Obesogens in Foods
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy, práce podpořená grantem
PubMed
35625608
PubMed Central
PMC9138445
DOI
10.3390/biom12050680
PII: biom12050680
Knihovny.cz E-zdroje
- Klíčová slova
- adipose tissue, food, metabolic disruptors, metabolic syndrome, obesity, obesogens, systematic low-grade inflammation,
- MeSH
- adipogeneze MeSH
- endokrinní disruptory * toxicita MeSH
- lidé MeSH
- obezita epidemiologie etiologie MeSH
- potraviny MeSH
- vystavení vlivu životního prostředí * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- endokrinní disruptory * MeSH
Obesogens, as environmental endocrine-disrupting chemicals, are supposed to have had an impact on the prevalence of rising obesity around the world over the last forty years. These chemicals are probably able to contribute not only to the development of obesity and metabolic disturbances in individuals, but also in their progeny, having the capability to epigenetically reprogram genetically inherited set-up points for body weight and body composition control during critical periods of development, such as fetal, early life, and puberty. In individuals, they may act on myriads of neuro-endocrine-immune metabolic regulatory pathways, leading to pathophysiological consequences in adipogenesis, lipogenesis, lipolysis, immunity, the influencing of central appetite and energy expenditure regulations, changes in gut microbiota-intestine functioning, and many other processes. Evidence-based medical data have recently brought much more convincing data about associations of particular chemicals and the probability of the raised risk of developing obesity. Foods are the main source of obesogens. Some obesogens occur naturally in food, but most are environmental chemicals, entering food as a foreign substance, whether in the form of contaminants or additives, and they are used in a large amount in highly processed food. This review article contributes to a better overview of obesogens, their occurrence in foods, and their impact on the human organism.
Zobrazit více v PubMed
Müllerová D., Kopecký J. White Adipose Tissue: Storage and Effector Site for Environmental Pollutants. Physiol. Res. 2007;56:375–382. doi: 10.33549/physiolres.931022. PubMed DOI
D’eon J.C., Mabury S.A. Production of Perfluorinated Carboxylic Acids (PFCAs) from the Biotransformation of Polyfluoroalkyl Phosphate Surfactants (PAPS): Exploring Routes of Human Contamination. Environ. Sci. Technol. 2007;41:4799–4805. doi: 10.1021/es070126x. PubMed DOI
Ellis D.A., Martin J.W., Silva A.O.D., Mabury S.A., Hurley M.D., Andersen M.P.S., Wallington T.J. Degradation of Fluorotelomer Alcohols: A Likely Atmospheric Source of Perfluorinated Carboxylic Acids. Environ. Sci. Technol. 2004;38:3316–3321. doi: 10.1021/es049860w. PubMed DOI
Fujii Y., Harada K.H., Koizumi A. Occurrence of Perfluorinated Carboxylic Acids (PFCAs) in Personal Care Products and Compounding Agents. Chemosphere. 2013;93:538–544. doi: 10.1016/j.chemosphere.2013.06.049. PubMed DOI
Kimura O., Fujii Y., Haraguchi K., Kato Y., Ohta C., Koga N., Endo T. Effects of Perfluoroalkyl Carboxylic Acids on the Uptake of Sulfobromophthalein via Organic Anion Transporting Polypeptides in Human Intestinal Caco-2 Cells. Biochem. Biophys. Rep. 2020;24:100807. doi: 10.1016/j.bbrep.2020.100807. PubMed DOI PMC
Watkins S.M., Reifsnyder P.R., Pan H., German J.B., Leiter E.H. Lipid Metabolome-Wide Effects of the PPARγ Agonist Rosiglitazone. J. Lipid Res. 2002;43:1809–1817. doi: 10.1194/jlr.M200169-JLR200. PubMed DOI
Bethea C.L., Mueller K., Reddy A.P., Kohama S.G., Urbanski H.F. Effects of Obesogenic Diet and Estradiol on Dorsal Raphe Gene Expression in Old Female Macaques. PLoS ONE. 2017;12:e0178788. doi: 10.1371/journal.pone.0178788. PubMed DOI PMC
Grün F., Blumberg B. Minireview: The Case for Obesogens. Mol. Endocrinol. 2009;23:1127–1134. doi: 10.1210/me.2008-0485. PubMed DOI PMC
