Pentacoordinate and Hexacoordinate Mn(III) Complexes of Tetradentate Schiff-Base Ligands Containing Tetracyanidoplatinate(II) Bridges and Revealing Uniaxial Magnetic Anisotropy
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
27941609
PubMed Central
PMC6274172
DOI
10.3390/molecules21121681
PII: molecules21121681
Knihovny.cz E-zdroje
- Klíčová slova
- crystal structures, magnetic anisotropy, manganese(III), platinum(II), zero-field splitting,
- MeSH
- komplexní sloučeniny chemie MeSH
- krystalografie rentgenová MeSH
- ligandy MeSH
- magnetismus MeSH
- mangan chemie MeSH
- molekulární struktura MeSH
- Schiffovy báze chemie MeSH
- sloučeniny platiny chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- komplexní sloučeniny MeSH
- ligandy MeSH
- mangan MeSH
- Schiffovy báze MeSH
- sloučeniny platiny MeSH
Crystal structures and magnetic properties of polymeric and trinuclear heterobimetallic MnIII···PtII···MnIII coordination compounds, prepared from the Ba[Pt(CN)₄] and [Mn(L4A/B)(Cl)] (1a/b) precursor complexes, are reported. The polymeric complex [{Mn(L4A)}₂{μ⁴-Pt(CN)₄}]n (2a), where H₂L4A = N,N'-ethylene-bis(salicylideneiminate), comprises the {Mn(L4A)} moieties covalently connected through the [Pt(CN)₄]2- bridges, thus forming a square-grid polymeric structure with the hexacoordinate MnIII atoms. The trinuclear complex [{Mn(L4B)}₂{μ-Pt(CN)₄}] (2b), where H₂L4B = N,N'-benzene-bis(4-aminodiethylene-salicylideneiminate), consists of two [{Mn(L4B)} moieties, involving pentacoordinate MnIII atoms, bridged through the tetracyanidoplatinate (II) bridges to which they are coordinated in a trans fashion. Both complexes possess uniaxial type of magnetic anisotropy, with D (the axial parameter of zero-field splitting) = -3.7(1) in 2a and -2.2(1) cm-1 in 2b. Furthermore, the parameters of magnetic anisotropy 2a and 2b were also thoroughly studied by theoretical complete active space self-consistent field (CASSCF) methods, which revealed that the former is much more sensitive to the ligand field strength of the axial ligands.
Zobrazit více v PubMed
Miyasaka H., Saitoh A., Abe S. Magnetic assemblies based on Mn(III) salen analogues. Coord. Chem. Rev. 2007;251:2622–2664. doi: 10.1016/j.ccr.2007.07.028. DOI
Wang S., Ding X.-H., Li Y.-H., Huang W. Dicyanometalate chemistry: A type of versatile building block for the construction of cyanide-bridged molecular architectures. Coord. Chem. Rev. 2012;256:439–464. doi: 10.1016/j.ccr.2011.10.029. DOI
Herchel R., Váhovská L., Potočňák I., Trávníček Z.K. Slow Magnetic Relaxation in Octahedral Cobalt(II) Field-Induced Single-Ion Magnet with Positive Axial and Large Rhombic Anisotropy. Inorg. Chem. 2014;53:5896–5898. doi: 10.1021/ic500916u. PubMed DOI
Pedersen K.S., Bendix J., Clerac R. Single-molecule magnet engineering: Building-block approaches. Chem. Commun. 2014;50:4396–4415. doi: 10.1039/c4cc00339j. PubMed DOI
Nemec I., Herchel R., Trávníček Z., Šilha T. Field-induced slow relaxation of magnetization in dinuclear and trinuclear CoIII···MnIII complexes. RSC Adv. 2016;6:3074–3083. doi: 10.1039/C5RA23922B. DOI
Singh S.K., Vignesh K.R., Archana V., Rajaraman G. Theoretical insights into the origin of magnetic exchange and magnetic anisotropy in {ReIV-MII} (M = Mn, Fe, Co, Ni and Cu) single chain magnets. Dalton Trans. 2016;45:8201–8214. PubMed
