausz E. R., Lüthi S. R., Riley M. J. Inorg. Chem. 2001;40:5401–5407. PubMed
Zhang P., Perfetti M., Kern M., Hallmen P. P., Ungur L., Lenz S., Ringenberg M. R., Frey W., Stoll H., Rauhut G., van Slageren J. Chem. Sci. 2018;9:1221–1230. PubMed PMC
Vonci M., Giansiracusa M. J., Van den Heuvel W., Gable R. W., Moubaraki B., Murray K. S., Yu D., Mole R. A., Soncini A., Boskovic C. Inorg. Chem. 2017;56:378–394. PubMed
Gysler M., El Hallak F., Ungur L., Marx R., Hakl M., Neugebauer P., Rechkemmer Y., Lan Y., Sheikin I., Orlita M., Anson C. E., Powell A. K., Sessoli R., Chibotaru L. F., van Slageren J. Chem. Sci. 2016;7:4347–4354. PubMed PMC
Karbowiak M., Rudowicz C., Nakamura T., Murakami R., Ishida T. Chem. Phys. Lett. 2016;662:163–168.
Rechkemmer Y., Fischer J. E., Marx R., Dörfel M., Neugebauer P., Horvath S., Gysler M., Brock-Nannestad T., Frey W., Reid M. F., van Slageren J. J. Am. Chem. Soc. 2015;137:13114–13120. PubMed
Pedersen K. S., Dreiser J., Weihe H., Sibille R., Johannesen H. V., Sørensen M. A., Nielsen B. E., Sigrist M., Mutka H., Rols S., Bendix J., Piligkos S. Inorg. Chem. 2015;54:7600–7606. PubMed
Perfetti M., Sørensen M. A., Hansen U. B., Bamberger H., Lenz S., Hallmen P. P., Fennell T., Simeoni G. G., Arauzo A., Bartolomé J., Bartolomé E., Lefmann K., Weihe H., van Slageren J., Bendix J. Adv. Funct. Mater. 2018;32(28):1801846.
Sørensen M. A., Hansen U. B., Perfetti M., Pedersen K. S., Bartolomé E., Simeoni G. G., Mutka H., Rols S., Jeong M., Zivkovic I., Retuerto M., Arauzo A., Bartolomé J., Piligkos S., Weihe H., Doerrer L. H., van Slageren J., Rønnow H. M., Lefmann K., Bendix J. Nat. Commun. 2018;9:1292. PubMed PMC
Giansiracusa M. J., Moreno-Pineda E., Hussain R., Marx R., Martínez Prada M., Neugebauer P., Al-Badran S., Collison D., Tuna F., van Slageren J., Chilton N. F. J. Am. Chem. Soc. 2018;140:2504–2513. PubMed
Jiang S. D., Wang B. W., Su G., Wang Z. M., Gao S. Angew. Chem., Int. Ed. 2010;49:7448–7451. PubMed
Chu W., Sun Q., Yao X., Yan P., An G., Li G. RSC Adv. 2015;5:94802–94808.
Díaz-Ortega I. F., Herrera J. M., Gupta T., Rajaraman G., Nojiri H., Colacio E. Inorg. Chem. 2017;56:5594–5610. PubMed
Ma Y., Xu G.-F., Yang X., Li L.-C., Tang J., Yan S.-P., Cheng P., Liao D.-Z. Chem. Commun. 2010;46:8264–8266. PubMed
Sun W.-B., Yan B., Jia L.-H., Wang B.-W., Yang Q., Cheng X., Li H.-F., Chen P., Wang Z.-M., Gao S. Dalton Trans. 2016;45:8790–8794. PubMed
Yu W., Schramm F., Moreno Pineda E., Lan Y., Fuhr O., Chen J., Isshiki H., Wernsdorfer W., Wulfhekel W., Ruben M. Beilstein J. Nanotechnol. 2016;7:126–137. PubMed PMC
Binnemans K. Chem. Rev. 2009;109:4283–4374. PubMed
Pedersen K. S., Sørensen M. A., Bendix J. Coord. Chem. Rev. 2015;299:1–21.
Sievers R. E., Sadlowski J. E. Science. 1978;201:217–223. PubMed
Tesi L., Lucaccini E., Cimatti I., Perfetti M., Mannini M., Atzori M., Morra E., Chiesa M., Caneschi A., Sorace L., Sessoli R. Chem. Sci. 2016;7(3):2074–2083. PubMed PMC
Bhaumik M., Telk C. J. Opt. Soc. Am. 1964;54:1211–1214.
Irfanullah M., Iftikhar K. Inorg. Chem. Commun. 2010;13:694–698.
Alvarez S., Alemany P., Casanova D., Cirera J., Llunell M., Avnir D. Coord. Chem. Rev. 2005;249:1693–1708.
