Magnetic Anisotropy and Field-induced Slow Relaxation of Magnetization in Tetracoordinate CoII Compound [Co(CH₃-im)₂Cl₂]
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
28772606
PubMed Central
PMC5503352
DOI
10.3390/ma10030249
PII: ma10030249
Knihovny.cz E-zdroje
- Klíčová slova
- slow‐relaxation of magnetization, magnetic anisotropy, single ion magnet, tetracoordinate CoII,
- Publikační typ
- časopisecké články MeSH
Static and dynamic magnetic properties of the tetracoordinate CoII complex [Co(CH3-im)2Cl2], (1, CH3-im = N-methyl-imidazole), studied using thorough analyses of magnetometry, and High-Frequency and -Field EPR (HFEPR) measurements, are reported. The study was supported by ab initio complete active space self-consistent field (CASSCF) calculations. It has been revealed that 1 possesses a large magnetic anisotropy with a large rhombicity (magnetometry: D = -13.5 cm-1, E/D = 0.33; HFEPR: D = -14.5(1) cm-1, E/D = 0.16(1)). These experimental results agree well with the theoretical calculations (D = -11.2 cm-1, E/D = 0.18). Furthermore, it has been revealed that 1 behaves as a field-induced single-ion magnet with a relatively large spin-reversal barrier (Ueff = 33.5 K). The influence of the Cl-Co-Cl angle on magnetic anisotropy parameters was evaluated using the CASSCF calculations.
Zobrazit více v PubMed
Ganzhorn M., Wernsdorfer W. In: Molecular Magnets. Bartolome J., Luis F., Fernandez J.F., editors. Springer; Berlin Heidelberg, Germany: 2014. pp. 319–364.
Gómez-Coca S., Aravena D., Morales R., Ruiz E. Large magnetic anisotropy in mononuclear metal complexes. Coord. Chem Rev. 2015;289–290:379–392. doi: 10.1016/j.ccr.2015.01.021. DOI
Boča R. Zero-field splitting in metal complexes. Coord. Chem Rev. 2004;248:757–815. doi: 10.1016/j.ccr.2004.03.001. DOI
Atanasov M., Aravena D., Suturina E., Bill E., Maganas D., Neese F. First principles approach to the electronic structure, magnetic anisotropy and spin relaxation in mononuclear 3d-transition metal single molecule magnets. Coord. Chem Rev. 2015;289–290:177–214. doi: 10.1016/j.ccr.2014.10.015. DOI
Waldmann O. A criterion for the anisotropy barrier in single-molecule magnets. Inorg. Chem. 2007;46:10035–10037. doi: 10.1021/ic701365t. PubMed DOI
Neese F., Pantazis D.A. What is not required to make a single molecule magnet. Farad. Discuss. 2011;148:229–238; discussion 299–314. doi: 10.1039/C005256F. PubMed DOI
Herchel R., Nemec I., Machata M., Trávníček Z. Solvent-induced structural diversity in tetranuclear Ni(II) schiff-base complexes: The first Ni4 single-molecule magnet with a defective dicubane-like topology. Dalton Trans. 2016;45:18622–18634. doi: 10.1039/C6DT03520E. PubMed DOI
Jiang S.-D., Maganas D., Levesanos N., Ferentinos E., Haas S., Thirunavukkuarasu K., Krzystek J., Dressel M., Bogani L., Neese F., et al. Direct observation of very large zero-field splitting in a tetrahedral niiise4 coordination complex. J. Am. Chem. Soc. 2015;137:12923–12928. doi: 10.1021/jacs.5b06716. PubMed DOI
Titiš J., Miklovič J., Boča R. Magnetostructural study of tetracoordinate cobalt(II) complexes. Inorg. Chem. Comm. 2013;35:72–75. doi: 10.1016/j.inoche.2013.05.031. DOI
Nemec I., Herchel R., Svoboda I., Boca R., Trávníček Z. Large and negative magnetic anisotropy in pentacoordinate mononuclear Ni(II) Schiff base complexes. Dalton Trans. 2015;44:9551–9560. doi: 10.1039/C5DT00600G. PubMed DOI
Nemec I., Liu H., Herchel R., Zhang X., Trávníček Z. Magnetic anisotropy in pentacoordinate 2,6-bis(arylazanylidene-1-chloromethyl)pyridine cobalt(II) complexes with chlorido co-ligands. Synth. Met. 2016;215:158–163. doi: 10.1016/j.synthmet.2016.02.014. DOI
Titiš J., Boča R. Magnetostructural d correlation in nickel(II) complexes: Reinvestigation of the zero-field splitting. Inorg. Chem. 2010;49:3971–3973. doi: 10.1021/ic902569z. PubMed DOI
