The enzymatic de-epithelialization technique determines denuded amniotic membrane integrity and viability of harvested epithelial cells
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
29584778
PubMed Central
PMC5870984
DOI
10.1371/journal.pone.0194820
PII: PONE-D-17-36030
Knihovny.cz E-zdroje
- MeSH
- amnion cytologie metabolismus patologie MeSH
- DNA analýza izolace a purifikace MeSH
- EDTA chemie MeSH
- epitelové buňky cytologie metabolismus patologie MeSH
- kolagen typu IV metabolismus MeSH
- kultivované buňky MeSH
- laminin metabolismus MeSH
- lidé MeSH
- mikroskopie elektronová rastrovací MeSH
- nanog metabolismus MeSH
- proliferace buněk MeSH
- reepitalizace MeSH
- transkripční faktory SOXB1 metabolismus MeSH
- trypsin metabolismus MeSH
- viabilita buněk MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA MeSH
- EDTA MeSH
- kolagen typu IV MeSH
- laminin alpha5 MeSH Prohlížeč
- laminin MeSH
- nanog MeSH
- transkripční faktory SOXB1 MeSH
- trypsin MeSH
The human amniotic membrane (HAM) is widely used for its wound healing effect in clinical practice, as a feeder for the cell cultivation, or a source of cells to be used in cell therapy. The aim of this study was to find effective and safe enzymatic HAM de-epithelialization method leading to harvesting of both denuded undamaged HAM and viable human amniotic epithelial cells (hAECs). The efficiency of de-epithelialization using TrypLE Express, trypsin/ ethylenediaminetetraacetic (EDTA), and thermolysin was monitored by hematoxylin and eosin staining and by the measurement of DNA concentration. The cell viability was determined by trypan blue staining. Scanning electron microscopy and immunodetection of collagen type IV and laminin α5 chain were used to check the basement membrane integrity. De-epithelialized hAECs were cultured and their stemness properties and proliferation potential was assessed after each passage. The HAM was successfully de-epithelialized using all three types of reagents, but morphological changes in basement membrane and stroma were observed after the thermolysin application. About 60% of cells remained viable using trypsin/EDTA, approximately 6% using TrypLE Express, and all cells were lethally damaged after thermolysin application. The hAECs isolated using trypsin/EDTA were successfully cultured up to the 5th passage with increasing proliferation potential and decreased stem cell markers expression (NANOG, SOX2) in prolonged cell culture. Trypsin/EDTA technique was the most efficient for obtaining both undamaged denuded HAM and viable hAECs for consequent culture.
Zobrazit více v PubMed
van Herendael BJ, Oberti C, Brosens I. Microanatomy of the human amniotic membranes. A light microscopic, transmission, and scanning electron microscopic study. American journal of obstetrics and gynecology. 1978;131(8):872–80. Epub 1978/08/15. . PubMed
Koizumi N, Inatomi T, Quantock AJ, Fullwood NJ, Dota A, Kinoshita S. Amniotic membrane as a substrate for cultivating limbal corneal epithelial cells for autologous transplantation in rabbits. Cornea. 2000;19(1):65–71. . PubMed
Shimazaki J, Yang HY, Tsubota K. Amniotic membrane transplantation for ocular surface reconstruction in patients with chemical and thermal burns. Ophthalmology. 1997;104(12):2068–76. . PubMed
Tseng SC, Prabhasawat P, Lee SH. Amniotic membrane transplantation for conjunctival surface reconstruction. American journal of ophthalmology. 1997;124(6):765–74. . PubMed
Mohan R, Bajaj A, Gundappa M. Human Amnion Membrane: Potential Applications in Oral and Periodontal Field. J Int Soc Prev Commu. 2017;7(1):15–21. doi: 10.4103/jispcd.JISPCD_359_16 PubMed PMID: WOS:000395980100003. PubMed DOI PMC
