Obesogens in Foods

. 2022 May 09 ; 12 (5) : . [epub] 20220509

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35625608

Obesogens, as environmental endocrine-disrupting chemicals, are supposed to have had an impact on the prevalence of rising obesity around the world over the last forty years. These chemicals are probably able to contribute not only to the development of obesity and metabolic disturbances in individuals, but also in their progeny, having the capability to epigenetically reprogram genetically inherited set-up points for body weight and body composition control during critical periods of development, such as fetal, early life, and puberty. In individuals, they may act on myriads of neuro-endocrine-immune metabolic regulatory pathways, leading to pathophysiological consequences in adipogenesis, lipogenesis, lipolysis, immunity, the influencing of central appetite and energy expenditure regulations, changes in gut microbiota-intestine functioning, and many other processes. Evidence-based medical data have recently brought much more convincing data about associations of particular chemicals and the probability of the raised risk of developing obesity. Foods are the main source of obesogens. Some obesogens occur naturally in food, but most are environmental chemicals, entering food as a foreign substance, whether in the form of contaminants or additives, and they are used in a large amount in highly processed food. This review article contributes to a better overview of obesogens, their occurrence in foods, and their impact on the human organism.

Zobrazit více v PubMed

Müllerová D., Kopecký J. White Adipose Tissue: Storage and Effector Site for Environmental Pollutants. Physiol. Res. 2007;56:375–382. doi: 10.33549/physiolres.931022. PubMed DOI

D’eon J.C., Mabury S.A. Production of Perfluorinated Carboxylic Acids (PFCAs) from the Biotransformation of Polyfluoroalkyl Phosphate Surfactants (PAPS): Exploring Routes of Human Contamination. Environ. Sci. Technol. 2007;41:4799–4805. doi: 10.1021/es070126x. PubMed DOI

Ellis D.A., Martin J.W., Silva A.O.D., Mabury S.A., Hurley M.D., Andersen M.P.S., Wallington T.J. Degradation of Fluorotelomer Alcohols: A Likely Atmospheric Source of Perfluorinated Carboxylic Acids. Environ. Sci. Technol. 2004;38:3316–3321. doi: 10.1021/es049860w. PubMed DOI

Fujii Y., Harada K.H., Koizumi A. Occurrence of Perfluorinated Carboxylic Acids (PFCAs) in Personal Care Products and Compounding Agents. Chemosphere. 2013;93:538–544. doi: 10.1016/j.chemosphere.2013.06.049. PubMed DOI

Kimura O., Fujii Y., Haraguchi K., Kato Y., Ohta C., Koga N., Endo T. Effects of Perfluoroalkyl Carboxylic Acids on the Uptake of Sulfobromophthalein via Organic Anion Transporting Polypeptides in Human Intestinal Caco-2 Cells. Biochem. Biophys. Rep. 2020;24:100807. doi: 10.1016/j.bbrep.2020.100807. PubMed DOI PMC

Watkins S.M., Reifsnyder P.R., Pan H., German J.B., Leiter E.H. Lipid Metabolome-Wide Effects of the PPARγ Agonist Rosiglitazone. J. Lipid Res. 2002;43:1809–1817. doi: 10.1194/jlr.M200169-JLR200. PubMed DOI

Bethea C.L., Mueller K., Reddy A.P., Kohama S.G., Urbanski H.F. Effects of Obesogenic Diet and Estradiol on Dorsal Raphe Gene Expression in Old Female Macaques. PLoS ONE. 2017;12:e0178788. doi: 10.1371/journal.pone.0178788. PubMed DOI PMC

Grün F., Blumberg B. Minireview: The Case for Obesogens. Mol. Endocrinol. 2009;23:1127–1134. doi: 10.1210/me.2008-0485. PubMed DOI PMC

Swedenborg E., Rüegg J., Mäkelä S., Pongratz I. Endocrine Disruptive Chemicals: Mechanisms of Action and Involvement in Metabolic Disorders. J. Mol. Endocrinol. 2009;43:1–10. doi: 10.1677/JME-08-0132. PubMed DOI

Diamanti-Kandarakis E., Bourguignon J.-P., Giudice L.C., Hauser R., Prins G.S., Soto A.M., Zoeller R.T., Gore A.C. Endocrine-Disrupting Chemicals: An Endocrine Society Scientific Statement. Endocr. Rev. 2009;30:293–342. doi: 10.1210/er.2009-0002. PubMed DOI PMC

Coster S.D., Larebeke N.V. Endocrine-Disrupting Chemicals: Associated Disorders and Mechanisms of Action. J. Environ. Public Health. 2012;2012:713696. doi: 10.1155/2012/713696. PubMed DOI PMC

Moher D., Liberati A., Tetzlaff J., Altman D.G. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. J. Clin. Epidemiol. 2009;62:1006–1012. doi: 10.1016/j.jclinepi.2009.06.005. PubMed DOI

Shea B.J., Grimshaw J.M., Wells G.A., Boers M., Andersson N., Hamel C., Porter A.C., Tugwell P., Moher D., Bouter L.M. Development of AMSTAR: A Measurement Tool to Assess the Methodological Quality of Systematic Reviews. BMC Med. Res. Methodol. 2007;7:10. doi: 10.1186/1471-2288-7-10. PubMed DOI PMC

