Guanine, a high-capacity and rapid-turnover nitrogen reserve in microalgal cells

. 2020 Dec 22 ; 117 (51) : 32722-32730. [epub] 20201208

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem, audiovizuální média

Perzistentní odkaz   https://www.medvik.cz/link/pmid33293415

Nitrogen (N) is an essential macronutrient for microalgae, influencing their productivity, composition, and growth dynamics. Despite the dramatic consequences of N starvation, many free-living and endosymbiotic microalgae thrive in N-poor and N-fluctuating environments, giving rise to questions about the existence and nature of their long-term N reserves. Our understanding of these processes requires a unequivocal identification of the N reserves in microalgal cells as well as their turnover kinetics and subcellular localization. Herein, we identified crystalline guanine as the enigmatic large-capacity and rapid-turnover N reserve of microalgae. The identification was unambiguously supported by confocal Raman, fluorescence, and analytical transmission electron microscopies as well as stable isotope labeling. We discovered that the storing capacity for crystalline guanine by the marine dinoflagellate Amphidiniumcarterae was sufficient to support N requirements for several new generations. We determined that N reserves were rapidly accumulated from guanine available in the environment as well as biosynthesized from various N-containing nutrients. Storage of exogenic N in the form of crystalline guanine was found broadly distributed across taxonomically distant groups of microalgae from diverse habitats, from freshwater and marine free-living forms to endosymbiotic microalgae of reef-building corals (Acropora millepora, Euphyllia paraancora). We propose that crystalline guanine is the elusive N depot that mitigates the negative consequences of episodic N shortage. Guanine (C5H5N5O) may act similarly to cyanophycin (C10H19N5O5) granules in cyanobacteria. Considering the phytoplankton nitrogen pool size and dynamics, guanine is proposed to be an important storage form participating in the global N cycle.

Zobrazit více v PubMed

Antia N. J., Harrison P. J., Oliveira L., The role of dissolved organic nitrogen in phytoplankton nutrition, cell biology and ecology. Phycologia 30, 1–89 (1991).

Falkowski P. G., Evolution of the nitrogen cycle and its influence on the biological sequestration of CO2 in the ocean. Nature 387, 272–275 (1997).

Falkowski P. G., Barber R. T., Smetacek V., Biogeochemical controls and feedbacks on ocean primary production. Science 281, 200–207 (1998). PubMed

Anderson D. M., Glibert P. M., Burkholder J. M., Harmful algal blooms and eutrophication: Nutrient sources, composition, and consequences. Estuaries 25, 704–726 (2002).

Rädecker N., Pogoreutz C., Voolstra C. R., Wiedenmann J., Wild C., Nitrogen cycling in corals: The key to understanding holobiont functioning? Trends Microbiol. 23, 490–497 (2015). PubMed

Tyrrell T., The relative influences of nitrogen and phosphorus on oceanic primary production. Nature 400, 525–531 (1999).

Schmollinger S., et al. , Nitrogen-sparing mechanisms in Chlamydomonas affect the transcriptome, the proteome, and photosynthetic metabolism. Plant Cell 26, 1410–1435 (2014). PubMed PMC

Forchhammer K., Schwarz R., Nitrogen chlorosis in unicellular cyanobacteria–A developmental program for surviving nitrogen deprivation. Environ. Microbiol. 21, 1173–1184 (2019). PubMed

Watzer B., Forchhammer K., Cyanophycin synthesis optimizes nitrogen utilization in the unicellular cyanobacterium Synechocystis sp strain PCC 6803. Appl. Environ. Microbiol. 84, e01298-18 (2018). PubMed PMC

Baulina O., et al. , Diversity of the nitrogen starvation responses in subarctic Desmodesmus sp. (Chlorophyceae) strains isolated from symbioses with invertebrates. FEMS Microbiol. Ecol. 92, fiw031 (2016). PubMed

Lewis J., Burton P., A study of newly excysted cells of Gonyaulax polyedra (Dinophyceae) by electron microscopy. Br. Phycol. J. 23, 49–60 (1988).

Jantschke A., et al. , Anhydrous β-guanine crystals in a marine dinoflagellate: Structure and suggested function. J. Struct. Biol. 207, 12–20 (2019). PubMed

DeSa R., Hastings J. W., The characterization of scintillons. Bioluminescent particles from the marine dinoflagellate, Gonyaulax polyedra. J. Gen. Physiol. 51, 105–122 (1968). PubMed PMC

Strychar K. B., Sammarco P. W., Piva T. J., Apoptotic and necrotic stages of Symbiodinium (Dinophyceae) cell death activity: Bleaching of soft and scleractinian corals. Phycologia 43, 768–777 (2004).

Taylor D. L., In situ studies on cytochemistry and ultrastructure of a symbiotic marine dinoflagellate. J. Mar. Biol. Assoc. U. K. 48, 349–366 (1968).

Kevin M. J., Hall W. T., McLaughlin J. J., Zahl P. A., Symbiodinium microadriaticum Freudenthal, a revised taxonomic description, ultrastructure. J. Phycol. 5, 341–350 (1969). PubMed

Clode P. L., Saunders M., Maker G., Ludwig M., Atkins C. A., Uric acid deposits in symbiotic marine algae. Plant Cell Environ. 32, 170–177 (2009). PubMed

Krueger T., et al. , Temperature and feeding induce tissue level changes in autotrophic and heterotrophic nutrient allocation in the coral symbiosis–A NanoSIMS study. Sci. Rep. 8, 12710 (2018). PubMed PMC

Rosset S., Wiedenmann J., Reed A. J., D’Angelo C., Phosphate deficiency promotes coral bleaching and is reflected by the ultrastructure of symbiotic dinoflagellates. Mar. Pollut. Bull. 118, 180–187 (2017). PubMed PMC

Yamashita H., Kobiyama A., Koike K., Do uric acid deposits in zooxanthellae function as eye-spots? PLoS One 4, e6303 (2009). PubMed PMC

Kopp C., et al. , Highly dynamic cellular-level response of symbiotic coral to a sudden increase in environmental nitrogen. MBio 4, e00052–e13 (2013). PubMed PMC

Jantschke A., Pinkas I., Schertel A., Addadi L., Weiner S., Biomineralization pathways in calcifying dinoflagellates: Uptake, storage in MgCaP-rich bodies and formation of the shell. Acta Biomater. 102, 427–439 (2020). PubMed

Moudříková Š., Nedbal L., Solovchenko A., Mojzeš P., Raman microscopy shows that nitrogen-rich cellular inclusions in microalgae are microcrystalline guanine. Algal Res. 23, 216–222 (2017).

Gur D., Palmer B. A., Weiner S., Addadi L., Light manipulation by guanine crystals in organisms: Biogenic scatterers, mirrors, multilayer reflectors and photonic crystals. Adv. Funct. Mater. 27, 1603514 (2017).

Menden-Deuer S., Lessard E. J., Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnol. Oceanogr. 45, 569–579 (2000).

Shebanova A., et al. , Versatility of the green microalga cell vacuole function as revealed by analytical transmission electron microscopy. Protoplasma 254, 1323–1340 (2017). PubMed

Ismagulova T., Shebanova A., Gorelova O., Baulina O., Solovchenko A., A new simple method for quantification and locating P and N reserves in microalgal cells based on energy-filtered transmission electron microscopy (EFTEM) elemental maps. PLoS One 13, e0208830 (2018). PubMed PMC

Schmitter R. E., The fine structure of Gonyaulax polyedra, a bioluminescent marine dinoflagellate. J. Cell Sci. 9, 147–173 (1971). PubMed

Dodge J. D., Ultrastructure of dinoflagellate pusule - unique osmo-regulatory organelle. Protoplasma 75, 285–302 (1972).

Onuma R., Horiguchi T., Morphological transition in kleptochloroplasts after ingestion in the dinoflagellates Amphidinium poecilochroum and Gymnodinium aeruginosum (Dinophyceae). Protist 164, 622–642 (2013). PubMed

Gur D., et al. , Guanine crystallization in aqueous solutions enables control over crystal size and polymorphism. Cryst. Growth Des. 16, 4975–4980 (2016).

Jeong H. J., et al. , Heterotrophic feeding as a newly identified survival strategy of the dinoflagellate Symbiodinium. Proc. Natl. Acad. Sci. U.S.A. 109, 12604–12609 (2012). PubMed PMC

Delabar J. M., Majoube M., Infrared and Raman-spectroscopic study of N-15 and D-substituted guanines. Spectrochim. Acta A 34, 129–140 (1978).

Muscatine L., Porter J. W., Reef corals: Mutualistic symbioses adapted to nutrient-poor environments. BioSci. 27, 454–460 (1977).

Yellowlees D., Rees T. A. V., Leggat W., Metabolic interactions between algal symbionts and invertebrate hosts. Plant Cell Environ. 31, 679–694 (2008). PubMed

Barott K. L., Venn A. A., Perez S. O., Tambutté S., Tresguerres M., Coral host cells acidify symbiotic algal microenvironment to promote photosynthesis. Proc. Natl. Acad. Sci. U.S.A. 112, 607–612 (2015). PubMed PMC

Falkowski P. G., The role of phytoplankton photosynthesis in global biogeochemical cycles. Photosynth. Res. 39, 235–258 (1994). PubMed

Hirsch A., et al. , “Guanigma”: The revised structure of biogenic anhydrous guanine. Chem. Mater. 27, 8289–8297 (2015).

Kitadai N., Maruyama S., Origins of building blocks of life: A review. Geoscience Frontiers 9, 1117–1153 (2018).

Kornberg A., Rao N. N., Ault-Riché D., Inorganic polyphosphate: A molecule of many functions. Annu. Rev. Biochem. 68, 89–125 (1999). PubMed

Xie L., Jakob U., Inorganic polyphosphate, a multifunctional polyanionic protein scaffold. J. Biol. Chem. 294, 2180–2190 (2019). PubMed PMC

Moudříková Š., et al. , Raman and fluorescence microscopy sensing energy-transducing and energy-storing structures in microalgae. Algal Res. 16, 224–232 (2016).

Moudříková Š., et al. , Quantification of polyphosphate in microalgae by Raman microscopy and by a reference enzymatic assay. Anal. Chem. 89, 12006–12013 (2017). PubMed

Reynolds E. S., The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol. 17, 208–212 (1963). PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...