Tenenhaus M. The Use of Dehydrated Human Amnion/Chorion Membranes in the Treatment of Burns and Complex Wounds Current and Future Applications. Ann Plas Surg. 2017;78:S11–S3. doi: 10.1097/Sap.0000000000000983 PubMed PMID: WOS:000392860000004. PubMed DOI
Jirsova K, Jones GLA. Amniotic membrane in ophthalmology: properties, preparation, storage and indications for grafting-a review. Cell Tissue Bank. 2017;18(2):193–204. doi: 10.1007/s10561-017-9618-5 PubMed PMID: WOS:000401422700006. PubMed DOI
Tsai RJ, Li LM, Chen JK. Reconstruction of damaged corneas by transplantation of autologous limbal epithelial cells. N Engl J Med. 2000;343(2):86–93. doi: 10.1056/NEJM200007133430202 . PubMed DOI
Kolli S, Lako M, Figueiredo F, Mudhar H, Ahmad S. Loss of corneal epithelial stem cell properties in outgrowths from human limbal explants cultured on intact amniotic membrane. Regenerative medicine. 2008;3(3):329–42. doi: 10.2217/17460751.3.3.329 . PubMed DOI
Li W, Hayashida Y, He H, Kuo CL, Tseng SC. The fate of limbal epithelial progenitor cells during explant culture on intact amniotic membrane. Investigative ophthalmology & visual science. 2007;48(2):605–13. doi: 10.1167/iovs.06-0514 ; PubMed Central PMCID: PMC3197022. PubMed DOI PMC
Sudha B, Sitalakshmi G, Iyer GK, Krishnakumar S. Putative stem cell markers in limbal epithelial cells cultured on intact & denuded human amniotic membrane. The Indian journal of medical research. 2008;128(2):149–56. . PubMed
Riau AK, Beuerman RW, Lim LS, Mehta JS. Preservation, sterilization and de-epithelialization of human amniotic membrane for use in ocular surface reconstruction. Biomaterials. 2010;31(2):216–25. doi: 10.1016/j.biomaterials.2009.09.034 . PubMed DOI
Zhang T, Yam GH, Riau AK, Poh R, Allen JC, Peh GS, et al. The effect of amniotic membrane de-epithelialization method on its biological properties and ability to promote limbal epithelial cell culture. Investigative ophthalmology & visual science. 2013;54(4):3072–81. doi: 10.1167/iovs.12-10805 . PubMed DOI
de Melo GB, Gomes JA, da Gloria MA, Martins MC, Haapalainen EF. [Morphological assessment of different amniotic membrane epithelial denuding techniques]. Arquivos brasileiros de oftalmologia. 2007;70(3):407–11. . PubMed
Higa K, Shimmura S, Kato N, Kawakita T, Miyashita H, Itabashi Y, et al. Proliferation and differentiation of transplantable rabbit epithelial sheets engineered with or without an amniotic membrane carrier. Investigative ophthalmology & visual science. 2007;48(2):597–604. doi: 10.1167/iovs.06-0664 . PubMed DOI
Shortt AJ, Secker GA, Lomas RJ, Wilshaw SP, Kearney JN, Tuft SJ, et al. The effect of amniotic membrane preparation method on its ability to serve as a substrate for the ex-vivo expansion of limbal epithelial cells. Biomaterials. 2009;30(6):1056–65. doi: 10.1016/j.biomaterials.2008.10.048 . PubMed DOI
Shortt AJ, Secker GA, Rajan MS, Meligonis G, Dart JK, Tuft SJ, et al. Ex vivo expansion and transplantation of limbal epithelial stem cells. Ophthalmology. 2008;115(11):1989–97. doi: 10.1016/j.ophtha.2008.04.039 . PubMed DOI
Koizumi N, Rigby H, Fullwood NJ, Kawasaki S, Tanioka H, Koizumi K, et al. Comparison of intact and denuded amniotic membrane as a substrate for cell-suspension culture of human limbal epithelial cells. Graefe's archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie. 2007;245(1):123–34. doi: 10.1007/s00417-005-0095-3 . PubMed DOI
Simat SF, Chua KH, Abdul Rahman H, Tan AE, Tan GC. The stemness gene expression of cultured human amniotic epithelial cells in serial passages. The Medical journal of Malaysia. 2008;63 Suppl A:53–4. . PubMed
Miki T, Lehmann T, Cai H, Stolz DB, Strom SC. Stem cell characteristics of amniotic epithelial cells. Stem cells. 2005;23(10):1549–59. doi: 10.1634/stemcells.2004-0357 . PubMed DOI
