• This record comes from PubMed

Chronic DDE Exposure Modifies Mitochondrial Respiration during Differentiation of Human Adipose-Derived Mesenchymal Stem Cells into Mature Adipocytes

. 2021 Jul 21 ; 11 (8) : . [epub] 20210721

Language English Country Switzerland Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

The contribution of environmental pollutants to the obesity pandemic is still not yet fully recognized. Elucidating possible cellular and molecular mechanisms of their effects is of high importance. Our study aimed to evaluate the effect of chronic, 21-day-long, 2,2-bis (4-chlorophenyl)-1,1-dichlorethylenedichlorodiphenyldichloroethylene (p,p'-DDE) exposure of human adipose-derived mesenchymal stem cells committed to adipogenesis on mitochondrial oxygen consumption on days 4, 10, and 21. In addition, the mitochondrial membrane potential (MMP), the quality of the mitochondrial network, and lipid accumulation in maturing cells were evaluated. Compared to control differentiating adipocytes, exposure to p,p'-DDE at 1 μM concentration significantly increased basal (routine) mitochondrial respiration, ATP-linked oxygen consumption and MMP of intact cells on day 21 of adipogenesis. In contrast, higher pollutant concentration seemed to slow down the gradual increase in ATP-linked oxygen consumption typical for normal adipogenesis. Organochlorine p,p'-DDE did not alter citrate synthase activity. In conclusion, in vitro 1 μM p,p'-DDE corresponding to human exposure is able to increase the mitochondrial respiration per individual mitochondrion at the end of adipocyte maturation. Our data reveal that long-lasting exposure to p,p'-DDE could interfere with the metabolic programming of mature adipocytes.

See more in PubMed

Rosenwald M., Perdikari A., Rülicke T., Wolfrum C. Bi-Directional Interconversion of Brite and White Adipocytes. Nat. Cell Biol. 2013;15:659–667. doi: 10.1038/ncb2740. PubMed DOI

Tang Q.Q., Lane M.D. Adipogenesis: From Stem Cell to Adipocyte. Annu. Rev. Biochem. 2012;81:715–736. doi: 10.1146/annurev-biochem-052110-115718. PubMed DOI

Kladnická I., Čedíková M., Kripnerová M., Dvořáková J., Kohoutová M., Tůma Z., Müllerová D., Kuncová J. Mitochondrial Respiration of Adipocytes Differentiating From Human Mesenchymal Stem Cells Derived From Adipose Tissue. Physiol. Res. 2019:S287–S296. doi: 10.33549/physiolres.934353. PubMed DOI

Wang L., Hu J., Zhou H. Macrophage and Adipocyte Mitochondrial Dysfunction in Obesity-Induced Metabolic Diseases. World J. Mens Health. 2020;38:e53. doi: 10.5534/wjmh.200163. PubMed DOI PMC

Müller S., Kulenkampff E., Wolfrum C. Adipose Tissue Stem Cells. In: Herzig S., editor. Metabolic Control. Volume 233. Springer International Publishing; Cham, Switzerland: 2015. pp. 251–263.

Wellen K.E., Hotamisligil G.S. Inflammation, Stress, and Diabetes. J. Clin. Investig. 2005;115:1111–1119. doi: 10.1172/JCI25102. PubMed DOI PMC

Berg A.H., Scherer P.E. Adipose Tissue, Inflammation, and Cardiovascular Disease. Circ. Res. 2005;96:939–949. doi: 10.1161/01.RES.0000163635.62927.34. PubMed DOI

Armani A., Mammi C., Marzolla V., Calanchini M., Antelmi A., Rosano G.M.C., Fabbri A., Caprio M. Cellular Models for Understanding Adipogenesis, Adipose Dysfunction, and Obesity. J. Cell. Biochem. 2010;110:564–572. doi: 10.1002/jcb.22598. PubMed DOI

Kwan H.Y., Chao X., Su T., Fu X.-Q., Liu B., Tse A.K.W., Fong W.F., Yu Z.-L. Dietary Lipids and Adipocytes: Potential Therapeutic Targets in Cancers. J. Nutr. Biochem. 2015;26:303–311. doi: 10.1016/j.jnutbio.2014.11.001. PubMed DOI

Speakman J.R., O’Rahilly S. Fat: An Evolving Issue. Dis. Models Mech. 2012;5:569–573. doi: 10.1242/dmm.010553. PubMed DOI PMC

Li X., Qi L. Gene-Environment Interactions on Body Fat Distribution. Int. J. Mol. Sci. 2019;20:3690. doi: 10.3390/ijms20153690. PubMed DOI PMC

Elmore S.E., La Merrill M.A. Oxidative Phosphorylation Impairment by DDT and DDE. Front. Endocrinol. 2019;10:122. doi: 10.3389/fendo.2019.00122. PubMed DOI PMC