Lyn R., Heath E., Dubhashi J. Global Implementation of Obesity Prevention Policies: A Review of Progress, Politics, and the Path Forward. Curr. Obes. Rep. 2019;8:504–516. doi: 10.1007/s13679-019-00358-w. PubMed DOI

Flegal K.M., Panagiotou O.A., Graubard B.I. Estimating Population Attributable Fractions to Quantify the Health Burden of Obesity. Ann. Epidemiol. 2015;25:201–207. doi: 10.1016/j.annepidem.2014.11.010. PubMed DOI PMC

Cedikova M., Kripnerová M., Dvorakova J., Pitule P., Grundmanova M., Babuska V., Mullerova D., Kuncova J. Mitochondria in White, Brown, and Beige Adipocytes. Stem Cells Int. 2016;2016:6067349. doi: 10.1155/2016/6067349. PubMed DOI PMC

Heindel J.J., Newbold R., Schug T.T. Endocrine Disruptors and Obesity. Nat. Rev. Endocrinol. 2015;11:653–661. doi: 10.1038/nrendo.2015.163. PubMed DOI

Ouchi N. Adipocytokines in Cardiovascular and Metabolic Diseases. J. Atheroscler. Thromb. 2016;23:645–654. doi: 10.5551/jat.34918. PubMed DOI PMC

Janesick A.S., Shioda T., Blumberg B. Transgenerational Inheritance of Prenatal Obesogen Exposure. Mol. Cell. Endocrinol. 2014;398:31–35. doi: 10.1016/j.mce.2014.09.002. PubMed DOI PMC

World Health Organization: Regional Office for Europe . European Health Report 2018: More than Numbers, Evidence for All. WHO regional office for Europe; Copenhagen, Denmark: 2019.

Heindel J.J., Blumberg B. Environmental Obesogens: Mechanisms and Controversies. Annu. Rev. Pharmacol. Toxicol. 2019;59:89–106. doi: 10.1146/annurev-pharmtox-010818-021304. PubMed DOI PMC

Grün F., Blumberg B. Environmental Obesogens: Organotins and Endocrine Disruption via Nuclear Receptor Signaling. Endocrinology. 2006;147:s50–s55. doi: 10.1210/en.2005-1129. PubMed DOI

Newbold R.R., Padilla-Banks E., Jefferson W.N. Environmental Estrogens and Obesity. Mol. Cell. Endocrinol. 2009;304:84–89. doi: 10.1016/j.mce.2009.02.024. PubMed DOI PMC

Merrill M.L., Birnbaum L.S. Childhood Obesity and Environmental Chemicals. Mt. Sinai J. Med. A J. Transl. Pers. Med. 2011;78:22–48. doi: 10.1002/msj.20229. PubMed DOI PMC

Liu G., Dhana K., Furtado J.D., Rood J., Zong G., Liang L., Qi L., Bray G.A., DeJonge L., Coull B., et al. Perfluoroalkyl Substances and Changes in Body Weight and Resting Metabolic Rate in Response to Weight-Loss Diets: A Prospective Study. PLOS Med. 2018;15:e1002502. doi: 10.1371/journal.pmed.1002502. PubMed DOI PMC

Braun J.M., Gennings C., Hauser R., Webster T.F. What Can Epidemiological Studies Tell Us about the Impact of Chemical Mixtures on Human Health? Environ. Health Perspect. 2016;124:A6–A9. doi: 10.1289/ehp.1510569. PubMed DOI PMC

Janesick A.S., Blumberg B. Obesogens: An Emerging Threat to Public Health. Am. J. Obstet. Gynecol. 2016;214:559–565. doi: 10.1016/j.ajog.2016.01.182. PubMed DOI PMC

Eriksson D., Ammann K., Chassy B., Chawade A. Comments on Two Recent Publications on GM Maize and Roundup. Sci. Rep. 2018;8:13338. doi: 10.1038/s41598-018-30440-7. PubMed DOI PMC

Angrish M.M., McQueen C.A., Cohen-Hubal E., Bruno M., Ge Y., Chorley B.N. Editor’s Highlight: Mechanistic Toxicity Tests Based on an Adverse Outcome Pathway Network for Hepatic Steatosis. Toxicol. Sci. 2017;159:159–169. doi: 10.1093/toxsci/kfx121. PubMed DOI PMC

Foulds C.E., Treviño L.S., York B., Walker C.L. Endocrine-Disrupting Chemicals and Fatty Liver Disease. Nat. Rev. Endocrinol. 2017;13:445–457. doi: 10.1038/nrendo.2017.42. PubMed DOI PMC

Choi S.-I., Kwon H.-Y., Han X., Men X., Choi Y.-E., Jang G.-W., Park K.-T., Han J., Lee O.-H. Environmental Obesogens (Bisphenols, Phthalates and Parabens) and Their Impacts on Adipogenic Transcription Factors in the Absence of Dexamethasone in 3T3-L1 Cells. J. Steroid Biochem. Mol. Biol. 2021;214:105994. doi: 10.1016/j.jsbmb.2021.105994. PubMed DOI