Titiš J., Boča R. Magnetostructural d correlations in hexacoordinated cobalt(II) complexes. Inorg. Chem. 2011;50:11838–11845. doi: 10.1021/ic202108j. PubMed DOI
Werncke C.G., Bouammali M.-A., Baumard J., Suaud N., Martins C., Guihéry N., Vendier L., Zheng J., Sortais J.-B., Darcel C., et al. Ising-type magnetic anisotropy and slow relaxation of the magnetization in four-coordinate amido-pyridine Fe(II) complexes. Inorg. Chem. 2016;55:10968–10977. doi: 10.1021/acs.inorgchem.6b01512. PubMed DOI
Nemec I., Herchel R., Trávníček Z. Pentacoordinate and hexacoordinate Mn(III) complexes of tetradentate schiff-base ligands containing tetracyanidoplatinate(II) bridges and revealing uniaxial magnetic anisotropy. Molecules. 2016;21:1681. doi: 10.3390/molecules21121681. PubMed DOI PMC
Maurice R., de Graaf C., Guihéry N. Magnetostructural relations from a combined ab initio and ligand field analysis for the nonintuitive zero-field splitting in Mn(III) complexes. J. Chem. Phys. 2010;133:084307. doi: 10.1063/1.3480014. PubMed DOI
Nemec I., Herchel R., Trávníček Z. Suppressing of slow magnetic relaxation in tetracoordinate Co(II) field-induced single-molecule magnet in hybrid material with ferromagnetic barium ferrite. Sci. Rep. 2015;5:10761. doi: 10.1038/srep10761. PubMed DOI PMC
Zadrozny J.M., Telser J., Long J.R. Slow magnetic relaxation in the tetrahedral cobalt(II) complexes [Co(EPh)4]2− (E=O, S, Se) Polyhedron. 2013;64:209–217. doi: 10.1016/j.poly.2013.04.008. DOI
Rechkemmer Y., Breitgoff F.D., van der Meer M., Atanasov M., Hakl M., Orlita M., Neugebauer P., Neese F., Sarkar B., van Slageren J. A four-coordinate cobalt(II) single-ion magnet with coercivity and a very high energy barrier. Nat. Commun. 2016;7:10467. doi: 10.1038/ncomms10467. PubMed DOI PMC
Fataftah M.S., Zadrozny J.M., Rogers D.M., Freedman D.E. A mononuclear transition metal single-molecule magnet in a nuclear spin-free ligand environment. Inorg. Chem. 2014;53:10716–10721. doi: 10.1021/ic501906z. PubMed DOI
Sottini S., Poneti G., Ciattini S., Levesanos N., Ferentinos E., Krzystek J., Sorace L., Kyritsis P. Magnetic anisotropy of tetrahedral coii single-ion magnets: Solid-state effects. Inorg. Chem. 2016;55:9537–9548. doi: 10.1021/acs.inorgchem.6b00508. PubMed DOI
Allen F.H. The Cambridge Structural Database: A quarter of a million crystal structures and rising. Acta Cryst. 2002;B58:380–388. doi: 10.1107/S0108768102003890. PubMed DOI
Smolko L., Černák J., Dušek M., Miklovič J., Titiš J., Boča R. Three tetracoordinate co(ii) complexes [Co(biq)X2] (X = Cl, Br, I) with easy-plane magnetic anisotropy as field-induced single-molecule magnets. Dalton Trans. 2015;44:17565–17571. doi: 10.1039/C5DT02827B. PubMed DOI
Mondal A.K., Parmar V.S., Biswas S., Konar S. Tetrahedral mii based binuclear double-stranded helicates: Single-ion-magnet and fluorescence behaviour. Dalton Trans. 2016;45:4548–4557. doi: 10.1039/C5DT04173B. PubMed DOI
Ziegenbalg S., Hornig D., Görls H., Plass W. Cobalt(ii)-based single-ion magnets with distorted pseudotetrahedral [n2o2] coordination: Experimental and theoretical investigations. Inorg. Chem. 2016;55:4047–4058. doi: 10.1021/acs.inorgchem.6b00373. PubMed DOI
Mukerjee S., Skogerson K., DeGala S., Caradonna J.P. Skirting the oxo-wall: Characterization and catalytic reactivity of binuclear Co2+/3+ 1,2-bis(2-hydroxybenzamido)benzene complexes with comparison to their isostructural Fe2+/3+ analogs. Implications of d-electron count on oxygen atom transfer catalysis. Inorg. Chim. Acta. 2000;297:313–329. doi: 10.1016/S0020-1693(99)00431-4. DOI
Boča R. Theoretical Foundations of Molecular Magnetism. Elsevier; Amsterdam, The Netherlands: 1999.
