Synthesis, structural and magnetic properties of cobalt(ii) complexes with pyridine-based macrocyclic ligand containing two pyridine pendant arms
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39228762
PubMed Central
PMC11369886
DOI
10.1039/d4ra02387k
PII: d4ra02387k
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
With the aim of tuning the magnetic anisotropy, a series of Co(ii) complexes with the general formula of complex cations [Co(L)X]+, where X = Br- (1); I- (2); NCO- (3); NCS- (4a); N3 - (5), and [Co(L)(NCS)2] (4b), (L = a 17-membered pyridine-based N3O2-macrocyclic ligand containing two pyridin-2-ylmethyl pendant arms) were prepared and thoroughly characterized. The molecular structures for all complexes showed strongly distorted geometry in between octahedral and trigonal prismatic. The magnetic studies confirmed substantial magnetic anisotropy with positive values of D, the axial zero-field splitting parameter, but E/D ratios close to 1/3. This was supported by theoretical CASSCF calculations showing no significant effect of the co-ligands. Complex 4b was found to behave as a field-induced SMM.
Zobrazit více v PubMed
Sessoli R. Gatteschi D. Caneschi A. Novak M. A. Nature. 1993;365:141. doi: 10.1038/365141a0. DOI
Gatteschi D., Sessoli R. and Villain J., Molecular Nanomagnets, Oxford University Press, Oxford, U.K., 2006
Mannini M. Pineider F. Sainctavit P. Danieli C. Otero E. Sciancalepore C. Talarico A. M. Arrio M.-A. Cornia A. Gatteschi D. Nat. Mater. 2009;8:194. doi: 10.1038/nmat2374. PubMed DOI
Winpenny R. E. Angew. Chem., Int. Ed. 2008;47:7992. doi: 10.1002/anie.200802742. PubMed DOI
Bogani L. Wernsdorfer W. Nat. Mater. 2008;7:179. doi: 10.1038/nmat2133. PubMed DOI
Ako A. M. Hewitt I. J. Mereacre V. Clérac R. Wernsdorfer W. Anson C. E. Powell A. K. Angew. Chem. 2006;118:229. PubMed
Neese F. Pantazis D. A. Faraday Discuss. 2011;148:229. doi: 10.1039/C005256F. PubMed DOI
Zabala-Lekuona A. Seco J. M. Colacio E. Coord. Chem. Rev. 2021;441:213984. doi: 10.1016/j.ccr.2021.213984. DOI
Vieru V. Gómez-Coca S. Ruiz E. Chibotaru L. F. Angew. Chem., Int. Ed. 2024;63:e202303146. doi: 10.1002/anie.202303146. PubMed DOI
Antal P. Drahoš B. Herchel R. Trávníček Z. Inorg. Chem. 2016;55(12):5957. doi: 10.1021/acs.inorgchem.6b00415. PubMed DOI
Drahoš B. Herchel R. Trávníček Z. Inorg. Chem. 2015;54(7):3352. doi: 10.1021/ic503054m. PubMed DOI
Sutter J.-P. Béreau V. Jubault V. Bretosh K. Pichon C. Duhayon C. Chem. Soc. Rev. 2022;51:3280–3313. doi: 10.1039/D2CS00028H. PubMed DOI
Kumar Sahu P. Kharel R. Shome S. Goswami S. Konar S. Coord. Chem. Rev. 2023;475:214871. doi: 10.1016/j.ccr.2022.214871. DOI
Ashebr T. G. Li H. Ying X. Li X.-L. Zhao C. Liu S. Tang J. ACS Mater. Lett. 2022;4:307–319. doi: 10.1021/acsmaterialslett.1c00765. DOI
Li J. Yang Y. Yu Q. Su G. Liu W. J. Phys. Chem. C. 2024;128:4882–4890. doi: 10.1021/acs.jpcc.4c00506. DOI
Juráková J. Šalitroš I. Monatsh. Chem. 2022;153:1001–1036. doi: 10.1007/s00706-022-02920-0. PubMed DOI PMC
Sarkar A. Dey S. Rajaraman G. Chem.–Eur. J. 2020;26:14036–14058. doi: 10.1002/chem.202003211. PubMed DOI
Ghosh S. Kamilya S. Das M. Mehta S. Boulon M.-E. Nemec I. Rouzières M. Herchel R. Mondal A. Inorg. Chem. 2020;59:7067–7081. doi: 10.1021/acs.inorgchem.0c00538. PubMed DOI
Bar A. K. Pichon C. Sutter J.-P. Coord. Chem. Rev. 2016;308:346–380. doi: 10.1016/j.ccr.2015.06.013. DOI
Luening U. Liebigs Ann. Chem. 1987;11:949–955. doi: 10.1002/jlac.198719870853. DOI
Drahoš B. Kotek J. Hermann P. Lukeš I. Tóth É. Inorg. Chem. 2010;49:3224–3238. doi: 10.1021/ic9020756. PubMed DOI
Drahoš B. Herchel R. Trávníček Z. Inorg. Chem. 2017;56:5076–5088. doi: 10.1021/acs.inorgchem.7b00235. PubMed DOI