Ruiz-Ojeda F., Rupérez A., Gomez-Llorente C., Gil A., Aguilera C. Cell Models and Their Application for Studying Adipogenic Differentiation in Relation to Obesity: A Review. Int. J. Mol. Sci. 2016;17:1040. doi: 10.3390/ijms17071040. PubMed DOI PMC

Mohajer N., Du C.Y., Checkcinco C., Blumberg B. Obesogens: How They Are Identified and Molecular Mechanisms Underlying Their Action. Front. Endocrinol. 2021;12:780888. doi: 10.3389/fendo.2021.780888. PubMed DOI PMC

Cipolletta D., Feuerer M., Li A., Kamei N., Lee J., Shoelson S.E., Benoist C., Mathis D. PPAR-γ Is a Major Driver of the Accumulation and Phenotype of Adipose Tissue Treg Cells. Nature. 2012;486:549–553. doi: 10.1038/nature11132. PubMed DOI PMC

Zuo Z., Chen S., Wu T., Zhang J., Su Y., Chen Y., Wang C. Tributyltin Causes Obesity and Hepatic Steatosis in Male Mice. Environ. Toxicol. 2011;26:79–85. doi: 10.1002/tox.20531. PubMed DOI

Hines E.P., White S.S., Stanko J.P., Gibbs-Flournoy E.A., Lau C., Fenton S.E. Phenotypic Dichotomy Following Developmental Exposure to Perfluorooctanoic Acid (PFOA) in Female CD-1 Mice: Low Doses Induce Elevated Serum Leptin and Insulin, and Overweight in Mid-Life. Mol. Cell. Endocrinol. 2009;304:97–105. doi: 10.1016/j.mce.2009.02.021. PubMed DOI

Rubin D.B. Estimating the Causal Effects of Smoking. Stat. Med. 2001;20:1395–1414. doi: 10.1002/sim.677. PubMed DOI

Petrakis D., Vassilopoulou L., Mamoulakis C., Psycharakis C., Anifantaki A., Sifakis S., Docea A., Tsiaoussis J., Makrigiannakis A., Tsatsakis A. Endocrine Disruptors Leading to Obesity and Related Diseases. Int. J. Environ. Res. Public Health. 2017;14:1282. doi: 10.3390/ijerph14101282. PubMed DOI PMC

Heindel J.J., Saal F.S.V., Blumberg B., Bovolin P., Calamandrei G., Ceresini G., Cohn B.A., Fabbri E., Gioiosa L., Kassotis C., et al. Parma Consensus Statement on Metabolic Disruptors. Environ. Health. 2015;14:54. doi: 10.1186/s12940-015-0042-7. PubMed DOI PMC

Tappy L. Fructose-Containing Caloric Sweeteners as a Cause of Obesity and Metabolic Disorders. J. Exp. Biol. 2018;221:jeb164202. doi: 10.1242/jeb.164202. PubMed DOI

Alemán J.O., Henderson W.A., Walker J.M., Ronning A., Jones D.R., Walter P.J., Daniel S.G., Bittinger K., Vaughan R., MacArthur R., et al. Excess Dietary Fructose Does Not Alter Gut Microbiota or Permeability in Humans: A Pilot Randomized Controlled Study. J. Clin. Trans. Sci. 2021;5:e143. doi: 10.1017/cts.2021.801. PubMed DOI PMC

Ke H., Luan Y., Wu S., Zhu Y., Tong X. The Role of Mondo Family Transcription Factors in Nutrient-Sensing and Obesity. Front. Endocrinol. 2021;12:653972. doi: 10.3389/fendo.2021.653972. PubMed DOI PMC

Arden C., Tudhope S.J., Petrie J.L., Al-Oanzi Z.H., Cullen K.S., Lange A.J., Towle H.C., Agius L. Fructose 2,6-Bisphosphate Is Essential for Glucose-Regulated Gene Transcription of Glucose-6-Phosphatase and Other ChREBP Target Genes in Hepatocytes. Biochem. J. 2012;443:111–123. doi: 10.1042/BJ20111280. PubMed DOI

Goran M.I., Dumke K., Bouret S.G., Kayser B., Walker R.W., Blumberg B. The Obesogenic Effect of High Fructose Exposure during Early Development. Nat. Rev. Endocrinol. 2013;9:494–500. doi: 10.1038/nrendo.2013.108. PubMed DOI PMC

Park J.H., Jeong H.J., Lumen B.O.D. Contents and Bioactivities of Lunasin, Bowman−Birk Inhibitor, and Isoflavones in Soybean Seed. J. Agric. Food Chem. 2005;53:7686–7690. doi: 10.1021/jf0506481. PubMed DOI

Penza M., Montani C., Romani A., Vignolini P., Pampaloni B., Tanini A., Brandi M.L., Alonso-Magdalena P., Nadal A., Ottobrini L., et al. Genistein Affects Adipose Tissue Deposition in a Dose-Dependent and Gender-Specific Manner. Endocrinology. 2006;147:5740–5751. doi: 10.1210/en.2006-0365. PubMed DOI