Chibotaru L. F., Ungur L. J. Chem. Phys. 2012;137:064112. PubMed
Tuna F., Smith C. A., Bodensteiner M., Ungur L., Chibotaru L. F., McInnes E. J. L., Winpenny R. E. P., Collison D., Layfield R. A. Angew. Chem., Int. Ed. 2012;51:6976–6980. PubMed
Yi X., Bernot K., Cador O., Luzon J., Calvez G., Daiguebonne C., Guillou O. Dalton Trans. 2013;42:6728–6731. PubMed
Guo Y.-N., Xu G.-F., Wernsdorfer W., Ungur L., Guo Y., Tang J., Zhang H.-J., Chibotaru L. F., Powell A. K. J. Am. Chem. Soc. 2011;133:11948–11951. PubMed
Tang J. K., Hewitt I., Madhu N. T., Chastanet G., Wernsdorfer W., Anson C. E., Benelli C., Sessoli R., Powell A. K. Angew. Chem., Int. Ed. 2006;45:1729–1733. PubMed
Car P. E., Perfetti M., Mannini M., Favre A., Caneschi A., Sessoli R. Chem. Commun. 2011;47:3751–3753. PubMed
Hewitt I. J., Lan Y. H., Anson C. E., Luzon J., Sessoli R., Powell A. K. Chem. Commun. 2009:6765–6767. PubMed
Guo Y. N., Xu G. F., Gamez P., Zhao L., Lin S. Y., Deng R. P., Tang J. K., Zhang H. J. J. Am. Chem. Soc. 2010;132:8538–8539. PubMed
Lin P. H., Burchell T. J., Ungur L., Chibotaru L. F., Wernsdorfer W., Murugesu M. Angew. Chem., Int. Ed. 2009;48:9489–9492. PubMed
Hewitt I. J., Tang J., Madhu N., Anson C. E., Lan Y., Luzon J., Etienne M., Sessoli R., Powell A. K. Angew. Chem., Int. Ed. 2010;49:6352–6356. PubMed
Blagg R. J., Ungur L., Tuna F., Speak J., Comar P., Collison D., Wernsdorfer W., McInnes E. J., Chibotaru L. F., Winpenny R. E. Nat. Chem. 2013;5:673–678. PubMed
Horii Y., Katoh K., Cosquer G., Breedlove B. K., Yamashita M. Inorg. Chem. 2016;55:11782–11790. PubMed
Ou-Yang J.-K., Saleh N., Garcia G. F., Norel L., Pointillart F., Guizouarn T., Cador O., Totti F., Ouahab L., Crassous J. Chem. Commun. 2016;52:14474–14477. PubMed
Pointillart F., Le Guennic B., Cador O., Maury O., Ouahab L. n. Acc. Chem. Res. 2015;48:2834–2842. PubMed
Ren M., Bao S.-S., Ferreira R. A., Zheng L.-M., Carlos L. D. Chem. Commun. 2014;50:7621–7624. PubMed
Pointillart F., Le Guennic B., Golhen S., Cador O., Maury O., Ouahab L. Chem. Commun. 2013;49:615–617. PubMed
Long J., Vallat R., Ferreira R. A. S., Carlos L. D., Almeida Paz F. A., Guari Y., Larionova J. Chem. Commun. 2012;48:9974–9976. PubMed
Perfetti M., Pointillart F., Cador O., Sorace L. and Ouahab L., Molecular Magnetic Materials, Concepts and Applications, 2016, pp. 345–368.
Lunghi A., Totti F., Sessoli R., Sanvito S. Nat. Commun. 2017;8:14620. PubMed PMC
Lunghi A., Totti F., Sanvito S., Sessoli R. Chem. Sci. 2017;8:6051–6059. PubMed PMC
Escalera-Moreno L., Baldoví J. J., Gaita-Ariño A., Coronado E. Chem. Sci. 2018;9:3265–3275. PubMed PMC
Rechkemmer Y., Breitgoff F. D., Van Der Meer M., Atanasov M., Hakl M., Orlita M., Neugebauer P., Neese F., Sarkar B., Van Slageren J. Nat. Commun. 2016;7:10467–10475. PubMed PMC
Görller-Walrand C., Binnemans K. Handb. Phys. Chem. Rare Earths. 1996;23:121–283.
Perfetti M. Coord. Chem. Rev. 2017;348:171–186.
Neugebauer P., Bloos D., Marx R., Lutz P., Kern M., Aguilà D., Vaverka J., Laguta O., Dietrich C., Clérac R. Phys. Chem. Chem. Phys. 2018;20:15528–15534. PubMed
Bain G. A., Berry J. F. J. Chem. Educ. 2008;85:532.
Stoll S., Schweiger A. J. Magn. Reson. 2006;178:42–55. PubMed
Reid M., F-shell program, University of Canterbury, New Zealand, 1984.
Aquilante F., De Vico L., Ferré N., Ghigo G., Malmqvist P. å., Neogrády P., Pedersen T. B., Pitoňák M., Reiher M., Roos B. O. J. Comput. Chem. 2010;31:224–247. PubMed