Pentacoordinate and Hexacoordinate Mn(III) Complexes of Tetradentate Schiff-Base Ligands Containing Tetracyanidoplatinate(II) Bridges and Revealing Uniaxial Magnetic Anisotropy
Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
27941609
PubMed Central
PMC6274172
DOI
10.3390/molecules21121681
PII: molecules21121681
Knihovny.cz E-resources
- Keywords
- crystal structures, magnetic anisotropy, manganese(III), platinum(II), zero-field splitting,
- MeSH
- Coordination Complexes chemistry MeSH
- Crystallography, X-Ray MeSH
- Ligands MeSH
- Magnetics MeSH
- Manganese chemistry MeSH
- Molecular Structure MeSH
- Schiff Bases chemistry MeSH
- Platinum Compounds chemistry MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Coordination Complexes MeSH
- Ligands MeSH
- Manganese MeSH
- Schiff Bases MeSH
- Platinum Compounds MeSH
Crystal structures and magnetic properties of polymeric and trinuclear heterobimetallic MnIII···PtII···MnIII coordination compounds, prepared from the Ba[Pt(CN)₄] and [Mn(L4A/B)(Cl)] (1a/b) precursor complexes, are reported. The polymeric complex [{Mn(L4A)}₂{μ⁴-Pt(CN)₄}]n (2a), where H₂L4A = N,N'-ethylene-bis(salicylideneiminate), comprises the {Mn(L4A)} moieties covalently connected through the [Pt(CN)₄]2- bridges, thus forming a square-grid polymeric structure with the hexacoordinate MnIII atoms. The trinuclear complex [{Mn(L4B)}₂{μ-Pt(CN)₄}] (2b), where H₂L4B = N,N'-benzene-bis(4-aminodiethylene-salicylideneiminate), consists of two [{Mn(L4B)} moieties, involving pentacoordinate MnIII atoms, bridged through the tetracyanidoplatinate (II) bridges to which they are coordinated in a trans fashion. Both complexes possess uniaxial type of magnetic anisotropy, with D (the axial parameter of zero-field splitting) = -3.7(1) in 2a and -2.2(1) cm-1 in 2b. Furthermore, the parameters of magnetic anisotropy 2a and 2b were also thoroughly studied by theoretical complete active space self-consistent field (CASSCF) methods, which revealed that the former is much more sensitive to the ligand field strength of the axial ligands.
See more in PubMed
Miyasaka H., Saitoh A., Abe S. Magnetic assemblies based on Mn(III) salen analogues. Coord. Chem. Rev. 2007;251:2622–2664. doi: 10.1016/j.ccr.2007.07.028. DOI
Wang S., Ding X.-H., Li Y.-H., Huang W. Dicyanometalate chemistry: A type of versatile building block for the construction of cyanide-bridged molecular architectures. Coord. Chem. Rev. 2012;256:439–464. doi: 10.1016/j.ccr.2011.10.029. DOI
Herchel R., Váhovská L., Potočňák I., Trávníček Z.K. Slow Magnetic Relaxation in Octahedral Cobalt(II) Field-Induced Single-Ion Magnet with Positive Axial and Large Rhombic Anisotropy. Inorg. Chem. 2014;53:5896–5898. doi: 10.1021/ic500916u. PubMed DOI
Pedersen K.S., Bendix J., Clerac R. Single-molecule magnet engineering: Building-block approaches. Chem. Commun. 2014;50:4396–4415. doi: 10.1039/c4cc00339j. PubMed DOI
Nemec I., Herchel R., Trávníček Z., Šilha T. Field-induced slow relaxation of magnetization in dinuclear and trinuclear CoIII···MnIII complexes. RSC Adv. 2016;6:3074–3083. doi: 10.1039/C5RA23922B. DOI
Singh S.K., Vignesh K.R., Archana V., Rajaraman G. Theoretical insights into the origin of magnetic exchange and magnetic anisotropy in {ReIV-MII} (M = Mn, Fe, Co, Ni and Cu) single chain magnets. Dalton Trans. 2016;45:8201–8214. PubMed