Newbold R.R., Padilla-Banks E., Jefferson W.N., Heindel J.J. Effects of Endocrine Disruptors on Obesity. Int. J. Androl. 2008;31:201–208. doi: 10.1111/j.1365-2605.2007.00858.x. PubMed DOI

Harris R.M., Waring R.H. Diethylstilboestrol—A Long-Term Legacy. Maturitas. 2012;72:108–112. doi: 10.1016/j.maturitas.2012.03.002. PubMed DOI

Nunes H.C., Scarano W.R., Deffune E., Felisbino S.L., Porreca I., Delella F.K. Bisphenol a and Mesenchymal Stem Cells: Recent Insights. Life Sci. 2018;206:22–28. doi: 10.1016/j.lfs.2018.05.023. PubMed DOI

Calafat A.M., Ye X., Wong L.-Y., Reidy J.A., Needham L.L. Exposure of the U.S. Population to Bisphenol A and 4- Tertiary -Octylphenol: 2003–2004. Environ. Health Perspect. 2008;116:39–44. doi: 10.1289/ehp.10753. PubMed DOI PMC

Grant K.L. Sample Organization Environmental Contributions to Obesity and Type 2 Diabetes. J. Enviromental Immunol. Toxicol. 2013;1:80. doi: 10.7178/jeit.12. DOI

Darbre P.D. Endocrine Disruptors and Obesity. Curr. Obes. Rep. 2017;6:18–27. doi: 10.1007/s13679-017-0240-4. PubMed DOI PMC

Legeay S., Faure S. Is Bisphenol A an Environmental Obesogen? Fundam. Clin. Pharmacol. 2017;31:594–609. doi: 10.1111/fcp.12300. PubMed DOI

Wu W., Li M., Liu A., Wu C., Li D., Deng Q., Zhang B., Du J., Gao X., Hong Y. Bisphenol A and the Risk of Obesity a Systematic Review With Meta-Analysis of the Epidemiological Evidence. Dose-Response. 2020;18:155932582091694. doi: 10.1177/1559325820916949. PubMed DOI PMC

Wang Y., Rui M., Nie Y., Lu G. Influence of Gastrointestinal Tract on Metabolism of Bisphenol A as Determined by in Vitro Simulated System. J. Hazard. Mater. 2018;355:111–118. doi: 10.1016/j.jhazmat.2018.05.011. PubMed DOI

Jacobson M.H., Woodward M., Bao W., Liu B., Trasande L. Urinary Bisphenols and Obesity Prevalence Among U.S. Children and Adolescents. J. Endocr. Soc. 2019;3:1715–1726. doi: 10.1210/js.2019-00201. PubMed DOI PMC

Marques V.B., Faria R.A., Santos L.D. Overview of the Pathophysiological Implications of Organotins on the Endocrine System. Front. Endocrinol. 2018;9:101. doi: 10.3389/fendo.2018.00101. PubMed DOI PMC

Grün F. Obesogens. Curr. Opin. Endocrinol. Diabetes Obes. 2010;17:453–459. doi: 10.1097/MED.0b013e32833ddea0. PubMed DOI

Hoch M. Organotin Compounds in the Environment—An Overview. Appl. Geochem. 2001;16:719–743. doi: 10.1016/S0883-2927(00)00067-6. DOI

Gadd G.M. Microbial Interactions with Tributyltin Compounds: Detoxification, Accumulation, and Environmental Fate. Sci. Total Environ. 2000;258:119–127. doi: 10.1016/S0048-9697(00)00512-X. PubMed DOI

Chamorro-García R., Blumberg B. Transgenerational Effects of Obesogens and the Obesity Epidemic. Curr. Opin. Pharmacol. 2014;19:153–158. doi: 10.1016/j.coph.2014.10.010. PubMed DOI PMC

Rantakokko M., Iwarsson S., Portegijs E., Viljanen A., Rantanen T. Associations Between Environmental Characteristics and Life-Space Mobility in Community-Dwelling Older People. J. Aging Health. 2015;27:606–621. doi: 10.1177/0898264314555328. PubMed DOI

Okoro H.K., Fatoki O.S., Adekola F.A., Ximba B.J., Snyman R.G., Opeolu B. Human Exposure, Biomarkers, and Fate of Organotins in the Environment. In: Whitacre D.M., editor. Reviews of Environmental Contamination and Toxicology. Volume 213. Springer; New York, NY, USA: 2011. pp. 27–54. PubMed

Kannan K., Takahashi S., Fujiwara N., Mizukawa H., Tanabe S. Organotin Compounds, Including Butyltins and Octyltins, in House Dust from Albany, New York, USA. Arch. Environ. Contam. Toxicol. 2010;58:901–907. doi: 10.1007/s00244-010-9513-6. PubMed DOI

Li Z., Yu Z., Gao P., Yin D. Multigenerational Effects of Perfluorooctanoic Acid on Lipid Metabolism of Caenorhabditis Elegans and Its Potential Mechanism. Sci. Total Environ. 2020;703:134762. doi: 10.1016/j.scitotenv.2019.134762. PubMed DOI