Smeds A., Saukko P. Identification and Quantification of Polychlorinated Biphenyls and Some Endocrine Disrupting Pesticides in Human Adipose Tissue from Finland. Chemosphere. 2001;44:1463–1471. doi: 10.1016/S0045-6535(00)00313-1. PubMed DOI

Dirinck E.L., Dirtu A.C., Govindan M., Covaci A., Gaal L.F.V., Jorens P.G. Exposure to Persistent Organic Pollutants: Relationship With Abnormal Glucose Metabolism and Visceral Adiposity. Diabetes Care. 2014;37:1951–1958. doi: 10.2337/dc13-2329. PubMed DOI

Guo W., Pan B., Sakkiah S., Yavas G., Ge W., Zou W., Tong W., Hong H. Persistent Organic Pollutants in Food: Contamination Sources, Health Effects and Detection Methods. Int. J. Environ. Res. Public Health. 2019;16:4361. doi: 10.3390/ijerph16224361. PubMed DOI PMC

Franco M.E., Fernandez-Luna M.T., Ramirez A.J., Lavado R. Metabolomic-Based Assessment Reveals Dysregulation of Lipid Profiles in Human Liver Cells Exposed to Environmental Obesogens. Toxicol. Appl. Pharmacol. 2020;398:115009. doi: 10.1016/j.taap.2020.115009. PubMed DOI

Rylander L., Nilsson-Ehle P., Hagmar L. A Simplified Precise Method for Adjusting Serum Levels of Persistent Organohalogen Pollutants to Total Serum Lipids. Chemosphere. 2006;62:333–336. doi: 10.1016/j.chemosphere.2005.04.107. PubMed DOI

Cano-Sancho G., Salmon A.G., La Merrill M.A. Association between Exposure to p,p ′-DDT and Its Metabolite p,p ′-DDE with Obesity: Integrated Systematic Review and Meta-Analysis. Environ. Health Perspect. 2017;125:096002. doi: 10.1289/EHP527. PubMed DOI PMC

Müllerová D., Kopecký J. White Adipose Tissue: Storage and Effector Site for Environmental Pollutants. Physiol. Res. 2007;56:375–381. PubMed

Moreno-Aliaga M.J., Matsumura F. Effects of 1,1,1-Trichloro-2,2-Bis(p-Chlorophenyl)-Ethane (p,p’-DDT) on 3T3-L1 and 3T3-F442A Adipocyte Differentiation. Biochem. Pharm. 2002;63:997–1007. doi: 10.1016/S0006-2952(01)00933-9. PubMed DOI

Chen J.-Q., Brown T.R., Russo J. Regulation of Energy Metabolism Pathways by Estrogens and Estrogenic Chemicals and Potential Implications in Obesity Associated with Increased Exposure to Endocrine Disruptors. Biochim. Biophys. Acta (BBA) Mol. Cell Res. 2009;1793:1128–1143. doi: 10.1016/j.bbamcr.2009.03.009. PubMed DOI PMC

Ferreira F.M.L., Madeira V.M.C., Moreno A.J. Interactions of 2,2-Bis(p-Chlorophenyl)-1,1-Dichloroethylene with Mitochondrial Oxidative Phosphorylation. Biochem. Pharmacol. 1997;53:299–308. doi: 10.1016/S0006-2952(96)00689-2. PubMed DOI

Liu Q., Wang Q., Xu C., Shao W., Zhang C., Liu H., Jiang Z., Gu A. Organochloride Pesticides Impaired Mitochondrial Function in Hepatocytes and Aggravated Disorders of Fatty Acid Metabolism. Sci. Rep. 2017;7:46339. doi: 10.1038/srep46339. PubMed DOI PMC

Tohru O., Tetsuo T., Hiroshi O. Effects of Dichlorodiphenyltrichloroethane and Its Analogues on Rat Liver Mitochondria. Biochem. Pharmacol. 1982;31:397–404. doi: 10.1016/0006-2952(82)90188-5. PubMed DOI

Rodríguez-Burford C., Oelschlager D.K., Talley L.I., Barnes M.N., Partridge E.E., Grizzle W.E. The Use of Dimethylsulfoxide as a Vehicle in Cell Culture Experiments Using Ovarian Carcinoma Cell Lines. Biotech. Histochem. 2003;78:17–21. doi: 10.1080/10520290312120004. PubMed DOI

Oikonomopoulos A., van Deen W.K., Manansala A.-R., Lacey P.N., Tomakili T.A., Ziman A., Hommes D.W. Optimization of Human Mesenchymal Stem Cell Manufacturing: The Effects of Animal/Xeno-Free Media. Sci. Rep. 2015;5:16570. doi: 10.1038/srep16570. PubMed DOI PMC