Neese F. The ORCA program system. Wiley Interdiscip. Rev.-Comput. Mol. Sci. 2012;2:73–78. doi: 10.1002/wcms.81. DOI
Antal P., Drahoš B., Herchel R., Trávníček Z. Late first-row transition-metal complexes containing a 2-pyridylmethyl pendant-armed 15-membered macrocyclic ligand. Field-induced slow magnetic relaxation in a seven-coordinate cobalt(II) compound. Inorg. Chem. 2016;55:5957–5972. doi: 10.1021/acs.inorgchem.6b00415. PubMed DOI
Yang F., Zhou Q., Zhang Y., Zeng G., Li G., Shi Z., Wang B., Feng S. Inspiration from old molecules: Field-induced slow magnetic relaxation in three air-stable tetrahedral cobalt(II) compounds. Chem. Commun. 2013;49:5289–5291. doi: 10.1039/c3cc00277b. PubMed DOI
Boča R., Miklovič J., Titiš J. Simple mononuclear cobalt(II) complex: A single-molecule magnet showing two slow relaxation processes. Inorg. Chem. 2014;53:2367–2369. doi: 10.1021/ic5000638. PubMed DOI
Saber M.R., Dunbar K.R. Ligands effects on the magnetic anisotropy of tetrahedral cobalt complexes. Chem. Commun. 2014;50:12266–12269. doi: 10.1039/C4CC05724D. PubMed DOI
Idešicová M., Titiš J., Krzystek J., Boča R. Zero-field splitting in pseudotetrahedral Co(II) complexes: A magnetic, high-frequency and -field epr, and computational study. Inorg. Chem. 2013;52:9409–9417. doi: 10.1021/ic400980b. PubMed DOI
Rajnák C., Packová A., Titiš J., Miklovič J., Moncol’ J., Boča R. A tetracoordinate Co(II) single molecule magnet based on triphenylphosphine and isothiocyanato group. Polyhedron. 2016;110:85–92. doi: 10.1016/j.poly.2016.02.026. DOI
Huang W., Liu T., Wu D., Cheng J., Ouyang Z.W., Duan C. Field-induced slow relaxation of magnetization in a tetrahedral Co(II) complex with easy plane anisotropy. Dalton Trans. 2013;42:15326–15331. doi: 10.1039/c3dt51801a. PubMed DOI
Smolko L., Cernak J., Dusek M., Titiš J., Boča R. Tetracoordinate Co(II) complexes containing bathocuproine and single molecule magnetism. New J. Chem. 2016;40:6593–6598. doi: 10.1039/C6NJ00372A. DOI
Maganas D., Milikisyants S., Rijnbeek J.M.A., Sottini S., Levesanos N., Kyritsis P., Groenen E.J.J. A multifrequency high-field electron paramagnetic resonance study of coiis4 coordination. Inorg. Chem. 2010;49:595–605. doi: 10.1021/ic901911h. PubMed DOI
Stoll S., Schweiger A. EasySpin, a comprehensive software package for spectral simulations and analysis in EPR. J. Magn. Reson. 2006;178:42–55. doi: 10.1016/j.jmr.2005.08.013. PubMed DOI
Pantazis D.A., Chen X.-Y., Landis C.R., Neese F. All-Electron Scalar Relativistic Basis Sets for Third-Row Transition Metal Atoms. J. Chem. Theory Comput. 2008;4:908–919. doi: 10.1021/ct800047t. PubMed DOI
van Lenthe E., Baerends E.J., Snijders J.G. Relativistic regular two-component Hamiltonians. J. Chem. Phys. 1993;99:4597–4610. doi: 10.1063/1.466059. DOI
Van Wüllen C. Molecular density functional calculations in the regular relativistic approximation: Method, application to coinage metal diatomics, hydrides, fluorides and chlorides, and comparison with first-order relativistic calculations. J. Chem. Phys. 1998;109:392–399. doi: 10.1063/1.476576. DOI
Malmqvist P.-Å., Roos B.O. The CASSCF state interaction method. Chem. Phys. Lett. 1989;155:189–194. doi: 10.1016/0009-2614(89)85347-3. DOI
Angeli C., Cimiraglia R., Evangelisti S., Leininger T., Malrieu J.P. Introduction of n-electron valence states for multireference perturbation theory. J. Chem. Phys. 2001;114:10252–10264. doi: 10.1063/1.1361246. DOI
Ganyushin D., Neese F. First-principles calculations of zero-field splitting parameters. J. Chem. Phys. 2006;125:024103. doi: 10.1063/1.2213976. PubMed DOI
Neese F. Efficient and accurate approximations to the molecular spin-orbit coupling operator and their use in molecular g-tensor calculations. J. Chem. Phys. 2005;122:034107. doi: 10.1063/1.1829047. PubMed DOI
Maurice R., Bastardis R., de Graaf C., Suaud N., Mallah T., Guihéry N. Universal Theoretical Approach to Extract Anisotropic Spin Hamiltonians. J. Chem. Theory Comput. 2009;5:2977–2984. doi: 10.1021/ct900326e. PubMed DOI
Perdew J.P., Burke K., Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996;77:3865–3868. doi: 10.1103/PhysRevLett.77.3865. PubMed DOI
Grimme S., Antony J., Ehrlich S., Krieg H. A consistent and accurate ab initio parametrization of density functional dispersion correction (dft-d) for the 94 elements h-pu. J. Chem. Phys. 2010;132:154104. doi: 10.1063/1.3382344. PubMed DOI