Bloom M.S., Commodore S., Ferguson P.L., Neelon B., Pearce J.L., Baumer A., Newman R.B., Grobman W., Tita A., Roberts J., et al. Association between Gestational PFAS Exposure and Children’s Adiposity in a Diverse Population. Environ. Res. 2022;203:111820. doi: 10.1016/j.envres.2021.111820. PubMed DOI PMC

Giuliani A., Zuccarini M., Cichelli A., Khan H., Reale M. Critical Review on the Presence of Phthalates in Food and Evidence of Their Biological Impact. Int. J. Environ. Res. Public Health. 2020;17:5655. doi: 10.3390/ijerph17165655. PubMed DOI PMC

Stahlhut R.W., Wijngaarden E.V., Dye T.D., Cook S., Swan S.H. Concentrations of Urinary Phthalate Metabolites Are Associated with Increased Waist Circumference and Insulin Resistance in Adult U.S. Males. Environ. Health Perspect. 2007;115:876–882. doi: 10.1289/ehp.9882. PubMed DOI PMC

Hao C., Cheng X., Xia H., Ma X. The Endocrine Disruptor Mono-(2-Ethylhexyl)Phthalate Promotes Adipocyte Differentiation and Induces Obesity in Mice. Biosci. Rep. 2012;32:619–629. doi: 10.1042/BSR20120042. PubMed DOI PMC

Berman Y.E., Doherty D.A., Main K.M., Frederiksen H., Keelan J.A., Newnham J.P., Hart R.J. The Influence of Prenatal Exposure to Phthalates on Subsequent Male Growth and Body Composition in Adolescence. Environ. Res. 2021;195:110313. doi: 10.1016/j.envres.2020.110313. PubMed DOI

Pallotti F., Pelloni M., Gianfrilli D., Lenzi A., Lombardo F., Paoli D. Mechanisms of Testicular Disruption from Exposure to Bisphenol A and Phtalates. J. Clin. Med. 2020;9:471. doi: 10.3390/jcm9020471. PubMed DOI PMC

Mezcua M., Martínez-Uroz M.A., Gómez-Ramos M.M., Gómez M.J., Navas J.M., Fernández-Alba A.R. Analysis of Synthetic Endocrine-Disrupting Chemicals in Food: A Review. Talanta. 2012;100:90–106. doi: 10.1016/j.talanta.2012.07.078. PubMed DOI

Guo W., Holden A., Smith S.C., Gephart R., Petreas M., Park J.-S. PBDE Levels in Breast Milk Are Decreasing in California. Chemosphere. 2016;150:505–513. doi: 10.1016/j.chemosphere.2015.11.032. PubMed DOI

Wong K.H., Durrani T.S. Exposures to Endocrine Disrupting Chemicals in Consumer Products—A Guide for Pediatricians. Curr. Probl. Pediatric Adolesc. Health Care. 2017;47:107–118. doi: 10.1016/j.cppeds.2017.04.002. PubMed DOI

Vuong A.M., Braun J.M., Wang Z., Yolton K., Xie C., Sjodin A., Webster G.M., Lanphear B.P., Chen A. Exposure to Polybrominated Diphenyl Ethers (PBDEs) during Childhood and Adiposity Measures at Age 8 Years. Environ. Int. 2019;123:148–155. doi: 10.1016/j.envint.2018.11.050. PubMed DOI PMC

Wen Q., Xie X., Ren Q., Du Y. Polybrominated Diphenyl Ether Congener 99 (PBDE 99) Promotes Adipocyte Lineage Commitment of C3H10T1/2 Mesenchymal Stem Cells. Chemosphere. 2022;290:133312. doi: 10.1016/j.chemosphere.2021.133312. PubMed DOI

Tung E.W.Y., Boudreau A., Wade M.G., Atlas E. Induction of Adipocyte Differentiation by Polybrominated Diphenyl Ethers (PBDEs) in 3T3-L1 Cells. PLoS ONE. 2014;9:e94583. doi: 10.1371/journal.pone.0094583. PubMed DOI PMC

Lv Q.-X., Wang W., Li X.-H., Yu L., Zhang Y., Tian Y. Polychlorinated Biphenyls and Polybrominated Biphenyl Ethers in Adipose Tissue and Matched Serum from an E-Waste Recycling Area (Wenling, China) Environ. Pollut. 2015;199:219–226. doi: 10.1016/j.envpol.2015.02.008. PubMed DOI

Martí-Cid R., Llobet J.M., Castell V., Domingo J.L. Human Exposure to Polychlorinated Naphthalenes and Polychlorinated Diphenyl Ethers from Foods in Catalonia, Spain: Temporal Trend. Environ. Sci. Technol. 2008;42:4195–4201. doi: 10.1021/es800064p. PubMed DOI

Brown R.H., Ng D.K., Steele K., Schweitzer M., Groopman J.D. Mobilization of Environmental Toxicants Following Bariatric Surgery. Obesity. 2019;27:1865–1873. doi: 10.1002/oby.22618. PubMed DOI