Swedenborg E., Rüegg J., Mäkelä S., Pongratz I. Endocrine Disruptive Chemicals: Mechanisms of Action and Involvement in Metabolic Disorders. J. Mol. Endocrinol. 2009;43:1–10. doi: 10.1677/JME-08-0132. PubMed DOI
Diamanti-Kandarakis E., Bourguignon J.-P., Giudice L.C., Hauser R., Prins G.S., Soto A.M., Zoeller R.T., Gore A.C. Endocrine-Disrupting Chemicals: An Endocrine Society Scientific Statement. Endocr. Rev. 2009;30:293–342. doi: 10.1210/er.2009-0002. PubMed DOI PMC
Coster S.D., Larebeke N.V. Endocrine-Disrupting Chemicals: Associated Disorders and Mechanisms of Action. J. Environ. Public Health. 2012;2012:713696. doi: 10.1155/2012/713696. PubMed DOI PMC
Moher D., Liberati A., Tetzlaff J., Altman D.G. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. J. Clin. Epidemiol. 2009;62:1006–1012. doi: 10.1016/j.jclinepi.2009.06.005. PubMed DOI
Shea B.J., Grimshaw J.M., Wells G.A., Boers M., Andersson N., Hamel C., Porter A.C., Tugwell P., Moher D., Bouter L.M. Development of AMSTAR: A Measurement Tool to Assess the Methodological Quality of Systematic Reviews. BMC Med. Res. Methodol. 2007;7:10. doi: 10.1186/1471-2288-7-10. PubMed DOI PMC
Lyn R., Heath E., Dubhashi J. Global Implementation of Obesity Prevention Policies: A Review of Progress, Politics, and the Path Forward. Curr. Obes. Rep. 2019;8:504–516. doi: 10.1007/s13679-019-00358-w. PubMed DOI
Flegal K.M., Panagiotou O.A., Graubard B.I. Estimating Population Attributable Fractions to Quantify the Health Burden of Obesity. Ann. Epidemiol. 2015;25:201–207. doi: 10.1016/j.annepidem.2014.11.010. PubMed DOI PMC
Cedikova M., Kripnerová M., Dvorakova J., Pitule P., Grundmanova M., Babuska V., Mullerova D., Kuncova J. Mitochondria in White, Brown, and Beige Adipocytes. Stem Cells Int. 2016;2016:6067349. doi: 10.1155/2016/6067349. PubMed DOI PMC
Heindel J.J., Newbold R., Schug T.T. Endocrine Disruptors and Obesity. Nat. Rev. Endocrinol. 2015;11:653–661. doi: 10.1038/nrendo.2015.163. PubMed DOI
Ouchi N. Adipocytokines in Cardiovascular and Metabolic Diseases. J. Atheroscler. Thromb. 2016;23:645–654. doi: 10.5551/jat.34918. PubMed DOI PMC
Janesick A.S., Shioda T., Blumberg B. Transgenerational Inheritance of Prenatal Obesogen Exposure. Mol. Cell. Endocrinol. 2014;398:31–35. doi: 10.1016/j.mce.2014.09.002. PubMed DOI PMC
World Health Organization: Regional Office for Europe . European Health Report 2018: More than Numbers, Evidence for All. WHO regional office for Europe; Copenhagen, Denmark: 2019.
Heindel J.J., Blumberg B. Environmental Obesogens: Mechanisms and Controversies. Annu. Rev. Pharmacol. Toxicol. 2019;59:89–106. doi: 10.1146/annurev-pharmtox-010818-021304. PubMed DOI PMC
Grün F., Blumberg B. Environmental Obesogens: Organotins and Endocrine Disruption via Nuclear Receptor Signaling. Endocrinology. 2006;147:s50–s55. doi: 10.1210/en.2005-1129. PubMed DOI
Newbold R.R., Padilla-Banks E., Jefferson W.N. Environmental Estrogens and Obesity. Mol. Cell. Endocrinol. 2009;304:84–89. doi: 10.1016/j.mce.2009.02.024. PubMed DOI PMC
Merrill M.L., Birnbaum L.S. Childhood Obesity and Environmental Chemicals. Mt. Sinai J. Med. A J. Transl. Pers. Med. 2011;78:22–48. doi: 10.1002/msj.20229. PubMed DOI PMC
Liu G., Dhana K., Furtado J.D., Rood J., Zong G., Liang L., Qi L., Bray G.A., DeJonge L., Coull B., et al. Perfluoroalkyl Substances and Changes in Body Weight and Resting Metabolic Rate in Response to Weight-Loss Diets: A Prospective Study. PLOS Med. 2018;15:e1002502. doi: 10.1371/journal.pmed.1002502. PubMed DOI PMC
Braun J.M., Gennings C., Hauser R., Webster T.F. What Can Epidemiological Studies Tell Us about the Impact of Chemical Mixtures on Human Health? Environ. Health Perspect. 2016;124:A6–A9. doi: 10.1289/ehp.1510569. PubMed DOI PMC
Janesick A.S., Blumberg B. Obesogens: An Emerging Threat to Public Health. Am. J. Obstet. Gynecol. 2016;214:559–565. doi: 10.1016/j.ajog.2016.01.182. PubMed DOI PMC