Ababei R., Li Y.-G., Roubeau O., Kalisz M., Brefuel N., Coulon C., Harte E., Liu X., Mathoniere C., Clerac R. Bimetallic cyanido-bridged magnetic materials derived from manganese(III) Schiff-base complexes and pentacyanidonitrosylferrate(II) precursor. New J. Chem. 2009;33:1237–1248. doi: 10.1039/b903399h. DOI
Yoon J.H., Lim J.H., Kim H.C., Hong C.S. Cyanide-Bridged Single-Molecule Magnet Constructed by an Octacoordinated [W(CN)6(bpy)]− Anion. Inorg. Chem. 2006;45:9613–9615. doi: 10.1021/ic061651k. PubMed DOI
Dreiser J., Schnegg A., Holldack K., Pedersen K.S., Schau-Magnussen M., Nehrkorn J., Tregenna-Piggott P., Mutka H., Weihe H., Bendix J., et al. Frequency-Domain Fourier-Transform Terahertz Spectroscopy of the Single-Molecule Magnet (NEt4)[Mn2(5-Brsalen)2(MeOH)2Cr(CN)6] Chem. Eur. J. 2011;17:7492–7498. doi: 10.1002/chem.201100581. PubMed DOI
Pedersen K.S., Dreiser J., Nehrkorn J., Gysler M., Schau-Magnussen M., Schnegg A., Holldack K., Bittl R., Piligkos S., Weihe H., et al. A linear single-molecule magnet based on [RuIII(CN)6]3−. Chem. Commun. 2011;47:6918–6920. doi: 10.1039/c1cc12158h. PubMed DOI
Hoeke V., Heidemeier M., Krickemeyer E., Stammler A., Bogge H., Schnack J., Glaser T. Structural influences on the exchange coupling and zero-field splitting in the single-molecule magnet [MnIII6MnIII]3+ Dalton Trans. 2012;41:12942–12959. doi: 10.1039/c2dt31590d. PubMed DOI
Šilha T., Nemec I., Herchel R., Trávníček Z. Structural and magnetic characterizations of the first manganese(III) Schiff base complexes involving hexathiocyanidoplatinate(IV) bridges. CrystEngComm. 2013;15:5351–5358. doi: 10.1039/c3ce40524a. DOI
Nemec I., Šilha T., Herchel R., Trávníček Z. Investigation of Magnetic Exchange Pathways in Heterotrinuclear Manganese(III) Schiff Base Complexes Involving Tetrathiocyanidoplatinate(II) Bridges. Eur. J. Inorg. Chem. 2013;2013:5781–5789. doi: 10.1002/ejic.201301031. DOI
Nemec I., Herchel R., Šilha T., Trávníček Z. Towards a better understanding of magnetic exchange mediated by hydrogen bonds in Mn(III)/Fe(III) salen-type supramolecular dimers. Dalton Trans. 2014;43:15602–15616. PubMed
Yuan A.-H., Shen X.-P., Wu Q.-J., Huang Z.-X., Xu Z. Synthesis, Crystal Structure and Magnetic Properties of a Two-Dimensional Heterometallic Assembly [Mn(salen)]∣2∣[Ni(CN)4∣·1/2H2O. J. Coord. Chem. 2002;55:411–420. doi: 10.1080/00958970211905. DOI
Meyer E.A., Castellano R.K., Diederich F. Interactions with Aromatic Rings in Chemical and Biological Recognition. Angew. Chem. Int. Ed. 2003;42:1210–1250. doi: 10.1002/anie.200390319. PubMed DOI
Salonen L.M., Ellermann M., Diederich F. Aromatic Rings in Chemical and Biological Recognition: Energetics and Structures. Angew. Chem. Int. Ed. 2011;50:4808–4842. doi: 10.1002/anie.201007560. PubMed DOI
Sinnokrot M.O., Sherrill C.D. High-Accuracy Quantum Mechanical Studies of π−π Interactions in Benzene Dimers. J. Phys. Chem. A. 2006;110:10656–10668. doi: 10.1021/jp0610416. PubMed DOI
Addison A.W., Rao T.N., Reedijk J., van Rijn J., Verschoor G.C. Synthesis, structure, and spectroscopic properties of copper(II) compounds containing nitrogen-sulphur donor ligands; the crystal and molecular structure of aqua[1,7-bis(N-methylbenzimidazol-2′-yl)-2,6-dithiaheptane]copper(II) perchlorate. J. Chem. Soc. Dalton Trans. 1984:1349–1356. doi: 10.1039/DT9840001349. DOI
Batsanov S.S. Van der Waals Radii of Elements. Inorg. Mater. 2001;37:871–885. doi: 10.1023/A:1011625728803. DOI
Boča R. Theoretical Foundations of Molecular Magnetism. Elsevier; Amsterdam, The Netherlands: 1999.
