Mitochondria in White, Brown, and Beige Adipocytes

. 2016 ; 2016 () : 6067349. [epub] 20160317

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid27073398

Mitochondria play a key role in energy metabolism in many tissues, including cardiac and skeletal muscle, brain, liver, and adipose tissue. Three types of adipose depots can be identified in mammals, commonly classified according to their colour appearance: the white (WAT), the brown (BAT), and the beige/brite/brown-like (bAT) adipose tissues. WAT is mainly involved in the storage and mobilization of energy and BAT is predominantly responsible for nonshivering thermogenesis. Recent data suggest that adipocyte mitochondria might play an important role in the development of obesity through defects in mitochondrial lipogenesis and lipolysis, regulation of adipocyte differentiation, apoptosis, production of oxygen radicals, efficiency of oxidative phosphorylation, and regulation of conversion of white adipocytes into brown-like adipocytes. This review summarizes the main characteristics of each adipose tissue subtype and describes morphological and functional modifications focusing on mitochondria and their activity in healthy and unhealthy adipocytes.

Zobrazit více v PubMed

Castro A. V. B., Kolka C. M., Kim S. P., Bergman R. N. Obesity, insulin resistance and comorbidities—mechanisms of association. Arquivos Brasileiros de Endocrinologia e Metabologia. 2014;58(6):600–609. doi: 10.1590/0004-2730000003223. PubMed DOI PMC

Luna-Luna M., Medina-Urrutia A., Vargas-Alarcón G., Coss-Rovirosa F., Vargas-Barrón J., Pérez-Méndez Ó. Adipose tissue in metabolic syndrome: onset and progression of atherosclerosis. Archives of Medical Research. 2015;46(5):392–407. doi: 10.1016/j.arcmed.2015.05.007. PubMed DOI

Mission J. F., Marshall N. E., Caughey A. B. Pregnancy risks associated with obesity. Obstetrics and Gynecology Clinics of North America. 2015;42(2):335–353. doi: 10.1016/j.ogc.2015.01.008. PubMed DOI

Zimmet P., Alberti K. G. M. M., Shaw J. Global and societal implications of the diabetes epidemic. Nature. 2001;414(6865):782–787. doi: 10.1038/414782a. PubMed DOI

Cai L., Lubitz J., Flegal K. M., Pamuk E. R. The predicted effects of chronic obesity in middle age on medicare costs and mortality. Medical Care. 2010;48(6):510–517. doi: 10.1097/mlr.0b013e3181dbdb20. PubMed DOI

Géloën A., Roy P. E., Bukowiecki L. J. Regression of white adipose tissue in diabetic rats. American Journal of Physiology—Endocrinology and Metabolism. 1989;257(4, part 1):E547–E553. PubMed

Lowell B. B., Flier J. S. Brown adipose tissue, β3-adrenergic receptors, and obesity. Annual Review of Medicine. 1997;48:307–316. doi: 10.1146/annurev.med.48.1.307. PubMed DOI

Park A., Kim W. K., Bae K.-H. Distinction of white, beige and brown adipocytes derived from mesenchymal stem cells. World Journal of Stem Cells. 2014;6(1):33–42. doi: 10.4252/wjsc.v6.i1.33. PubMed DOI PMC

Giralt M., Villarroya F. White, brown, beige/brite: different adipose cells for different functions? Endocrinology. 2013;154(9):2992–3000. doi: 10.1210/en.2013-1403. PubMed DOI

Cook A., Cowan C. StemBook. Cambridge, Mass, USA: Harvard Stem Cell Institute; 2008. Adipose. PubMed

De Pauw A., Tejerina S., Raes M., Keijer J., Arnould T. Mitochondrial (dys)function in adipocyte (de)differentiation and systemic metabolic alterations. The American Journal of Pathology. 2009;175(3):927–939. doi: 10.2353/ajpath.2009.081155. PubMed DOI PMC

Yin X., Lanza I. R., Swain J. M., Sarr M. G., Nair K. S., Jensen M. D. Adipocyte mitochondrial function is reduced in human obesity independent of fat cell size. Journal of Clinical Endocrinology and Metabolism. 2014;99(2):E209–E216. doi: 10.1210/jc.2013-3042. PubMed DOI PMC

Peschechera A., Eckel J. ‘Browning’ of adipose tissue—regulation and therapeutic perspectives. Archives of Physiology and Biochemistry. 2013;119(4):151–160. doi: 10.3109/13813455.2013.796995. PubMed DOI

Wang C.-H., Wang C.-C., Wei Y.-H. Mitochondrial dysfunction in insulin insensitivity: implication of mitochondrial role in type 2 diabetes. Annals of the New York Academy of Sciences. 2010;1201:157–165. doi: 10.1111/j.1749-6632.2010.05625.x. PubMed DOI

Logan D. C. The mitochondrial compartment. Journal of Experimental Botany. 2006;57(6):1225–1243. doi: 10.1093/jxb/erj151. PubMed DOI

Zhang Y., Zeng X., Jin S. Autophagy in adipose tissue biology. Pharmacological Research. 2012;66(6):505–512. doi: 10.1016/j.phrs.2012.09.004. PubMed DOI

Kim J.-A., Wei Y., Sowers J. R. Role of mitochondrial dysfunction in insulin resistance. Circulation Research. 2008;102(4):401–414. doi: 10.1161/circresaha.107.165472. PubMed DOI PMC

Benard G., Faustin B., Passerieux E., et al. Physiological diversity of mitochondrial oxidative phosphorylation. American Journal of Physiology—Cell Physiology. 2006;291(6):C1172–C1182. doi: 10.1152/ajpcell.00195.2006. PubMed DOI

Zeviani M., Di Donato S. Mitochondrial disorders. Brain. 2004;127(10):2153–2172. doi: 10.1093/brain/awh259. PubMed DOI

Lenaz G. Role of mitochondria in oxidative stress and ageing. Biochimica et Biophysica Acta—Bioenergetics. 1998;1366(1-2):53–67. doi: 10.1016/s0005-2728(98)00120-0. PubMed DOI

Wang X. The expanding role of mitochondria in apoptosis. Genes and Development. 2001;15(22):2922–2933. PubMed

Medina-Gómez G. Mitochondria and endocrine function of adipose tissue. Best Practice and Research: Clinical Endocrinology and Metabolism. 2012;26(6):791–804. doi: 10.1016/j.beem.2012.06.002. PubMed DOI

Peirce V., Carobbio S., Vidal-Puig A. The different shades of fat. Nature. 2014;510(7503):76–83. doi: 10.1038/nature13477. PubMed DOI

Stephens J. M. The fat controller: adipocyte development. PLoS Biology. 2012;10(11) doi: 10.1371/journal.pbio.1001436.e1001436 PubMed DOI PMC

Shan T., Liang X., Bi P., Zhang P., Liu W., Kuang S. Distinct populations of adipogenic and myogenic Myf5-lineage progenitors in white adipose tissues. Journal of Lipid Research. 2013;54(8):2214–2224. doi: 10.1194/jlr.m038711. PubMed DOI PMC

Sanchez-Gurmaches J., Hung C.-M., Sparks C. A., Tang Y., Li H., Guertin D. A. PTEN loss in the Myf5 lineage redistributes body fat and reveals subsets of white adipocytes that arise from Myf5 precursors. Cell Metabolism. 2012;16(3):348–362. doi: 10.1016/j.cmet.2012.08.003. PubMed DOI PMC

Cypess A. M., White A. P., Vernochet C., et al. Anatomical localization, gene expression profiling and functional characterization of adult human neck brown fat. Nature Medicine. 2013;19(5):635–639. doi: 10.1038/nm.3112. PubMed DOI PMC

Vargas D., Rosales W., Lizcano F. Modifications of human subcutaneous admsc after PPARγ activation and cold exposition. Stem Cells International. 2015;2015:8. doi: 10.1155/2015/196348.196348 PubMed DOI PMC