Eriksson D., Ammann K., Chassy B., Chawade A. Comments on Two Recent Publications on GM Maize and Roundup. Sci. Rep. 2018;8:13338. doi: 10.1038/s41598-018-30440-7. PubMed DOI PMC
Angrish M.M., McQueen C.A., Cohen-Hubal E., Bruno M., Ge Y., Chorley B.N. Editor’s Highlight: Mechanistic Toxicity Tests Based on an Adverse Outcome Pathway Network for Hepatic Steatosis. Toxicol. Sci. 2017;159:159–169. doi: 10.1093/toxsci/kfx121. PubMed DOI PMC
Foulds C.E., Treviño L.S., York B., Walker C.L. Endocrine-Disrupting Chemicals and Fatty Liver Disease. Nat. Rev. Endocrinol. 2017;13:445–457. doi: 10.1038/nrendo.2017.42. PubMed DOI PMC
Choi S.-I., Kwon H.-Y., Han X., Men X., Choi Y.-E., Jang G.-W., Park K.-T., Han J., Lee O.-H. Environmental Obesogens (Bisphenols, Phthalates and Parabens) and Their Impacts on Adipogenic Transcription Factors in the Absence of Dexamethasone in 3T3-L1 Cells. J. Steroid Biochem. Mol. Biol. 2021;214:105994. doi: 10.1016/j.jsbmb.2021.105994. PubMed DOI
Ruiz-Ojeda F., Rupérez A., Gomez-Llorente C., Gil A., Aguilera C. Cell Models and Their Application for Studying Adipogenic Differentiation in Relation to Obesity: A Review. Int. J. Mol. Sci. 2016;17:1040. doi: 10.3390/ijms17071040. PubMed DOI PMC
Mohajer N., Du C.Y., Checkcinco C., Blumberg B. Obesogens: How They Are Identified and Molecular Mechanisms Underlying Their Action. Front. Endocrinol. 2021;12:780888. doi: 10.3389/fendo.2021.780888. PubMed DOI PMC
Cipolletta D., Feuerer M., Li A., Kamei N., Lee J., Shoelson S.E., Benoist C., Mathis D. PPAR-γ Is a Major Driver of the Accumulation and Phenotype of Adipose Tissue Treg Cells. Nature. 2012;486:549–553. doi: 10.1038/nature11132. PubMed DOI PMC
Zuo Z., Chen S., Wu T., Zhang J., Su Y., Chen Y., Wang C. Tributyltin Causes Obesity and Hepatic Steatosis in Male Mice. Environ. Toxicol. 2011;26:79–85. doi: 10.1002/tox.20531. PubMed DOI
Hines E.P., White S.S., Stanko J.P., Gibbs-Flournoy E.A., Lau C., Fenton S.E. Phenotypic Dichotomy Following Developmental Exposure to Perfluorooctanoic Acid (PFOA) in Female CD-1 Mice: Low Doses Induce Elevated Serum Leptin and Insulin, and Overweight in Mid-Life. Mol. Cell. Endocrinol. 2009;304:97–105. doi: 10.1016/j.mce.2009.02.021. PubMed DOI
Rubin D.B. Estimating the Causal Effects of Smoking. Stat. Med. 2001;20:1395–1414. doi: 10.1002/sim.677. PubMed DOI
Petrakis D., Vassilopoulou L., Mamoulakis C., Psycharakis C., Anifantaki A., Sifakis S., Docea A., Tsiaoussis J., Makrigiannakis A., Tsatsakis A. Endocrine Disruptors Leading to Obesity and Related Diseases. Int. J. Environ. Res. Public Health. 2017;14:1282. doi: 10.3390/ijerph14101282. PubMed DOI PMC
Heindel J.J., Saal F.S.V., Blumberg B., Bovolin P., Calamandrei G., Ceresini G., Cohn B.A., Fabbri E., Gioiosa L., Kassotis C., et al. Parma Consensus Statement on Metabolic Disruptors. Environ. Health. 2015;14:54. doi: 10.1186/s12940-015-0042-7. PubMed DOI PMC
Tappy L. Fructose-Containing Caloric Sweeteners as a Cause of Obesity and Metabolic Disorders. J. Exp. Biol. 2018;221:jeb164202. doi: 10.1242/jeb.164202. PubMed DOI
Alemán J.O., Henderson W.A., Walker J.M., Ronning A., Jones D.R., Walter P.J., Daniel S.G., Bittinger K., Vaughan R., MacArthur R., et al. Excess Dietary Fructose Does Not Alter Gut Microbiota or Permeability in Humans: A Pilot Randomized Controlled Study. J. Clin. Trans. Sci. 2021;5:e143. doi: 10.1017/cts.2021.801. PubMed DOI PMC
Ke H., Luan Y., Wu S., Zhu Y., Tong X. The Role of Mondo Family Transcription Factors in Nutrient-Sensing and Obesity. Front. Endocrinol. 2021;12:653972. doi: 10.3389/fendo.2021.653972. PubMed DOI PMC
Arden C., Tudhope S.J., Petrie J.L., Al-Oanzi Z.H., Cullen K.S., Lange A.J., Towle H.C., Agius L. Fructose 2,6-Bisphosphate Is Essential for Glucose-Regulated Gene Transcription of Glucose-6-Phosphatase and Other ChREBP Target Genes in Hepatocytes. Biochem. J. 2012;443:111–123. doi: 10.1042/BJ20111280. PubMed DOI