Valvi D., Mendez M.A., Martinez D., Grimalt J.O., Torrent M., Sunyer J., Vrijheid M. Prenatal Concentrations of Polychlorinated Biphenyls, DDE, and DDT and Overweight in Children: A Prospective Birth Cohort Study. Environ. Health Perspect. 2012;120:451–457. doi: 10.1289/ehp.1103862. PubMed DOI PMC

Tang-Péronard J.L., Heitmann B.L., Andersen H.R., Steuerwald U., Grandjean P., Weihe P., Jensen T.K. Association between Prenatal Polychlorinated Biphenyl Exposure and Obesity Development at Ages 5 and 7 y: A Prospective Cohort Study of 656 Children from the Faroe Islands. Am. J. Clin. Nutr. 2014;99:5–13. doi: 10.3945/ajcn.113.066720. PubMed DOI PMC

Bhattu M., Verma M., Kathuria D. Recent Advancements in the Detection of Organophosphate Pesticides: A Review. Anal. Methods. 2021;13:4390–4428. doi: 10.1039/D1AY01186C. PubMed DOI

Suratman S., Edwards J.W., Babina K. Organophosphate Pesticides Exposure among Farmworkers: Pathways and Risk of Adverse Health Effects. Rev. Environ. Health. 2015;30:65–79. doi: 10.1515/reveh-2014-0072. PubMed DOI

Blanco J., Guardia-Escote L., Mulero M., Basaure P., Biosca-Brull J., Cabré M., Colomina M.T., Domingo J.L., Sánchez D.J. Obesogenic Effects of Chlorpyrifos and Its Metabolites during the Differentiation of 3T3-L1 Preadipocytes. Food Chem. Toxicol. 2020;137:111171. doi: 10.1016/j.fct.2020.111171. PubMed DOI

Silva M.H. Chlorpyrifos and Δ9 Tetrahydrocannabinol Exposure and Effects on Parameters Associated with the Endocannabinoid System and Risk Factors for Obesity. Curr. Res. Toxicol. 2021;2:296–308. doi: 10.1016/j.crtox.2021.08.002. PubMed DOI PMC

Aggarwal V., Deng X., Tuli A., Goh K.S. Diazinon—Chemistry and Environmental Fate: A California Perspective. In: Whitacre D.M., editor. Reviews of Environmental Contamination and Toxicology. Volume 223. Springer; New York, NY, USA: 2013. pp. 107–140. PubMed

Smith A., Yu X., Yin L. Diazinon Exposure Activated Transcriptional Factors CCAAT-Enhancer-Binding Proteins α (C/EBPα) and Peroxisome Proliferator-Activated Receptor γ (PPARγ) and Induced Adipogenesis in 3T3-L1 Preadipocytes. Pestic. Biochem. Physiol. 2018;150:48–58. doi: 10.1016/j.pestbp.2018.07.003. PubMed DOI PMC

Cano-Sancho G., Salmon A.G., Merrill M.A.L. Association between Exposure to p,p′-DDT and Its Metabolite p,p ′-DDE with Obesity: Integrated Systematic Review and Meta-Analysis. Environ. Health Perspect. 2017;125:096002. doi: 10.1289/EHP527. PubMed DOI PMC

Lee D.-H., Porta M., Jacobs D.R., Vandenberg L.N. Chlorinated Persistent Organic Pollutants, Obesity, and Type 2 Diabetes. Endocr. Rev. 2014;35:557–601. doi: 10.1210/er.2013-1084. PubMed DOI PMC

Lee H.K. Mitochondrial Dysfunction and Insulin Resistance: The Contribution of Dioxin-Like Substances. Diabetes Metab. J. 2011;35:207–215. doi: 10.4093/dmj.2011.35.3.207. PubMed DOI PMC

Kladnicka I., Cedikova M., Jedlicka J., Kohoutova M., Muller L., Plavinova I., Kripnerova M., Bludovska M., Kuncova J., Mullerova D. Chronic DDE Exposure Modifies Mitochondrial Respiration during Differentiation of Human Adipose-Derived Mesenchymal Stem Cells into Mature Adipocytes. Biomolecules. 2021;11:1068. doi: 10.3390/biom11081068. PubMed DOI PMC

Ghosh N., Roy S., Mondal J.A. On the Behavior of Perfluorinated Persistent Organic Pollutants (POPs) at Environmentally Relevant Aqueous Interfaces: An Interplay of Hydrophobicity and Hydrogen Bonding. Langmuir. 2020;36:3720–3729. doi: 10.1021/acs.langmuir.0c00189. PubMed DOI

Elmore S.E., Merrill M.A.L. Oxidative Phosphorylation Impairment by DDT and DDE. Front. Endocrinol. 2019;10:122. doi: 10.3389/fendo.2019.00122. PubMed DOI PMC

Juan P. Arrebola y Beatriz González Alzaga—Exposición a contaminantes ambientales por vía alimentaria y repercusiones metabólicas. Nutricion Clinica En Medicina. 2016;10:164–174. doi: 10.7400/NCM.2016.10.3.5045. DOI