Ilancheran S, Michalska A, Peh G, Wallace EM, Pera M, Manuelpillai U. Stem cells derived from human fetal membranes display multilineage differentiation potential. Biol Reprod. 2007;77(3):577–88. doi: 10.1095/biolreprod.106.055244 . PubMed DOI
Chen YT, Li W, Hayashida Y, He H, Chen SY, Tseng DY, et al. Human amniotic epithelial cells as novel feeder layers for promoting ex vivo expansion of limbal epithelial progenitor cells. Stem cells. 2007;25(8):1995–2005. doi: 10.1634/stemcells.2006-0677 PubMed PMID: WOS:000248411000015. PubMed DOI PMC
Fang CH, Jin J, Joe JH, Song YS, So BI, Lim SM, et al. In vivo differentiation of human amniotic epithelial cells into cardiomyocyte-like cells and cell transplantation effect on myocardial infarction in rats: comparison with cord blood and adipose tissue-derived mesenchymal stem cells. Cell transplantation. 2012;21(8):1687–96. doi: 10.3727/096368912X653039 . PubMed DOI
Ito A, Takizawa Y, Shinkai M, Honda H, Hata K, Ueda M, et al. Proliferation and stratification of keratinocyte on cultured amniotic epithelial cells for tissue engineering. J Biosci Bioeng. 2003;95(6):589–93. doi: 10.1263/Jbb.95.589 PubMed PMID: WOS:000184813200007. PubMed DOI
Avila-Gonzalez D, Vega-Hernandez E, Regalado-Hernandez JC, De la Jara-Diaz JF, Garcia-Castro IL, Molina-Hernandez A, et al. Human amniotic epithelial cells as feeder layer to derive and maintain human embryonic stem cells from poor-quality embryos. Stem Cell Res. 2015;15(2):322–4. doi: 10.1016/j.scr.2015.07.006 . PubMed DOI
Lai DM, Cheng WW, Liu TJ, Jiang LZ, Huang Q, Liu T. Use of Human Amnion Epithelial Cells as a Feeder Layer to Support Undifferentiated Growth of Mouse Embryonic Stem Cells. Cloning Stem Cells. 2009;11(2):331–40. doi: 10.1089/clo.2008.0047 PubMed PMID: WOS:000267016400014. PubMed DOI
Li HC, Niederkorn JY, Neelam S, Mayhew E, Word RA, McCulley JP, et al. Immunosuppressive factors secreted by human amniotic epithelial cells. Investigative ophthalmology & visual science. 2005;46(3):900–7. doi: 10.1167/iovs.04-0495 PubMed PMID: WOS:000227216900018. PubMed DOI
Madhira SL, Vemuganti G, Bhaduri A, Gaddipati S, Sangwan VS, Ghanekar Y. Culture and characterization of oral mucosal epithelial cells on human amniotic membrane for ocular surface reconstruction. Mol Vis. 2008;14(24–25):189–96. PubMed PMID: WOS:000256595500001. PubMed PMC
Sangwan VS, Vemuganti GK, Singh S, Balasubramanian D. Successful reconstruction of damaged ocular outer surface in humans using limbal and conjuctival stem cell culture methods. Biosci Rep. 2003;23(4):169–74. . PubMed
Wilshaw SP, Kearney JN, Fisher J, Ingham E. Production of an acellular amniotic membrane matrix for use in tissue engineering. Tissue engineering. 2006;12(8):2117–29. doi: 10.1089/ten.2006.12.2117 . PubMed DOI
Roy R, Haase T, Ma N, Bader A, Becker M, Seifert M, et al. Decellularized amniotic membrane attenuates postinfarct left ventricular remodeling. The Journal of surgical research. 2016;200(2):409–19. doi: 10.1016/j.jss.2015.08.022 . PubMed DOI
Wilshaw SP, Kearney J, Fisher J, Ingham E. Biocompatibility and potential of acellular human amniotic membrane to support the attachment and proliferation of allogeneic cells. Tissue engineering Part A. 2008;14(4):463–72. doi: 10.1089/tea.2007.0145 . PubMed DOI
Hopkinson A, Shanmuganathan VA, Gray T, Yeung AM, Lowe J, James DK, et al. Optimization of amniotic membrane (AM) denuding for tissue engineering. Tissue engineering Part C, Methods. 2008;14(4):371–81. doi: 10.1089/ten.tec.2008.0315 . PubMed DOI
Saghizadeh M, Winkler MA, Kramerov AA, Hemmati DM, Ghiam CA, Dimitrijevich SD, et al. A simple alkaline method for decellularizing human amniotic membrane for cell culture. PloS one. 2013;8(11):e79632 doi: 10.1371/journal.pone.0079632 ; PubMed Central PMCID: PMC3827346. PubMed DOI PMC
Noguchi Y, Uchida Y, Endo T, Ninomiya H, Nomura A, Sakamoto T, et al. The induction of cell differentiation and polarity of tracheal epithelium cultured on the amniotic membrane. Biochemical and biophysical research communications. 1995;210(2):302–9. . PubMed
Fatimah SS, Ng SL, Chua KH, Hayati AR, Tan AE, Tan GC. Value of human amniotic epithelial cells in tissue engineering for cornea. Human cell. 2010;23(4):141–51. doi: 10.1111/j.1749-0774.2010.00096.x . PubMed DOI
Miki T, Marongiu F, Ellis E, S CS. Isolation of amniotic epithelial stem cells. Current protocols in stem cell biology. 2007;Chapter 1:Unit 1E 3. doi: 10.1002/9780470151808.sc01e03s3 . PubMed DOI
Pratama G, Vaghjiani V, Tee JY, Liu YH, Chan J, Tan C, et al. Changes in culture expanded human amniotic epithelial cells: implications for potential therapeutic applications. PloS one. 2011;6(11):e26136 doi: 10.1371/journal.pone.0026136 ; PubMed Central PMCID: PMC3206797. PubMed DOI PMC
Evron A, Goldman S, Shalev E. Human amniotic epithelial cells cultured in substitute serum medium maintain their stem cell characteristics for up to four passages. International journal of stem cells. 2011;4(2):123–32. ; PubMed Central PMCID: PMC3840962. PubMed PMC
Mahmood R, Choudhery MS, Mehmood A, Khan SN, Riazuddin S. In Vitro Differentiation Potential of Human Placenta Derived Cells into Skin Cells. Stem Cells Int. 2015. doi: Artn 841062 doi: 10.1155/2015/841062 PubMed PMID: WOS:000357813100001. PubMed DOI PMC
Tabatabaei M, Mosaffa N, Nikoo S, Bozorgmehr M, Ghods R, Kazemnejad S, et al. Isolation and partial characterization of human amniotic epithelial cells: the effect of trypsin. Avicenna journal of medical biotechnology. 2014;6(1):10–20. ; PubMed Central PMCID: PMC3895574. PubMed PMC
Diaz-Prado S, Muinos-Lopez E, Hermida-Gomez T, Rendal-Vazquez ME, Fuentes-Boquete I, de Toro FJ, et al. Multilineage differentiation potential of cells isolated from the human amniotic membrane. J Cell Biochem. 2010;111(4):846–57. doi: 10.1002/jcb.22769 . PubMed DOI
Rutigliano L, Corradetti B, Valentini L, Bizzaro D, Meucci A, Cremonesi F, et al. Molecular characterization and in vitro differentiation of feline progenitor-like amniotic epithelial cells. Stem Cell Res Ther. 2013;4(5):133 doi: 10.1186/scrt344 ; PubMed Central PMCID: PMCPMC3854755. PubMed DOI PMC
Nishishita N, Muramatsu M, Kawamata S. An effective freezing/thawing method for human pluripotent stem cells cultured in chemically-defined and feeder-free conditions. American journal of stem cells. 2015;4(1):38–49. ; PubMed Central PMCID: PMC4396159. PubMed PMC
Trosan P, Javorkova E, Zajicova A, Hajkova M, Hermankova B, Kossl J, et al. The Supportive Role of Insulin-Like Growth Factor-I in the Differentiation of Murine Mesenchymal Stem Cells into Corneal-Like Cells. Stem Cells Dev. 2016;25(11):874–81. doi: 10.1089/scd.2016.0030 . PubMed DOI
Zajicova A, Pokorna K, Lencova A, Krulova M, Svobodova E, Kubinova S, et al. Treatment of ocular surface injuries by limbal and mesenchymal stem cells growing on nanofiber scaffolds. Cell transplantation. 2010;19(10):1281–90. doi: 10.3727/096368910X509040 . PubMed DOI
Trosan P, Svobodova E, Chudickova M, Krulova M, Zajicova A, Holan V. The key role of insulin-like growth factor I in limbal stem cell differentiation and the corneal wound-healing process. Stem Cells Dev. 2012;21(18):3341–50. doi: 10.1089/scd.2012.0180 ; PubMed Central PMCID: PMCPMC3516427. PubMed DOI PMC
Atlasi Y, Mowla SJ, Ziaee SA, Gokhale PJ, Andrews PW. OCT4 spliced variants are differentially expressed in human pluripotent and nonpluripotent cells. Stem cells. 2008;26(12):3068–74. doi: 10.1634/stemcells.2008-0530 . PubMed DOI
Dudakova L, Liskova P, Trojek T, Palos M, Kalasova S, Jirsova K. Changes in lysyl oxidase (LOX) distribution and its decreased activity in keratoconus corneas. Exp Eye Res. 2012;104:74–81. doi: 10.1016/j.exer.2012.09.005 . PubMed DOI
Reboun M, Rybova J, Dobrovolny R, Vcelak J, Veselkova T, Storkanova G, et al. X-Chromosome Inactivation Analysis in Different Cell Types and Induced Pluripotent Stem Cells Elucidates the Disease Mechanism in a Rare Case of Mucopolysaccharidosis Type II in a Female. Folia Biol-Prague. 2016;62(2):82–9. PubMed PMID: WOS:000377711700004. PubMed
Aplin JD, Campbell S, Allen TD. The extracellular matrix of human amniotic epithelium: ultrastructure, composition and deposition. Journal of cell science. 1985;79:119–36. . PubMed
Modesti A, Scarpa S, D'Orazi G, Simonelli L, Caramia FG. Localization of type IV and V collagens in the stroma of human amnion. Progress in clinical and biological research. 1989;296:459–63. . PubMed
Germain L, Guignard R, Rouabhia M, Auger FA. Early basement membrane formation following the grafting of cultured epidermal sheets detached with thermolysin or Dispase. Burns: journal of the International Society for Burn Injuries. 1995;21(3):175–80. . PubMed
Miyoshi S, Nakazawa H, Kawata K, Tomochika K, Tobe K, Shinoda S. Characterization of the hemorrhagic reaction caused by Vibrio vulnificus metalloprotease, a member of the thermolysin family. Infection and immunity. 1998;66(10):4851–5. ; PubMed Central PMCID: PMC108600. PubMed PMC
Perreault N, Beaulieu JF. Use of the dissociating enzyme thermolysin to generate viable human normal intestinal epithelial cell cultures. Exp Cell Res. 1996;224(2):354–64. doi: 10.1006/excr.1996.0145 PubMed PMID: WOS:A1996UJ21000015. PubMed DOI
Carpenter G, Cohen S. Epidermal growth factor. Annual review of biochemistry. 1979;48:193–216. doi: 10.1146/annurev.bi.48.070179.001205 . PubMed DOI
Fatimah SS, Tan GC, Chua KH, Tan AE, Hayati AR. Effects of epidermal growth factor on the proliferation and cell cycle regulation of cultured human amnion epithelial cells. J Biosci Bioeng. 2012;114(2):220–7. doi: 10.1016/j.jbiosc.2012.03.021 . PubMed DOI
Alcaraz A, Mrowiec A, Insausti CL, Garcia-Vizcaino EM, Ruiz-Canada C, Lopez-Martinez MC, et al. Autocrine TGF-beta induces epithelial to mesenchymal transition in human amniotic epithelial cells. Cell transplantation. 2013;22(8):1351–67. doi: 10.3727/096368912X657387 . PubMed DOI
Scholer HR, Ruppert S, Suzuki N, Chowdhury K, Gruss P. New type of POU domain in germ line-specific protein Oct-4. Nature. 1990;344(6265):435–9. doi: 10.1038/344435a0 . PubMed DOI
Niwa H, Miyazaki J, Smith AG. Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet. 2000;24(4):372–6. doi: 10.1038/74199 . PubMed DOI
Takeda J, Seino S, Bell GI. Human Oct3 gene family: cDNA sequences, alternative splicing, gene organization, chromosomal location, and expression at low levels in adult tissues. Nucleic Acids Res. 1992;20(17):4613–20. ; PubMed Central PMCID: PMCPMC334192. PubMed PMC
Cauffman G, Liebaers I, Van Steirteghem A, Van de Velde H. POU5F1 isoforms show different expression patterns in human embryonic stem cells and preimplantation embryos. Stem cells. 2006;24(12):2685–91. doi: 10.1634/stemcells.2005-0611 . PubMed DOI
Lee J, Kim HK, Rho JY, Han YM, Kim J. The human OCT-4 isoforms differ in their ability to confer self-renewal. J Biol Chem. 2006;281(44):33554–65. doi: 10.1074/jbc.M603937200 . PubMed DOI
Garcia-Castro IL, Garcia-Lopez G, Avila-Gonzalez D, Flores-Herrera H, Molina-Hernandez A, Portillo W, et al. Markers of Pluripotency in Human Amniotic Epithelial Cells and Their Differentiation to Progenitor of Cortical Neurons. PloS one. 2015;10(12):e0146082 doi: 10.1371/journal.pone.0146082 ; PubMed Central PMCID: PMCPMC4697857. PubMed DOI PMC
Izumi M, Pazin BJ, Minervini CF, Gerlach J, Ross MA, Stolz DB, et al. Quantitative comparison of stem cell marker-positive cells in fetal and term human amnion. J Reprod Immunol. 2009;81(1):39–43. doi: 10.1016/j.jri.2009.02.007 . PubMed DOI