Antal P. Drahoš B. Herchel R. Trávníček Z. Eur. J. Inorg. Chem. 2018;2018:4286–4297. doi: 10.1002/ejic.201800769. DOI
Drahoš B. Císařová I. Laguta O. Santana V. T. Neugebauer P. Herchel R. Dalton Trans. 2020;49:4425–4440. doi: 10.1039/D0DT00166J. PubMed DOI
Zahradníková E. Sutter J.-P. Halaš P. Drahoš B. Dalton Trans. 2023;52:18513–18524. doi: 10.1039/D3DT02639F. PubMed DOI
Kahn O., Molecular Magnetism, VCH, Weinheim, 1993
Chilton N. F. Anderson R. P. Turner L. D. Soncini A. Murray K. S. J. Comput. Chem. 2013;34:1164–1175. doi: 10.1002/jcc.23234. PubMed DOI
Sheldrick G. M. Acta Crystallogr., Sect. C: Struct. Chem. 2015;71:3–8. PubMed PMC
Betteridge P. W. Carruthers J. R. Cooper R. I. Prout K. Watkin D. J. J. Appl. Crystallogr. 2003;36:1487. doi: 10.1107/S0021889803021800. DOI
Dolomanov O. V. Bourhis L. J. Gildea R. J. Howard J. A. K. Puschmann H. J. Appl. Crystallogr. 2009;42:339–341. doi: 10.1107/S0021889808042726. PubMed DOI PMC
Macrae C. F. Bruno I. J. Chisholm J. A. Edgington P. R. McCabe P. Pidcock E. Rodriguez-Monge L. Taylor R. van de Streek J. Wood P. A. J. Appl. Crystallogr. 2008;41:466–470. doi: 10.1107/S0021889807067908. DOI
Zahradníková E. Herchel R. Šalitroš I. Císařová I. Drahoš B. Dalton Trans. 2020;49:9057–9069. doi: 10.1039/D0DT01392G. PubMed DOI
Neese F. Wennmohs F. Becker U. Riplinger C. J. Chem. Phys. 2020;152(22):224108. doi: 10.1063/5.0004608. PubMed DOI
Neese F. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2022:e1606.
Becke A. D. Phys. Rev. A. 1988;38:3098. doi: 10.1103/PhysRevA.38.3098. PubMed DOI
Weigend F. Ahlrichs R. Phys. Chem. Chem. Phys. 2005;7(18):3297. doi: 10.1039/B508541A. PubMed DOI
Neese F. J. Comput. Chem. 2003;24(14):1740. doi: 10.1002/jcc.10318. PubMed DOI
Weigend F. Phys. Chem. Chem. Phys. 2006;8(9):1057. doi: 10.1039/B515623H. PubMed DOI
Rolfes J. D. Neese F. Pantazis D. A. J. Comput. Chem. 2020;41(20):1842. doi: 10.1002/jcc.26355. PubMed DOI
Neese F. Wennmohs F. Hansen A. Becker U. Chem. Phys. 2009;356(1–3):98. doi: 10.1016/j.chemphys.2008.10.036. DOI
Hellweg A. Hättig C. Höfener S. Klopper W. Theor. Chem. Acc. 2007;117(4):587.
Bader R. F. Acc. Chem. Res. 1985;18(1):9–15. doi: 10.1021/ar00109a003. DOI
Lu T. Chen F. J. Comput. Chem. 2012;33(5):580–592. doi: 10.1002/jcc.22885. PubMed DOI
Havlíček L. Herchel R. Nemec I. Neugebauer P. Polyhedron. 2022;223:115962. doi: 10.1016/j.poly.2022.115962. DOI
Johnson E. R. Keinan S. Mori-Sánchez P. Contreras-García J. Cohen A. J. Yang W. J. Am. Chem. Soc. 2010;132(18):6498–6506. doi: 10.1021/ja100936w. PubMed DOI PMC
Becke A. D. Edgecombe K. E. J. Chem. Phys. 1990;92(9):5397–5403. doi: 10.1063/1.458517. DOI
Ananyev I. V. Bokach N. A. Kukushkin V. Y. Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater. 2020;76(3):436–449. doi: 10.1107/S2052520620005685. PubMed DOI
Espinosa E. Alkorta I. Elguero J. Molins E. J. Chem. Phys. 2002;117(12):5529–5542. doi: 10.1063/1.1501133. DOI
Casanova D. Alemany P. Bofill J. M. Alvarez S. Chem.–Eur. J. 2003;9(6):1281–1295. doi: 10.1002/chem.200390145. PubMed DOI
Alvarez S. Dalton Trans. 2005;(13):2209–2233. doi: 10.1039/B503582C. PubMed DOI
Moncol J. Czech Chem. Soc. Symp. Ser. 2023;21:147.
Nemec I. Herchel R. Kern M. Neugebauer P. van Slageren J. Travnicek Z. Materials. 2017;10:249. doi: 10.3390/ma10030249. PubMed DOI PMC
Dekker C. Arts A. F. M. de Wijn H. W. van Duyneveldt A. J. Mydosh J. A. Phys. Rev. B: Condens. Matter Mater. Phys. 1989;40:11243. doi: 10.1103/PhysRevB.40.11243. PubMed DOI
Gómez-Coca S. Urtizberea A. Cremades E. Alonso P. J. Camón A. Ruiz E. Luis F. Nat. Commun. 2014;5:5300. doi: 10.1038/ncomms6300. PubMed DOI