Podechard N., Fardel O., Corolleur M., Bernard M., Lecureur V. Inhibition of Human Mesenchymal Stem Cell-Derived Adipogenesis by the Environmental Contaminant Benzo(a)Pyrene. Toxicol. Vitr. 2009;23:1139–1144. doi: 10.1016/j.tiv.2009.05.011. PubMed DOI

González-Casanova J.E., Pertuz-Cruz S.L., Caicedo-Ortega N.H., Rojas-Gomez D.M. Adipogenesis Regulation and Endocrine Disruptors: Emerging Insights in Obesity. BioMed Res. Int. 2020;2020:7453786. doi: 10.1155/2020/7453786. PubMed DOI PMC

Han M., Wang Y., Tang C., Fang H., Yang D., Wu J., Wang H., Chen Y., Jiang Q. Association of Triclosan and Triclocarban in Urine with Obesity Risk in Chinese School Children. Environ. Int. 2021;157:106846. doi: 10.1016/j.envint.2021.106846. PubMed DOI

Ha N.-Y., Kim D.H., Ryu J.Y. Relationship between Triclosan Exposure and Thyroid Hormones: The Second Korean National Environmental Health Survey (2012–2014) Ann. Occup. Environ. Med. 2019;31:e22. doi: 10.35371/aoem.2019.31.e22. PubMed DOI PMC

He M., Zeng X., Zhang K., Kinney P. Fine Particulate Matter Concentrations in Urban Chinese Cities, 2005–2016: A Systematic Review. Int. J. Environ. Res. Public Health. 2017;14:191. doi: 10.3390/ijerph14020191. PubMed DOI PMC

Mukherjee A., Agrawal M. A Global Perspective of Fine Particulate Matter Pollution and Its Health Effects. In: de Voogt P., editor. Reviews of Environmental Contamination and Toxicology. Volume 244. Springer International Publishing; Cham, Switzerland: 2017. pp. 5–51. PubMed

Bowe B., Gibson A.K., Xie Y., Yan Y., Donkelaar A.V., Martin R.V., Al-Aly Z. Ambient Fine Particulate Matter Air Pollution and Risk of Weight Gain and Obesity in United States Veterans: An Observational Cohort Study. Environ. Health Perspect. 2021;129:047003. doi: 10.1289/EHP7944. PubMed DOI PMC

Matsuyama S., Oki Y., Yokoki Y. Obesity Induced by Monosodium Glutamate in Mice. Natl. Inst. Anim. Health. Q. 1973;13:91–101. PubMed

Sun Z., Yang X., Liu Q.S., Li C., Zhou Q., Fiedler H., Liao C., Zhang J., Jiang G. Butylated Hydroxyanisole Isomers Induce Distinct Adipogenesis in 3T3-L1 Cells. J. Hazard. Mater. 2019;379:120794. doi: 10.1016/j.jhazmat.2019.120794. PubMed DOI

Sun Z., Tang Z., Yang X., Liu Q.S., Liang Y., Fiedler H., Zhang J., Zhou Q., Jiang G. Perturbation of 3-Tert-Butyl-4-Hydroxyanisole in Adipogenesis of Male Mice with Normal and High Fat Diets. Sci. Total Environ. 2020;703:135608. doi: 10.1016/j.scitotenv.2019.135608. PubMed DOI

Shannon M., Green B., Willars G., Wilson J., Matthews N., Lamb J., Gillespie A., Connolly L. The Endocrine Disrupting Potential of Monosodium Glutamate (MSG) on Secretion of the Glucagon-like Peptide-1 (GLP-1) Gut Hormone and GLP-1 Receptor Interaction. Toxicol. Lett. 2017;265:97–105. doi: 10.1016/j.toxlet.2016.11.015. PubMed DOI

Shannon M., Wilson J., Xie Y., Connolly L. In Vitro Bioassay Investigations of Suspected Obesogen Monosodium Glutamate at the Level of Nuclear Receptor Binding and Steroidogenesis. Toxicol. Lett. 2019;301:11–16. doi: 10.1016/j.toxlet.2018.10.021. PubMed DOI

Matysková R., Maletínská L., Maixnerová J., Pirník Z., Kiss A., Zelezná B. Comparison of the Obesity Phenotypes Related to Monosodium Glutamate Effect on Arcuate Nucleus and/or the High Fat Diet Feeding in C57BL/6 and NMRI Mice. Physiol. Res. 2008;57:727–734. doi: 10.33549/physiolres.931274. PubMed DOI

Maletínská L., Toma R.S., Pirnik Z., Kiss A., Slaninová J., Haluzík M., Zelezná B. Effect of Cholecystokinin on Feeding Is Attenuated in Monosodium Glutamate Obese Mice. Regul. Pept. 2006;136:58–63. doi: 10.1016/j.regpep.2006.04.020. PubMed DOI

Bhattacharyya S., O-Sullivan I., Katyal S., Unterman T., Tobacman J.K. Exposure to the Common Food Additive Carrageenan Leads to Glucose Intolerance, Insulin Resistance and Inhibition of Insulin Signalling in HepG2 Cells and C57BL/6J Mice. Diabetologia. 2012;55:194–203. doi: 10.1007/s00125-011-2333-z. PubMed DOI