Khanna S., Singh N., Brave V. Natural Dyes versus Lysochrome Dyes in Cheiloscopy: A Comparative Evaluation. J. Forensic Dent. Sci. 2010;2:11. doi: 10.4103/0974-2948.71051. PubMed DOI PMC

Furuhashi M., Saitoh S., Shimamoto K., Miura T. Fatty Acid-Binding Protein 4 (FABP4): Pathophysiological Insights and Potent Clinical Biomarker of Metabolic and Cardiovascular Diseases. Clin. Med. Insights Cardiol. 2014;8s3:CMC.S17067. doi: 10.4137/CMC.S17067. PubMed DOI PMC

Zhang Y., Marsboom G., Toth P.T., Rehman J. Mitochondrial Respiration Regulates Adipogenic Differentiation of Human Mesenchymal Stem Cells. PLoS ONE. 2013;8:e77077. doi: 10.1371/journal.pone.0077077. PubMed DOI PMC

Byczkowski J.Z. The Mode of Action of p,P′-DDT on Mammalian Mitochondria. Toxicology. 1976;6:309–314. doi: 10.1016/0300-483X(76)90034-2. PubMed DOI

La Merrill M., Birnbaum L.S. Childhood Obesity and Environmental Chemicals. Mt. Sinai J. Med. A J. Transl. Pers. Med. 2011;78:22–48. doi: 10.1002/msj.20229. PubMed DOI PMC

Holmström M.H., Iglesias-Gutierrez E., Zierath J.R., Garcia-Roves P.M. Tissue-Specific Control of Mitochondrial Respiration in Obesity-Related Insulin Resistance and Diabetes. Am. J. Physiol. Endocrinol. Metab. 2012;302:E731–E739. doi: 10.1152/ajpendo.00159.2011. PubMed DOI

Alcalá M., Calderon-Dominguez M., Bustos E., Ramos P., Casals N., Serra D., Viana M., Herrero L. Increased Inflammation, Oxidative Stress and Mitochondrial Respiration in Brown Adipose Tissue from Obese Mice. Sci. Rep. 2017;7 doi: 10.1038/s41598-017-16463-6. PubMed DOI PMC

Choi M.J., Jung S.-B., Lee S.E., Kang S.G., Lee J.H., Ryu M.J., Chung H.K., Chang J.Y., Kim Y.K., Hong H.J., et al. An Adipocyte-Specific Defect in Oxidative Phosphorylation Increases Systemic Energy Expenditure and Protects against Diet-Induced Obesity in Mouse Models. Diabetologia. 2020;63:837–852. doi: 10.1007/s00125-019-05082-7. PubMed DOI

Böhm A., Keuper M., Meile T., Zdichavsky M., Fritsche A., Häring H.-U., de Angelis M.H., Staiger H., Franko A. Increased Mitochondrial Respiration of Adipocytes from Metabolically Unhealthy Obese Compared to Healthy Obese Individuals. Sci. Rep. 2020;10 doi: 10.1038/s41598-020-69016-9. PubMed DOI PMC

Kim J., Sun Q., Yue Y., Yoon K.S., Whang K.-Y., Marshall Clark J., Park Y. 4,4′-Dichlorodiphenyltrichloroethane (DDT) and 4,4′-Dichlorodiphenyldichloroethylene (DDE) Promote Adipogenesis in 3T3-L1 Adipocyte Cell Culture. Pestic. Biochem. Physiol. 2016;131:40–45. doi: 10.1016/j.pestbp.2016.01.005. PubMed DOI

Gregoire F.M., Smas C.M., Sul H.S. Understanding Adipocyte Differentiation. Physiol. Rev. 1998;78:783–809. doi: 10.1152/physrev.1998.78.3.783. PubMed DOI

vonderEmbse A.N., Elmore S.E., Jackson K.B., Habecker B.A., Manz K.E., Pennell K.D., Lein P.J., La Merrill M.A. Developmental Exposure to DDT or DDE Alters Sympathetic Innervation of Brown Adipose in Adult Female Mice. Environ. Health. 2021;20 doi: 10.1186/s12940-021-00721-2. PubMed DOI PMC

Nevoral J., Kolinko Y., Moravec J., Žalmanová T., Hošková K., Prokešová Š., Klein P., Ghaibour K., Hošek P., Štiavnická M., et al. Long-Term Exposure to Very Low Doses of Bisphenol S Affects Female Reproduction. Reproduction. 2018;156:47–57. doi: 10.1530/REP-18-0092. PubMed DOI

Hirabara S.M., Curi R., Maechler P. Saturated Fatty Acid-Induced Insulin Resistance Is Associated with Mitochondrial Dysfunction in Skeletal Muscle Cells. J. Cell. Physiol. 2010;222:187–194. doi: 10.1002/jcp.21936. PubMed DOI

Newest 20 citations...

See more in
Medvik | PubMed

Obesogens in Foods

. 2022 May 09 ; 12 (5) : . [epub] 20220509

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...