Maurice R., de Graaf C., Guihéry N. Magnetostructural relations from a combined ab initio and ligand field analysis for the nonintuitive zero-field splitting in Mn(III) complexes. J. Chem. Phys. 2010;133:084307. doi: 10.1063/1.3480014. PubMed DOI
Ciringh Y., Gordon-Wylie S.W., Norman R.E., Clark G.R., Weintraub S.T., Horwitz C.P. Multinuclear paramagnetic NMR spectra and solid state X-ray crystallographic characterization of manganese(III) Schiff-base complexes. Inorg. Chem. 1997;36:4968–4982. doi: 10.1021/ic970747z. DOI
Sheldrick G. Crystal structure refinement with SHELXL. Acta Cryst. C. 2015;71:3–8. doi: 10.1107/S2053229614024218. PubMed DOI PMC
Farrugia L. WinGX suite for small-molecule single-crystal crystallography. J. Appl. Crystallogr. 1999;32:837–838. doi: 10.1107/S0021889899006020. DOI
Spek A. Structure validation in chemical crystallography. Acta Cryst. Section D. 2009;65:148–155. doi: 10.1107/S090744490804362X. PubMed DOI PMC
Le Y. MISSYM1.1—A flexible new release. J. Appl. Crystallogr. 1988;21:983–984.
Malmqvist P.-Å., Roos B.O. The CASSCF state interaction method. Chem. Phys. Lett. 1989;155:189–194.
Angeli C., Cimiraglia R., Evangelisti S., Leininger T., Malrieu J.P. Introduction of n-electron valence states for multireference perturbation theory. J. Chem. Phys. 2001;114:10252–10264. doi: 10.1063/1.1361246. DOI
Neese F. The ORCA program system. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012;2:73–78. doi: 10.1002/wcms.81. DOI
Van Lenthe E., Baerends E.J., Snijders J.G. Relativistic regular two-component Hamiltonians. J. Chem. Phys. 1993;99:4597–4610. doi: 10.1063/1.466059. DOI
Van Wüllen C. Molecular density functional calculations in the regular relativistic approximation: Method, application to coinage metal diatomics, hydrides, fluorides and chlorides, and comparison with first-order relativistic calculations. J. Chem. Phys. 1998;109:392–399. doi: 10.1063/1.476576. DOI
Pantazis D.A., Chen X.-Y., Landis C.R., Neese F. All-Electron Scalar Relativistic Basis Sets for Third-Row Transition Metal Atoms. J. Chem. Theory Comput. 2008;4:908–919. doi: 10.1021/ct800047t. PubMed DOI
Neese F., Wennmohs F., Hansen A. Efficient and accurate local approximations to coupled-electron pair approaches: An attempt to revive the pair natural orbital method. J. Chem. Phys. 2009;13:114108. doi: 10.1063/1.3086717. PubMed DOI
Ganyushin D., Neese F. First-principles calculations of zero-field splitting parameters. J. Chem. Phys. 2006;125:024103. doi: 10.1063/1.2213976. PubMed DOI
Neese F. Efficient and accurate approximations to the molecular spin-orbit coupling operator and their use in molecular g-tensor calculations. J. Chem. Phys. 2005;122:034107. doi: 10.1063/1.1829047. PubMed DOI
Maurice R., Bastardis R., Graaf C., Suaud N., Mallah T., Guihéry N. Universal Theoretical Approach to Extract Anisotropic Spin Hamiltonians. J. Chem. Theory Comput. 2009;5:2977–2984. doi: 10.1021/ct900326e. PubMed DOI
Perdew J.P., Burke K., Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996;77:3865–3868. doi: 10.1103/PhysRevLett.77.3865. PubMed DOI
Klamt A., Schuurmann G. COSMO: A new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J. Chem. Soc. Perkin Trans. 1993:799–805. doi: 10.1039/P29930000799. DOI
Becke A.D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A. 1988;38:3098–3100. doi: 10.1103/PhysRevA.38.3098. PubMed DOI
Lee C.T., Yang W.T., Parr R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B. 1988;37:785–789. doi: 10.1103/PhysRevB.37.785. PubMed DOI
Stephens P.J., Devlin F.J., Chabalowski C.F., Frisch M.J. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. J. Phys. Chem. 1994;98:11623–11627. doi: 10.1021/j100096a001. DOI