Zhang H., Cao W., Liu F., Gao Y., Chang Y., Xue C., Tang Q. The Mechanism Exploration of the Non-colonic Toxicity and Obesity Inhibition of Food-grade Κ-carrageenan by Transcriptome. Food Sci. Nutr. 2021;9:6232–6244. doi: 10.1002/fsn3.2581. PubMed DOI PMC

Mangge H., Ciardi C., Becker K., Strasser B., Fuchs D., Gostner J.M. Influence of Antioxidants on Leptin Metabolism and Its Role in the Pathogenesis of Obesity. In: Engin A.B., Engin A., editors. Obesity and Lipotoxicity. Springer International Publishing; Cham, Switzerland: 2017. pp. 399–413. PubMed

Mangge H., Summers K., Almer G., Prassl R., Weghuber D., Schnedl W., Fuchs D. Antioxidant Food Supplements and Obesity-Related Inflammation. Curr. Med. Chem. 2013;20:2330–2337. doi: 10.2174/0929867311320180004. PubMed DOI

Shao W., Xu J., Xu C., Weng Z., Liu Q., Zhang X., Liang J., Li W., Zhang Y., Jiang Z., et al. Early-Life Perfluorooctanoic Acid Exposure Induces Obesity in Male Offspring and the Intervention Role of Chlorogenic Acid. Environ. Pollut. 2021;272:115974. doi: 10.1016/j.envpol.2020.115974. PubMed DOI

Zhang L., Sun W., Duan X., Duan Y., Sun H. Promoting Differentiation and Lipid Metabolism Are the Primary Effects for DINP Exposure on 3T3-L1 Preadipocytes. Environ. Pollut. 2019;255:113154. doi: 10.1016/j.envpol.2019.113154. PubMed DOI

Hoppe A.A., Carey G.B. Polybrominated Diphenyl Ethers as Endocrine Disruptors of Adipocyte Metabolism. Obesity. 2007;15:2942–2950. doi: 10.1038/oby.2007.351. PubMed DOI

Helaleh M., Diboun I., Al-Tamimi N., Al-Sulaiti H., Al-Emadi M., Madani A., Mazloum N.A., Latiff A., Elrayess M.A. Association of Polybrominated Diphenyl Ethers in Two Fat Compartments with Increased Risk of Insulin Resistance in Obese Individuals. Chemosphere. 2018;209:268–276. doi: 10.1016/j.chemosphere.2018.06.108. PubMed DOI

Jackson E., Shoemaker R., Larian N., Cassis L. Adipose Tissue as a Site of Toxin Accumulation. Compr. Physiol. 2017;7:1085–1135. doi: 10.1002/cphy.c160038. PubMed DOI PMC

Ge Y., Gu P., Wang W., Cao L., Zhang L., Li J., Mu W., Wang H. Benzo[a]Pyrene Stimulates MiR-650 Expression to Promote the Pathogenesis of Fatty Liver Disease and Hepatocellular Carcinoma via SOCS3/JAK/STAT3 Cascades. J. Mol. Cell Biol. 2021;13:556–564. doi: 10.1093/jmcb/mjab052. PubMed DOI PMC

Allard J., Guillou D.L., Begriche K., Fromenty B. Advances in Pharmacology. Elsevier; Amsterdam, The Netherlands: 2019. Drug-Induced Liver Injury in Obesity and Nonalcoholic Fatty Liver Disease; pp. 75–107. PubMed

Qiao L., Chu K., Wattez J.-S., Lee S., Gao H., Feng G.-S., Hay W.W., Shao J. High-Fat Feeding Reprograms Maternal Energy Metabolism and Induces Long-Term Postpartum Obesity in Mice. Int. J. Obes. 2019;43:1747–1758. doi: 10.1038/s41366-018-0304-x. PubMed DOI PMC

Li X., Pham H.T., Janesick A.S., Blumberg B. Triflumizole Is an Obesogen in Mice That Acts through Peroxisome Proliferator Activated Receptor Gamma (PPAR γ) Environ. Health Perspect. 2012;120:1720–1726. doi: 10.1289/ehp.1205383. PubMed DOI PMC

Regnier S.M., Kirkley A.G., Ye H., El-Hashani E., Zhang X., Neel B.A., Kamau W., Thomas C.C., Williams A.K., Hayes E.T., et al. Dietary Exposure to the Endocrine Disruptor Tolylfluanid Promotes Global Metabolic Dysfunction in Male Mice. Endocrinology. 2015;156:896–910. doi: 10.1210/en.2014-1668. PubMed DOI PMC

Benbrook C.M. Impacts of Genetically Engineered Crops on Pesticide Use in the U.S.—The First Sixteen Years. Environ. Sci. Eur. 2012;24:24. doi: 10.1186/2190-4715-24-24. DOI

Rezaei F., Nejati R., Sayadi M., Nematollahi A. Diazinon Reduction in Apple Juice Using Probiotic Bacteria during Fermentation and Storage under Refrigeration. Environ. Sci. Pollut. Res. 2021;28:61213–61224. doi: 10.1007/s11356-021-15007-w. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace