Chronic DDE Exposure Modifies Mitochondrial Respiration during Differentiation of Human Adipose-Derived Mesenchymal Stem Cells into Mature Adipocytes
Language English Country Switzerland Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
34439734
PubMed Central
PMC8393889
DOI
10.3390/biom11081068
PII: biom11081068
Knihovny.cz E-resources
- Keywords
- adipogenesis, human adipose-derived mesenchymal stem cells, mitochondrial respiration, p,p′-DDE,
- MeSH
- Adipogenesis drug effects MeSH
- Cell Differentiation drug effects MeSH
- Dichlorodiphenyl Dichloroethylene toxicity MeSH
- Cells, Cultured MeSH
- Environmental Pollutants toxicity MeSH
- Humans MeSH
- Membrane Potential, Mitochondrial MeSH
- Mesenchymal Stem Cells cytology drug effects MeSH
- Mitochondria drug effects MeSH
- Obesity metabolism MeSH
- Adipocytes cytology drug effects MeSH
- Check Tag
- Humans MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Dichlorodiphenyl Dichloroethylene MeSH
- Environmental Pollutants MeSH
The contribution of environmental pollutants to the obesity pandemic is still not yet fully recognized. Elucidating possible cellular and molecular mechanisms of their effects is of high importance. Our study aimed to evaluate the effect of chronic, 21-day-long, 2,2-bis (4-chlorophenyl)-1,1-dichlorethylenedichlorodiphenyldichloroethylene (p,p'-DDE) exposure of human adipose-derived mesenchymal stem cells committed to adipogenesis on mitochondrial oxygen consumption on days 4, 10, and 21. In addition, the mitochondrial membrane potential (MMP), the quality of the mitochondrial network, and lipid accumulation in maturing cells were evaluated. Compared to control differentiating adipocytes, exposure to p,p'-DDE at 1 μM concentration significantly increased basal (routine) mitochondrial respiration, ATP-linked oxygen consumption and MMP of intact cells on day 21 of adipogenesis. In contrast, higher pollutant concentration seemed to slow down the gradual increase in ATP-linked oxygen consumption typical for normal adipogenesis. Organochlorine p,p'-DDE did not alter citrate synthase activity. In conclusion, in vitro 1 μM p,p'-DDE corresponding to human exposure is able to increase the mitochondrial respiration per individual mitochondrion at the end of adipocyte maturation. Our data reveal that long-lasting exposure to p,p'-DDE could interfere with the metabolic programming of mature adipocytes.
Biomedical Centre Faculty of Medicine in Pilsen Charles University 301 00 Pilsen Czech Republic
Department of Biology Faculty of Medicine in Pilsen Charles University 301 00 Pilsen Czech Republic
See more in PubMed
Rosenwald M., Perdikari A., Rülicke T., Wolfrum C. Bi-Directional Interconversion of Brite and White Adipocytes. Nat. Cell Biol. 2013;15:659–667. doi: 10.1038/ncb2740. PubMed DOI
Tang Q.Q., Lane M.D. Adipogenesis: From Stem Cell to Adipocyte. Annu. Rev. Biochem. 2012;81:715–736. doi: 10.1146/annurev-biochem-052110-115718. PubMed DOI
Kladnická I., Čedíková M., Kripnerová M., Dvořáková J., Kohoutová M., Tůma Z., Müllerová D., Kuncová J. Mitochondrial Respiration of Adipocytes Differentiating From Human Mesenchymal Stem Cells Derived From Adipose Tissue. Physiol. Res. 2019:S287–S296. doi: 10.33549/physiolres.934353. PubMed DOI
Wang L., Hu J., Zhou H. Macrophage and Adipocyte Mitochondrial Dysfunction in Obesity-Induced Metabolic Diseases. World J. Mens Health. 2020;38:e53. doi: 10.5534/wjmh.200163. PubMed DOI PMC
Müller S., Kulenkampff E., Wolfrum C. Adipose Tissue Stem Cells. In: Herzig S., editor. Metabolic Control. Volume 233. Springer International Publishing; Cham, Switzerland: 2015. pp. 251–263.
Wellen K.E., Hotamisligil G.S. Inflammation, Stress, and Diabetes. J. Clin. Investig. 2005;115:1111–1119. doi: 10.1172/JCI25102. PubMed DOI PMC
Berg A.H., Scherer P.E. Adipose Tissue, Inflammation, and Cardiovascular Disease. Circ. Res. 2005;96:939–949. doi: 10.1161/01.RES.0000163635.62927.34. PubMed DOI
Armani A., Mammi C., Marzolla V., Calanchini M., Antelmi A., Rosano G.M.C., Fabbri A., Caprio M. Cellular Models for Understanding Adipogenesis, Adipose Dysfunction, and Obesity. J. Cell. Biochem. 2010;110:564–572. doi: 10.1002/jcb.22598. PubMed DOI
Kwan H.Y., Chao X., Su T., Fu X.-Q., Liu B., Tse A.K.W., Fong W.F., Yu Z.-L. Dietary Lipids and Adipocytes: Potential Therapeutic Targets in Cancers. J. Nutr. Biochem. 2015;26:303–311. doi: 10.1016/j.jnutbio.2014.11.001. PubMed DOI
Speakman J.R., O’Rahilly S. Fat: An Evolving Issue. Dis. Models Mech. 2012;5:569–573. doi: 10.1242/dmm.010553. PubMed DOI PMC
Li X., Qi L. Gene-Environment Interactions on Body Fat Distribution. Int. J. Mol. Sci. 2019;20:3690. doi: 10.3390/ijms20153690. PubMed DOI PMC
Elmore S.E., La Merrill M.A. Oxidative Phosphorylation Impairment by DDT and DDE. Front. Endocrinol. 2019;10:122. doi: 10.3389/fendo.2019.00122. PubMed DOI PMC
Smeds A., Saukko P. Identification and Quantification of Polychlorinated Biphenyls and Some Endocrine Disrupting Pesticides in Human Adipose Tissue from Finland. Chemosphere. 2001;44:1463–1471. doi: 10.1016/S0045-6535(00)00313-1. PubMed DOI
Dirinck E.L., Dirtu A.C., Govindan M., Covaci A., Gaal L.F.V., Jorens P.G. Exposure to Persistent Organic Pollutants: Relationship With Abnormal Glucose Metabolism and Visceral Adiposity. Diabetes Care. 2014;37:1951–1958. doi: 10.2337/dc13-2329. PubMed DOI
Guo W., Pan B., Sakkiah S., Yavas G., Ge W., Zou W., Tong W., Hong H. Persistent Organic Pollutants in Food: Contamination Sources, Health Effects and Detection Methods. Int. J. Environ. Res. Public Health. 2019;16:4361. doi: 10.3390/ijerph16224361. PubMed DOI PMC
Franco M.E., Fernandez-Luna M.T., Ramirez A.J., Lavado R. Metabolomic-Based Assessment Reveals Dysregulation of Lipid Profiles in Human Liver Cells Exposed to Environmental Obesogens. Toxicol. Appl. Pharmacol. 2020;398:115009. doi: 10.1016/j.taap.2020.115009. PubMed DOI
Rylander L., Nilsson-Ehle P., Hagmar L. A Simplified Precise Method for Adjusting Serum Levels of Persistent Organohalogen Pollutants to Total Serum Lipids. Chemosphere. 2006;62:333–336. doi: 10.1016/j.chemosphere.2005.04.107. PubMed DOI
Cano-Sancho G., Salmon A.G., La Merrill M.A. Association between Exposure to p,p ′-DDT and Its Metabolite p,p ′-DDE with Obesity: Integrated Systematic Review and Meta-Analysis. Environ. Health Perspect. 2017;125:096002. doi: 10.1289/EHP527. PubMed DOI PMC
Müllerová D., Kopecký J. White Adipose Tissue: Storage and Effector Site for Environmental Pollutants. Physiol. Res. 2007;56:375–381. PubMed
Moreno-Aliaga M.J., Matsumura F. Effects of 1,1,1-Trichloro-2,2-Bis(p-Chlorophenyl)-Ethane (p,p’-DDT) on 3T3-L1 and 3T3-F442A Adipocyte Differentiation. Biochem. Pharm. 2002;63:997–1007. doi: 10.1016/S0006-2952(01)00933-9. PubMed DOI
Chen J.-Q., Brown T.R., Russo J. Regulation of Energy Metabolism Pathways by Estrogens and Estrogenic Chemicals and Potential Implications in Obesity Associated with Increased Exposure to Endocrine Disruptors. Biochim. Biophys. Acta (BBA) Mol. Cell Res. 2009;1793:1128–1143. doi: 10.1016/j.bbamcr.2009.03.009. PubMed DOI PMC
Ferreira F.M.L., Madeira V.M.C., Moreno A.J. Interactions of 2,2-Bis(p-Chlorophenyl)-1,1-Dichloroethylene with Mitochondrial Oxidative Phosphorylation. Biochem. Pharmacol. 1997;53:299–308. doi: 10.1016/S0006-2952(96)00689-2. PubMed DOI
Liu Q., Wang Q., Xu C., Shao W., Zhang C., Liu H., Jiang Z., Gu A. Organochloride Pesticides Impaired Mitochondrial Function in Hepatocytes and Aggravated Disorders of Fatty Acid Metabolism. Sci. Rep. 2017;7:46339. doi: 10.1038/srep46339. PubMed DOI PMC
Tohru O., Tetsuo T., Hiroshi O. Effects of Dichlorodiphenyltrichloroethane and Its Analogues on Rat Liver Mitochondria. Biochem. Pharmacol. 1982;31:397–404. doi: 10.1016/0006-2952(82)90188-5. PubMed DOI
Rodríguez-Burford C., Oelschlager D.K., Talley L.I., Barnes M.N., Partridge E.E., Grizzle W.E. The Use of Dimethylsulfoxide as a Vehicle in Cell Culture Experiments Using Ovarian Carcinoma Cell Lines. Biotech. Histochem. 2003;78:17–21. doi: 10.1080/10520290312120004. PubMed DOI
Oikonomopoulos A., van Deen W.K., Manansala A.-R., Lacey P.N., Tomakili T.A., Ziman A., Hommes D.W. Optimization of Human Mesenchymal Stem Cell Manufacturing: The Effects of Animal/Xeno-Free Media. Sci. Rep. 2015;5:16570. doi: 10.1038/srep16570. PubMed DOI PMC
Khanna S., Singh N., Brave V. Natural Dyes versus Lysochrome Dyes in Cheiloscopy: A Comparative Evaluation. J. Forensic Dent. Sci. 2010;2:11. doi: 10.4103/0974-2948.71051. PubMed DOI PMC
Furuhashi M., Saitoh S., Shimamoto K., Miura T. Fatty Acid-Binding Protein 4 (FABP4): Pathophysiological Insights and Potent Clinical Biomarker of Metabolic and Cardiovascular Diseases. Clin. Med. Insights Cardiol. 2014;8s3:CMC.S17067. doi: 10.4137/CMC.S17067. PubMed DOI PMC
Zhang Y., Marsboom G., Toth P.T., Rehman J. Mitochondrial Respiration Regulates Adipogenic Differentiation of Human Mesenchymal Stem Cells. PLoS ONE. 2013;8:e77077. doi: 10.1371/journal.pone.0077077. PubMed DOI PMC
Byczkowski J.Z. The Mode of Action of p,P′-DDT on Mammalian Mitochondria. Toxicology. 1976;6:309–314. doi: 10.1016/0300-483X(76)90034-2. PubMed DOI
La Merrill M., Birnbaum L.S. Childhood Obesity and Environmental Chemicals. Mt. Sinai J. Med. A J. Transl. Pers. Med. 2011;78:22–48. doi: 10.1002/msj.20229. PubMed DOI PMC
Holmström M.H., Iglesias-Gutierrez E., Zierath J.R., Garcia-Roves P.M. Tissue-Specific Control of Mitochondrial Respiration in Obesity-Related Insulin Resistance and Diabetes. Am. J. Physiol. Endocrinol. Metab. 2012;302:E731–E739. doi: 10.1152/ajpendo.00159.2011. PubMed DOI
Alcalá M., Calderon-Dominguez M., Bustos E., Ramos P., Casals N., Serra D., Viana M., Herrero L. Increased Inflammation, Oxidative Stress and Mitochondrial Respiration in Brown Adipose Tissue from Obese Mice. Sci. Rep. 2017;7 doi: 10.1038/s41598-017-16463-6. PubMed DOI PMC
Choi M.J., Jung S.-B., Lee S.E., Kang S.G., Lee J.H., Ryu M.J., Chung H.K., Chang J.Y., Kim Y.K., Hong H.J., et al. An Adipocyte-Specific Defect in Oxidative Phosphorylation Increases Systemic Energy Expenditure and Protects against Diet-Induced Obesity in Mouse Models. Diabetologia. 2020;63:837–852. doi: 10.1007/s00125-019-05082-7. PubMed DOI
Böhm A., Keuper M., Meile T., Zdichavsky M., Fritsche A., Häring H.-U., de Angelis M.H., Staiger H., Franko A. Increased Mitochondrial Respiration of Adipocytes from Metabolically Unhealthy Obese Compared to Healthy Obese Individuals. Sci. Rep. 2020;10 doi: 10.1038/s41598-020-69016-9. PubMed DOI PMC
Kim J., Sun Q., Yue Y., Yoon K.S., Whang K.-Y., Marshall Clark J., Park Y. 4,4′-Dichlorodiphenyltrichloroethane (DDT) and 4,4′-Dichlorodiphenyldichloroethylene (DDE) Promote Adipogenesis in 3T3-L1 Adipocyte Cell Culture. Pestic. Biochem. Physiol. 2016;131:40–45. doi: 10.1016/j.pestbp.2016.01.005. PubMed DOI
Gregoire F.M., Smas C.M., Sul H.S. Understanding Adipocyte Differentiation. Physiol. Rev. 1998;78:783–809. doi: 10.1152/physrev.1998.78.3.783. PubMed DOI
vonderEmbse A.N., Elmore S.E., Jackson K.B., Habecker B.A., Manz K.E., Pennell K.D., Lein P.J., La Merrill M.A. Developmental Exposure to DDT or DDE Alters Sympathetic Innervation of Brown Adipose in Adult Female Mice. Environ. Health. 2021;20 doi: 10.1186/s12940-021-00721-2. PubMed DOI PMC
Nevoral J., Kolinko Y., Moravec J., Žalmanová T., Hošková K., Prokešová Š., Klein P., Ghaibour K., Hošek P., Štiavnická M., et al. Long-Term Exposure to Very Low Doses of Bisphenol S Affects Female Reproduction. Reproduction. 2018;156:47–57. doi: 10.1530/REP-18-0092. PubMed DOI
Hirabara S.M., Curi R., Maechler P. Saturated Fatty Acid-Induced Insulin Resistance Is Associated with Mitochondrial Dysfunction in Skeletal Muscle Cells. J. Cell. Physiol. 2010;222:187–194. doi: 10.1002/jcp.21936. PubMed DOI