Goran M.I., Dumke K., Bouret S.G., Kayser B., Walker R.W., Blumberg B. The Obesogenic Effect of High Fructose Exposure during Early Development. Nat. Rev. Endocrinol. 2013;9:494–500. doi: 10.1038/nrendo.2013.108. PubMed DOI PMC
Park J.H., Jeong H.J., Lumen B.O.D. Contents and Bioactivities of Lunasin, Bowman−Birk Inhibitor, and Isoflavones in Soybean Seed. J. Agric. Food Chem. 2005;53:7686–7690. doi: 10.1021/jf0506481. PubMed DOI
Penza M., Montani C., Romani A., Vignolini P., Pampaloni B., Tanini A., Brandi M.L., Alonso-Magdalena P., Nadal A., Ottobrini L., et al. Genistein Affects Adipose Tissue Deposition in a Dose-Dependent and Gender-Specific Manner. Endocrinology. 2006;147:5740–5751. doi: 10.1210/en.2006-0365. PubMed DOI
Newbold R.R., Padilla-Banks E., Jefferson W.N., Heindel J.J. Effects of Endocrine Disruptors on Obesity. Int. J. Androl. 2008;31:201–208. doi: 10.1111/j.1365-2605.2007.00858.x. PubMed DOI
Harris R.M., Waring R.H. Diethylstilboestrol—A Long-Term Legacy. Maturitas. 2012;72:108–112. doi: 10.1016/j.maturitas.2012.03.002. PubMed DOI
Nunes H.C., Scarano W.R., Deffune E., Felisbino S.L., Porreca I., Delella F.K. Bisphenol a and Mesenchymal Stem Cells: Recent Insights. Life Sci. 2018;206:22–28. doi: 10.1016/j.lfs.2018.05.023. PubMed DOI
Calafat A.M., Ye X., Wong L.-Y., Reidy J.A., Needham L.L. Exposure of the U.S. Population to Bisphenol A and 4- Tertiary -Octylphenol: 2003–2004. Environ. Health Perspect. 2008;116:39–44. doi: 10.1289/ehp.10753. PubMed DOI PMC
Grant K.L. Sample Organization Environmental Contributions to Obesity and Type 2 Diabetes. J. Enviromental Immunol. Toxicol. 2013;1:80. doi: 10.7178/jeit.12. DOI
Darbre P.D. Endocrine Disruptors and Obesity. Curr. Obes. Rep. 2017;6:18–27. doi: 10.1007/s13679-017-0240-4. PubMed DOI PMC
Legeay S., Faure S. Is Bisphenol A an Environmental Obesogen? Fundam. Clin. Pharmacol. 2017;31:594–609. doi: 10.1111/fcp.12300. PubMed DOI
Wu W., Li M., Liu A., Wu C., Li D., Deng Q., Zhang B., Du J., Gao X., Hong Y. Bisphenol A and the Risk of Obesity a Systematic Review With Meta-Analysis of the Epidemiological Evidence. Dose-Response. 2020;18:155932582091694. doi: 10.1177/1559325820916949. PubMed DOI PMC
Wang Y., Rui M., Nie Y., Lu G. Influence of Gastrointestinal Tract on Metabolism of Bisphenol A as Determined by in Vitro Simulated System. J. Hazard. Mater. 2018;355:111–118. doi: 10.1016/j.jhazmat.2018.05.011. PubMed DOI
Jacobson M.H., Woodward M., Bao W., Liu B., Trasande L. Urinary Bisphenols and Obesity Prevalence Among U.S. Children and Adolescents. J. Endocr. Soc. 2019;3:1715–1726. doi: 10.1210/js.2019-00201. PubMed DOI PMC
Marques V.B., Faria R.A., Santos L.D. Overview of the Pathophysiological Implications of Organotins on the Endocrine System. Front. Endocrinol. 2018;9:101. doi: 10.3389/fendo.2018.00101. PubMed DOI PMC
Grün F. Obesogens. Curr. Opin. Endocrinol. Diabetes Obes. 2010;17:453–459. doi: 10.1097/MED.0b013e32833ddea0. PubMed DOI
Hoch M. Organotin Compounds in the Environment—An Overview. Appl. Geochem. 2001;16:719–743. doi: 10.1016/S0883-2927(00)00067-6. DOI
Gadd G.M. Microbial Interactions with Tributyltin Compounds: Detoxification, Accumulation, and Environmental Fate. Sci. Total Environ. 2000;258:119–127. doi: 10.1016/S0048-9697(00)00512-X. PubMed DOI
Chamorro-García R., Blumberg B. Transgenerational Effects of Obesogens and the Obesity Epidemic. Curr. Opin. Pharmacol. 2014;19:153–158. doi: 10.1016/j.coph.2014.10.010. PubMed DOI PMC
Rantakokko M., Iwarsson S., Portegijs E., Viljanen A., Rantanen T. Associations Between Environmental Characteristics and Life-Space Mobility in Community-Dwelling Older People. J. Aging Health. 2015;27:606–621. doi: 10.1177/0898264314555328. PubMed DOI
Okoro H.K., Fatoki O.S., Adekola F.A., Ximba B.J., Snyman R.G., Opeolu B. Human Exposure, Biomarkers, and Fate of Organotins in the Environment. In: Whitacre D.M., editor. Reviews of Environmental Contamination and Toxicology. Volume 213. Springer; New York, NY, USA: 2011. pp. 27–54. PubMed