Ababei R., Li Y.-G., Roubeau O., Kalisz M., Brefuel N., Coulon C., Harte E., Liu X., Mathoniere C., Clerac R. Bimetallic cyanido-bridged magnetic materials derived from manganese(III) Schiff-base complexes and pentacyanidonitrosylferrate(II) precursor. New J. Chem. 2009;33:1237–1248. doi: 10.1039/b903399h. DOI
Yoon J.H., Lim J.H., Kim H.C., Hong C.S. Cyanide-Bridged Single-Molecule Magnet Constructed by an Octacoordinated [W(CN)6(bpy)]− Anion. Inorg. Chem. 2006;45:9613–9615. doi: 10.1021/ic061651k. PubMed DOI
Dreiser J., Schnegg A., Holldack K., Pedersen K.S., Schau-Magnussen M., Nehrkorn J., Tregenna-Piggott P., Mutka H., Weihe H., Bendix J., et al. Frequency-Domain Fourier-Transform Terahertz Spectroscopy of the Single-Molecule Magnet (NEt4)[Mn2(5-Brsalen)2(MeOH)2Cr(CN)6] Chem. Eur. J. 2011;17:7492–7498. doi: 10.1002/chem.201100581. PubMed DOI
Pedersen K.S., Dreiser J., Nehrkorn J., Gysler M., Schau-Magnussen M., Schnegg A., Holldack K., Bittl R., Piligkos S., Weihe H., et al. A linear single-molecule magnet based on [RuIII(CN)6]3−. Chem. Commun. 2011;47:6918–6920. doi: 10.1039/c1cc12158h. PubMed DOI
Hoeke V., Heidemeier M., Krickemeyer E., Stammler A., Bogge H., Schnack J., Glaser T. Structural influences on the exchange coupling and zero-field splitting in the single-molecule magnet [MnIII6MnIII]3+ Dalton Trans. 2012;41:12942–12959. doi: 10.1039/c2dt31590d. PubMed DOI
Šilha T., Nemec I., Herchel R., Trávníček Z. Structural and magnetic characterizations of the first manganese(III) Schiff base complexes involving hexathiocyanidoplatinate(IV) bridges. CrystEngComm. 2013;15:5351–5358. doi: 10.1039/c3ce40524a. DOI
Nemec I., Šilha T., Herchel R., Trávníček Z. Investigation of Magnetic Exchange Pathways in Heterotrinuclear Manganese(III) Schiff Base Complexes Involving Tetrathiocyanidoplatinate(II) Bridges. Eur. J. Inorg. Chem. 2013;2013:5781–5789. doi: 10.1002/ejic.201301031. DOI
Nemec I., Herchel R., Šilha T., Trávníček Z. Towards a better understanding of magnetic exchange mediated by hydrogen bonds in Mn(III)/Fe(III) salen-type supramolecular dimers. Dalton Trans. 2014;43:15602–15616. PubMed
Yuan A.-H., Shen X.-P., Wu Q.-J., Huang Z.-X., Xu Z. Synthesis, Crystal Structure and Magnetic Properties of a Two-Dimensional Heterometallic Assembly [Mn(salen)]∣2∣[Ni(CN)4∣·1/2H2O. J. Coord. Chem. 2002;55:411–420. doi: 10.1080/00958970211905. DOI
Meyer E.A., Castellano R.K., Diederich F. Interactions with Aromatic Rings in Chemical and Biological Recognition. Angew. Chem. Int. Ed. 2003;42:1210–1250. doi: 10.1002/anie.200390319. PubMed DOI
Salonen L.M., Ellermann M., Diederich F. Aromatic Rings in Chemical and Biological Recognition: Energetics and Structures. Angew. Chem. Int. Ed. 2011;50:4808–4842. doi: 10.1002/anie.201007560. PubMed DOI
Sinnokrot M.O., Sherrill C.D. High-Accuracy Quantum Mechanical Studies of π−π Interactions in Benzene Dimers. J. Phys. Chem. A. 2006;110:10656–10668. doi: 10.1021/jp0610416. PubMed DOI
Addison A.W., Rao T.N., Reedijk J., van Rijn J., Verschoor G.C. Synthesis, structure, and spectroscopic properties of copper(II) compounds containing nitrogen-sulphur donor ligands; the crystal and molecular structure of aqua[1,7-bis(N-methylbenzimidazol-2′-yl)-2,6-dithiaheptane]copper(II) perchlorate. J. Chem. Soc. Dalton Trans. 1984:1349–1356. doi: 10.1039/DT9840001349. DOI
Batsanov S.S. Van der Waals Radii of Elements. Inorg. Mater. 2001;37:871–885. doi: 10.1023/A:1011625728803. DOI
Boča R. Theoretical Foundations of Molecular Magnetism. Elsevier; Amsterdam, The Netherlands: 1999.
Maurice R., de Graaf C., Guihéry N. Magnetostructural relations from a combined ab initio and ligand field analysis for the nonintuitive zero-field splitting in Mn(III) complexes. J. Chem. Phys. 2010;133:084307. doi: 10.1063/1.3480014. PubMed DOI
Ciringh Y., Gordon-Wylie S.W., Norman R.E., Clark G.R., Weintraub S.T., Horwitz C.P. Multinuclear paramagnetic NMR spectra and solid state X-ray crystallographic characterization of manganese(III) Schiff-base complexes. Inorg. Chem. 1997;36:4968–4982. doi: 10.1021/ic970747z. DOI
Sheldrick G. Crystal structure refinement with SHELXL. Acta Cryst. C. 2015;71:3–8. doi: 10.1107/S2053229614024218. PubMed DOI PMC
Farrugia L. WinGX suite for small-molecule single-crystal crystallography. J. Appl. Crystallogr. 1999;32:837–838. doi: 10.1107/S0021889899006020. DOI
Spek A. Structure validation in chemical crystallography. Acta Cryst. Section D. 2009;65:148–155. doi: 10.1107/S090744490804362X. PubMed DOI PMC
Le Y. MISSYM1.1—A flexible new release. J. Appl. Crystallogr. 1988;21:983–984.
Malmqvist P.-Å., Roos B.O. The CASSCF state interaction method. Chem. Phys. Lett. 1989;155:189–194.
Angeli C., Cimiraglia R., Evangelisti S., Leininger T., Malrieu J.P. Introduction of n-electron valence states for multireference perturbation theory. J. Chem. Phys. 2001;114:10252–10264. doi: 10.1063/1.1361246. DOI
Neese F. The ORCA program system. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012;2:73–78. doi: 10.1002/wcms.81. DOI
Van Lenthe E., Baerends E.J., Snijders J.G. Relativistic regular two-component Hamiltonians. J. Chem. Phys. 1993;99:4597–4610. doi: 10.1063/1.466059. DOI
Van Wüllen C. Molecular density functional calculations in the regular relativistic approximation: Method, application to coinage metal diatomics, hydrides, fluorides and chlorides, and comparison with first-order relativistic calculations. J. Chem. Phys. 1998;109:392–399. doi: 10.1063/1.476576. DOI
Pantazis D.A., Chen X.-Y., Landis C.R., Neese F. All-Electron Scalar Relativistic Basis Sets for Third-Row Transition Metal Atoms. J. Chem. Theory Comput. 2008;4:908–919. doi: 10.1021/ct800047t. PubMed DOI
Neese F., Wennmohs F., Hansen A. Efficient and accurate local approximations to coupled-electron pair approaches: An attempt to revive the pair natural orbital method. J. Chem. Phys. 2009;13:114108. doi: 10.1063/1.3086717. PubMed DOI
Ganyushin D., Neese F. First-principles calculations of zero-field splitting parameters. J. Chem. Phys. 2006;125:024103. doi: 10.1063/1.2213976. PubMed DOI
Neese F. Efficient and accurate approximations to the molecular spin-orbit coupling operator and their use in molecular g-tensor calculations. J. Chem. Phys. 2005;122:034107. doi: 10.1063/1.1829047. PubMed DOI
Maurice R., Bastardis R., Graaf C., Suaud N., Mallah T., Guihéry N. Universal Theoretical Approach to Extract Anisotropic Spin Hamiltonians. J. Chem. Theory Comput. 2009;5:2977–2984. doi: 10.1021/ct900326e. PubMed DOI
Perdew J.P., Burke K., Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996;77:3865–3868. doi: 10.1103/PhysRevLett.77.3865. PubMed DOI
Klamt A., Schuurmann G. COSMO: A new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J. Chem. Soc. Perkin Trans. 1993:799–805. doi: 10.1039/P29930000799. DOI
Becke A.D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A. 1988;38:3098–3100. doi: 10.1103/PhysRevA.38.3098. PubMed DOI
Lee C.T., Yang W.T., Parr R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B. 1988;37:785–789. doi: 10.1103/PhysRevB.37.785. PubMed DOI
Stephens P.J., Devlin F.J., Chabalowski C.F., Frisch M.J. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. J. Phys. Chem. 1994;98:11623–11627. doi: 10.1021/j100096a001. DOI