Kannan K., Takahashi S., Fujiwara N., Mizukawa H., Tanabe S. Organotin Compounds, Including Butyltins and Octyltins, in House Dust from Albany, New York, USA. Arch. Environ. Contam. Toxicol. 2010;58:901–907. doi: 10.1007/s00244-010-9513-6. PubMed DOI
Li Z., Yu Z., Gao P., Yin D. Multigenerational Effects of Perfluorooctanoic Acid on Lipid Metabolism of Caenorhabditis Elegans and Its Potential Mechanism. Sci. Total Environ. 2020;703:134762. doi: 10.1016/j.scitotenv.2019.134762. PubMed DOI
Bloom M.S., Commodore S., Ferguson P.L., Neelon B., Pearce J.L., Baumer A., Newman R.B., Grobman W., Tita A., Roberts J., et al. Association between Gestational PFAS Exposure and Children’s Adiposity in a Diverse Population. Environ. Res. 2022;203:111820. doi: 10.1016/j.envres.2021.111820. PubMed DOI PMC
Giuliani A., Zuccarini M., Cichelli A., Khan H., Reale M. Critical Review on the Presence of Phthalates in Food and Evidence of Their Biological Impact. Int. J. Environ. Res. Public Health. 2020;17:5655. doi: 10.3390/ijerph17165655. PubMed DOI PMC
Stahlhut R.W., Wijngaarden E.V., Dye T.D., Cook S., Swan S.H. Concentrations of Urinary Phthalate Metabolites Are Associated with Increased Waist Circumference and Insulin Resistance in Adult U.S. Males. Environ. Health Perspect. 2007;115:876–882. doi: 10.1289/ehp.9882. PubMed DOI PMC
Hao C., Cheng X., Xia H., Ma X. The Endocrine Disruptor Mono-(2-Ethylhexyl)Phthalate Promotes Adipocyte Differentiation and Induces Obesity in Mice. Biosci. Rep. 2012;32:619–629. doi: 10.1042/BSR20120042. PubMed DOI PMC
Berman Y.E., Doherty D.A., Main K.M., Frederiksen H., Keelan J.A., Newnham J.P., Hart R.J. The Influence of Prenatal Exposure to Phthalates on Subsequent Male Growth and Body Composition in Adolescence. Environ. Res. 2021;195:110313. doi: 10.1016/j.envres.2020.110313. PubMed DOI
Pallotti F., Pelloni M., Gianfrilli D., Lenzi A., Lombardo F., Paoli D. Mechanisms of Testicular Disruption from Exposure to Bisphenol A and Phtalates. J. Clin. Med. 2020;9:471. doi: 10.3390/jcm9020471. PubMed DOI PMC
Mezcua M., Martínez-Uroz M.A., Gómez-Ramos M.M., Gómez M.J., Navas J.M., Fernández-Alba A.R. Analysis of Synthetic Endocrine-Disrupting Chemicals in Food: A Review. Talanta. 2012;100:90–106. doi: 10.1016/j.talanta.2012.07.078. PubMed DOI
Guo W., Holden A., Smith S.C., Gephart R., Petreas M., Park J.-S. PBDE Levels in Breast Milk Are Decreasing in California. Chemosphere. 2016;150:505–513. doi: 10.1016/j.chemosphere.2015.11.032. PubMed DOI
Wong K.H., Durrani T.S. Exposures to Endocrine Disrupting Chemicals in Consumer Products—A Guide for Pediatricians. Curr. Probl. Pediatric Adolesc. Health Care. 2017;47:107–118. doi: 10.1016/j.cppeds.2017.04.002. PubMed DOI
Vuong A.M., Braun J.M., Wang Z., Yolton K., Xie C., Sjodin A., Webster G.M., Lanphear B.P., Chen A. Exposure to Polybrominated Diphenyl Ethers (PBDEs) during Childhood and Adiposity Measures at Age 8 Years. Environ. Int. 2019;123:148–155. doi: 10.1016/j.envint.2018.11.050. PubMed DOI PMC
Wen Q., Xie X., Ren Q., Du Y. Polybrominated Diphenyl Ether Congener 99 (PBDE 99) Promotes Adipocyte Lineage Commitment of C3H10T1/2 Mesenchymal Stem Cells. Chemosphere. 2022;290:133312. doi: 10.1016/j.chemosphere.2021.133312. PubMed DOI
Tung E.W.Y., Boudreau A., Wade M.G., Atlas E. Induction of Adipocyte Differentiation by Polybrominated Diphenyl Ethers (PBDEs) in 3T3-L1 Cells. PLoS ONE. 2014;9:e94583. doi: 10.1371/journal.pone.0094583. PubMed DOI PMC
Lv Q.-X., Wang W., Li X.-H., Yu L., Zhang Y., Tian Y. Polychlorinated Biphenyls and Polybrominated Biphenyl Ethers in Adipose Tissue and Matched Serum from an E-Waste Recycling Area (Wenling, China) Environ. Pollut. 2015;199:219–226. doi: 10.1016/j.envpol.2015.02.008. PubMed DOI
Martí-Cid R., Llobet J.M., Castell V., Domingo J.L. Human Exposure to Polychlorinated Naphthalenes and Polychlorinated Diphenyl Ethers from Foods in Catalonia, Spain: Temporal Trend. Environ. Sci. Technol. 2008;42:4195–4201. doi: 10.1021/es800064p. PubMed DOI
Brown R.H., Ng D.K., Steele K., Schweitzer M., Groopman J.D. Mobilization of Environmental Toxicants Following Bariatric Surgery. Obesity. 2019;27:1865–1873. doi: 10.1002/oby.22618. PubMed DOI
Valvi D., Mendez M.A., Martinez D., Grimalt J.O., Torrent M., Sunyer J., Vrijheid M. Prenatal Concentrations of Polychlorinated Biphenyls, DDE, and DDT and Overweight in Children: A Prospective Birth Cohort Study. Environ. Health Perspect. 2012;120:451–457. doi: 10.1289/ehp.1103862. PubMed DOI PMC
Tang-Péronard J.L., Heitmann B.L., Andersen H.R., Steuerwald U., Grandjean P., Weihe P., Jensen T.K. Association between Prenatal Polychlorinated Biphenyl Exposure and Obesity Development at Ages 5 and 7 y: A Prospective Cohort Study of 656 Children from the Faroe Islands. Am. J. Clin. Nutr. 2014;99:5–13. doi: 10.3945/ajcn.113.066720. PubMed DOI PMC
Bhattu M., Verma M., Kathuria D. Recent Advancements in the Detection of Organophosphate Pesticides: A Review. Anal. Methods. 2021;13:4390–4428. doi: 10.1039/D1AY01186C. PubMed DOI
Suratman S., Edwards J.W., Babina K. Organophosphate Pesticides Exposure among Farmworkers: Pathways and Risk of Adverse Health Effects. Rev. Environ. Health. 2015;30:65–79. doi: 10.1515/reveh-2014-0072. PubMed DOI
Blanco J., Guardia-Escote L., Mulero M., Basaure P., Biosca-Brull J., Cabré M., Colomina M.T., Domingo J.L., Sánchez D.J. Obesogenic Effects of Chlorpyrifos and Its Metabolites during the Differentiation of 3T3-L1 Preadipocytes. Food Chem. Toxicol. 2020;137:111171. doi: 10.1016/j.fct.2020.111171. PubMed DOI
Silva M.H. Chlorpyrifos and Δ9 Tetrahydrocannabinol Exposure and Effects on Parameters Associated with the Endocannabinoid System and Risk Factors for Obesity. Curr. Res. Toxicol. 2021;2:296–308. doi: 10.1016/j.crtox.2021.08.002. PubMed DOI PMC
Aggarwal V., Deng X., Tuli A., Goh K.S. Diazinon—Chemistry and Environmental Fate: A California Perspective. In: Whitacre D.M., editor. Reviews of Environmental Contamination and Toxicology. Volume 223. Springer; New York, NY, USA: 2013. pp. 107–140. PubMed
Smith A., Yu X., Yin L. Diazinon Exposure Activated Transcriptional Factors CCAAT-Enhancer-Binding Proteins α (C/EBPα) and Peroxisome Proliferator-Activated Receptor γ (PPARγ) and Induced Adipogenesis in 3T3-L1 Preadipocytes. Pestic. Biochem. Physiol. 2018;150:48–58. doi: 10.1016/j.pestbp.2018.07.003. PubMed DOI PMC
Cano-Sancho G., Salmon A.G., Merrill M.A.L. Association between Exposure to p,p′-DDT and Its Metabolite p,p ′-DDE with Obesity: Integrated Systematic Review and Meta-Analysis. Environ. Health Perspect. 2017;125:096002. doi: 10.1289/EHP527. PubMed DOI PMC
Lee D.-H., Porta M., Jacobs D.R., Vandenberg L.N. Chlorinated Persistent Organic Pollutants, Obesity, and Type 2 Diabetes. Endocr. Rev. 2014;35:557–601. doi: 10.1210/er.2013-1084. PubMed DOI PMC
Lee H.K. Mitochondrial Dysfunction and Insulin Resistance: The Contribution of Dioxin-Like Substances. Diabetes Metab. J. 2011;35:207–215. doi: 10.4093/dmj.2011.35.3.207. PubMed DOI PMC
Kladnicka I., Cedikova M., Jedlicka J., Kohoutova M., Muller L., Plavinova I., Kripnerova M., Bludovska M., Kuncova J., Mullerova D. Chronic DDE Exposure Modifies Mitochondrial Respiration during Differentiation of Human Adipose-Derived Mesenchymal Stem Cells into Mature Adipocytes. Biomolecules. 2021;11:1068. doi: 10.3390/biom11081068. PubMed DOI PMC
Ghosh N., Roy S., Mondal J.A. On the Behavior of Perfluorinated Persistent Organic Pollutants (POPs) at Environmentally Relevant Aqueous Interfaces: An Interplay of Hydrophobicity and Hydrogen Bonding. Langmuir. 2020;36:3720–3729. doi: 10.1021/acs.langmuir.0c00189. PubMed DOI
Elmore S.E., Merrill M.A.L. Oxidative Phosphorylation Impairment by DDT and DDE. Front. Endocrinol. 2019;10:122. doi: 10.3389/fendo.2019.00122. PubMed DOI PMC
Juan P. Arrebola y Beatriz González Alzaga—Exposición a contaminantes ambientales por vía alimentaria y repercusiones metabólicas. Nutricion Clinica En Medicina. 2016;10:164–174. doi: 10.7400/NCM.2016.10.3.5045. DOI
Podechard N., Fardel O., Corolleur M., Bernard M., Lecureur V. Inhibition of Human Mesenchymal Stem Cell-Derived Adipogenesis by the Environmental Contaminant Benzo(a)Pyrene. Toxicol. Vitr. 2009;23:1139–1144. doi: 10.1016/j.tiv.2009.05.011. PubMed DOI
González-Casanova J.E., Pertuz-Cruz S.L., Caicedo-Ortega N.H., Rojas-Gomez D.M. Adipogenesis Regulation and Endocrine Disruptors: Emerging Insights in Obesity. BioMed Res. Int. 2020;2020:7453786. doi: 10.1155/2020/7453786. PubMed DOI PMC
Han M., Wang Y., Tang C., Fang H., Yang D., Wu J., Wang H., Chen Y., Jiang Q. Association of Triclosan and Triclocarban in Urine with Obesity Risk in Chinese School Children. Environ. Int. 2021;157:106846. doi: 10.1016/j.envint.2021.106846. PubMed DOI
Ha N.-Y., Kim D.H., Ryu J.Y. Relationship between Triclosan Exposure and Thyroid Hormones: The Second Korean National Environmental Health Survey (2012–2014) Ann. Occup. Environ. Med. 2019;31:e22. doi: 10.35371/aoem.2019.31.e22. PubMed DOI PMC
He M., Zeng X., Zhang K., Kinney P. Fine Particulate Matter Concentrations in Urban Chinese Cities, 2005–2016: A Systematic Review. Int. J. Environ. Res. Public Health. 2017;14:191. doi: 10.3390/ijerph14020191. PubMed DOI PMC
Mukherjee A., Agrawal M. A Global Perspective of Fine Particulate Matter Pollution and Its Health Effects. In: de Voogt P., editor. Reviews of Environmental Contamination and Toxicology. Volume 244. Springer International Publishing; Cham, Switzerland: 2017. pp. 5–51. PubMed
Bowe B., Gibson A.K., Xie Y., Yan Y., Donkelaar A.V., Martin R.V., Al-Aly Z. Ambient Fine Particulate Matter Air Pollution and Risk of Weight Gain and Obesity in United States Veterans: An Observational Cohort Study. Environ. Health Perspect. 2021;129:047003. doi: 10.1289/EHP7944. PubMed DOI PMC
Matsuyama S., Oki Y., Yokoki Y. Obesity Induced by Monosodium Glutamate in Mice. Natl. Inst. Anim. Health. Q. 1973;13:91–101. PubMed
Sun Z., Yang X., Liu Q.S., Li C., Zhou Q., Fiedler H., Liao C., Zhang J., Jiang G. Butylated Hydroxyanisole Isomers Induce Distinct Adipogenesis in 3T3-L1 Cells. J. Hazard. Mater. 2019;379:120794. doi: 10.1016/j.jhazmat.2019.120794. PubMed DOI
Sun Z., Tang Z., Yang X., Liu Q.S., Liang Y., Fiedler H., Zhang J., Zhou Q., Jiang G. Perturbation of 3-Tert-Butyl-4-Hydroxyanisole in Adipogenesis of Male Mice with Normal and High Fat Diets. Sci. Total Environ. 2020;703:135608. doi: 10.1016/j.scitotenv.2019.135608. PubMed DOI
Shannon M., Green B., Willars G., Wilson J., Matthews N., Lamb J., Gillespie A., Connolly L. The Endocrine Disrupting Potential of Monosodium Glutamate (MSG) on Secretion of the Glucagon-like Peptide-1 (GLP-1) Gut Hormone and GLP-1 Receptor Interaction. Toxicol. Lett. 2017;265:97–105. doi: 10.1016/j.toxlet.2016.11.015. PubMed DOI
Shannon M., Wilson J., Xie Y., Connolly L. In Vitro Bioassay Investigations of Suspected Obesogen Monosodium Glutamate at the Level of Nuclear Receptor Binding and Steroidogenesis. Toxicol. Lett. 2019;301:11–16. doi: 10.1016/j.toxlet.2018.10.021. PubMed DOI
Matysková R., Maletínská L., Maixnerová J., Pirník Z., Kiss A., Zelezná B. Comparison of the Obesity Phenotypes Related to Monosodium Glutamate Effect on Arcuate Nucleus and/or the High Fat Diet Feeding in C57BL/6 and NMRI Mice. Physiol. Res. 2008;57:727–734. doi: 10.33549/physiolres.931274. PubMed DOI
Maletínská L., Toma R.S., Pirnik Z., Kiss A., Slaninová J., Haluzík M., Zelezná B. Effect of Cholecystokinin on Feeding Is Attenuated in Monosodium Glutamate Obese Mice. Regul. Pept. 2006;136:58–63. doi: 10.1016/j.regpep.2006.04.020. PubMed DOI
Bhattacharyya S., O-Sullivan I., Katyal S., Unterman T., Tobacman J.K. Exposure to the Common Food Additive Carrageenan Leads to Glucose Intolerance, Insulin Resistance and Inhibition of Insulin Signalling in HepG2 Cells and C57BL/6J Mice. Diabetologia. 2012;55:194–203. doi: 10.1007/s00125-011-2333-z. PubMed DOI
Zhang H., Cao W., Liu F., Gao Y., Chang Y., Xue C., Tang Q. The Mechanism Exploration of the Non-colonic Toxicity and Obesity Inhibition of Food-grade Κ-carrageenan by Transcriptome. Food Sci. Nutr. 2021;9:6232–6244. doi: 10.1002/fsn3.2581. PubMed DOI PMC
Mangge H., Ciardi C., Becker K., Strasser B., Fuchs D., Gostner J.M. Influence of Antioxidants on Leptin Metabolism and Its Role in the Pathogenesis of Obesity. In: Engin A.B., Engin A., editors. Obesity and Lipotoxicity. Springer International Publishing; Cham, Switzerland: 2017. pp. 399–413. PubMed
Mangge H., Summers K., Almer G., Prassl R., Weghuber D., Schnedl W., Fuchs D. Antioxidant Food Supplements and Obesity-Related Inflammation. Curr. Med. Chem. 2013;20:2330–2337. doi: 10.2174/0929867311320180004. PubMed DOI
Shao W., Xu J., Xu C., Weng Z., Liu Q., Zhang X., Liang J., Li W., Zhang Y., Jiang Z., et al. Early-Life Perfluorooctanoic Acid Exposure Induces Obesity in Male Offspring and the Intervention Role of Chlorogenic Acid. Environ. Pollut. 2021;272:115974. doi: 10.1016/j.envpol.2020.115974. PubMed DOI
Zhang L., Sun W., Duan X., Duan Y., Sun H. Promoting Differentiation and Lipid Metabolism Are the Primary Effects for DINP Exposure on 3T3-L1 Preadipocytes. Environ. Pollut. 2019;255:113154. doi: 10.1016/j.envpol.2019.113154. PubMed DOI
Hoppe A.A., Carey G.B. Polybrominated Diphenyl Ethers as Endocrine Disruptors of Adipocyte Metabolism. Obesity. 2007;15:2942–2950. doi: 10.1038/oby.2007.351. PubMed DOI
Helaleh M., Diboun I., Al-Tamimi N., Al-Sulaiti H., Al-Emadi M., Madani A., Mazloum N.A., Latiff A., Elrayess M.A. Association of Polybrominated Diphenyl Ethers in Two Fat Compartments with Increased Risk of Insulin Resistance in Obese Individuals. Chemosphere. 2018;209:268–276. doi: 10.1016/j.chemosphere.2018.06.108. PubMed DOI
Jackson E., Shoemaker R., Larian N., Cassis L. Adipose Tissue as a Site of Toxin Accumulation. Compr. Physiol. 2017;7:1085–1135. doi: 10.1002/cphy.c160038. PubMed DOI PMC
Ge Y., Gu P., Wang W., Cao L., Zhang L., Li J., Mu W., Wang H. Benzo[a]Pyrene Stimulates MiR-650 Expression to Promote the Pathogenesis of Fatty Liver Disease and Hepatocellular Carcinoma via SOCS3/JAK/STAT3 Cascades. J. Mol. Cell Biol. 2021;13:556–564. doi: 10.1093/jmcb/mjab052. PubMed DOI PMC
Allard J., Guillou D.L., Begriche K., Fromenty B. Advances in Pharmacology. Elsevier; Amsterdam, The Netherlands: 2019. Drug-Induced Liver Injury in Obesity and Nonalcoholic Fatty Liver Disease; pp. 75–107. PubMed
Qiao L., Chu K., Wattez J.-S., Lee S., Gao H., Feng G.-S., Hay W.W., Shao J. High-Fat Feeding Reprograms Maternal Energy Metabolism and Induces Long-Term Postpartum Obesity in Mice. Int. J. Obes. 2019;43:1747–1758. doi: 10.1038/s41366-018-0304-x. PubMed DOI PMC
Li X., Pham H.T., Janesick A.S., Blumberg B. Triflumizole Is an Obesogen in Mice That Acts through Peroxisome Proliferator Activated Receptor Gamma (PPAR γ) Environ. Health Perspect. 2012;120:1720–1726. doi: 10.1289/ehp.1205383. PubMed DOI PMC
Regnier S.M., Kirkley A.G., Ye H., El-Hashani E., Zhang X., Neel B.A., Kamau W., Thomas C.C., Williams A.K., Hayes E.T., et al. Dietary Exposure to the Endocrine Disruptor Tolylfluanid Promotes Global Metabolic Dysfunction in Male Mice. Endocrinology. 2015;156:896–910. doi: 10.1210/en.2014-1668. PubMed DOI PMC
Benbrook C.M. Impacts of Genetically Engineered Crops on Pesticide Use in the U.S.—The First Sixteen Years. Environ. Sci. Eur. 2012;24:24. doi: 10.1186/2190-4715-24-24. DOI
Rezaei F., Nejati R., Sayadi M., Nematollahi A. Diazinon Reduction in Apple Juice Using Probiotic Bacteria during Fermentation and Storage under Refrigeration. Environ. Sci. Pollut. Res. 2021;28:61213–61224. doi: 10.1007/s11356-021-15007-w. PubMed DOI