Symonds M. E. Brown adipose tissue growth and development. Scientifica. 2013;2013:14. doi: 10.1155/2013/305763.305763 PubMed DOI PMC

Jespersen N. Z., Larsen T. J., Peijs L., et al. A classical brown adipose tissue mrna signature partly overlaps with brite in the supraclavicular region of adult humans. Cell Metabolism. 2013;17(5):798–805. doi: 10.1016/j.cmet.2013.04.011. PubMed DOI

Sharp L. Z., Shinoda K., Ohno H., et al. Human BAT possesses molecular signatures that resemble beige/brite cells. PLoS ONE. 2012;7(11) doi: 10.1371/journal.pone.0049452.e49452 PubMed DOI PMC

Corvera S., Gealekman O. Adipose tissue angiogenesis: impact on obesity and type-2 diabetes. Biochimica et Biophysica Acta—Molecular Basis of Disease. 2014;1842(3):463–472. doi: 10.1016/j.bbadis.2013.06.003. PubMed DOI PMC

Lemoine A. Y., Ledoux S., Larger E. Adipose tissue angiogenesis in obesity. Thrombosis and Haemostasis. 2013;110(4):661–669. doi: 10.1160/TH13-01-0073. PubMed DOI

Sarjeant K., Stephens J. M. Adipogenesis. Cold Spring Harbor perspectives in Biology. 2012;4(9)a008417 PubMed PMC

Orava J., Nuutila P., Noponen T., et al. Blunted metabolic responses to cold and insulin stimulation in brown adipose tissue of obese humans. Obesity. 2013;21(11):2279–2287. doi: 10.1002/oby.20456. PubMed DOI

Tewari N., Awad S., Macdonald I. A., Lobo D. N. Obesity-related insulin resistance: implications for the surgical patient. International Journal of Obesity. 2015;39(11):1575–1588. doi: 10.1038/ijo.2015.100. PubMed DOI

Poher A.-L., Altirriba J., Veyrat-Durebex C., Rohner-Jeanrenaud F. Brown adipose tissue activity as a target for the treatment of obesity/insulin resistance. Frontiers in Physiology. 2015;6, article 4 doi: 10.3389/fphys.2015.00004. PubMed DOI PMC

Schlessinger K., Li W., Tan Y., et al. Gene expression in WAT from healthy humans and monkeys correlates with FGF21-induced browning of WAT in mice. Obesity. 2015;23(9):1818–1829. doi: 10.1002/oby.21153. PubMed DOI

Virtanen K. A., Lidell M. E., Orava J., et al. Functional brown adipose tissue in healthy adults. The New England Journal of Medicine. 2009;360(15):1518–1525. doi: 10.1056/nejmoa0808949. PubMed DOI

Cypess A. M., Lehman S., Williams G., et al. Identification and importance of brown adipose tissue in adult humans. The New England Journal of Medicine. 2009;360(15):1509–1517. doi: 10.1056/nejmoa0810780. PubMed DOI PMC

Stephens M., Ludgate M., Rees D. A. Brown fat and obesity: the next big thing? Clinical Endocrinology. 2011;74(6):661–670. doi: 10.1111/j.1365-2265.2011.04018.x. PubMed DOI

Wu J., Boström P., Sparks L. M., et al. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell. 2012;150(2):366–376. doi: 10.1016/j.cell.2012.05.016. PubMed DOI PMC

Waldén T. B., Hansen I. R., Timmons J. A., Cannon B., Nedergaard J. Recruited vs. nonrecruited molecular signatures of brown, ‘brite,’ and white adipose tissues. American Journal of Physiology—Endocrinology and Metabolism. 2012;302(1):E19–E31. doi: 10.1152/ajpendo.00249.2011. PubMed DOI

Himms-Hagen J., Melnyk A., Zingaretti M. C., Ceresi E., Barbatelli G., Cinti S. Multilocular fat cells in WAT of CL-316243-treated rats derive directly from white adipocytes. American Journal of Physiology—Cell Physiology. 2000;279(3):C670–C681. PubMed

Morroni M., Giordano A., Zingaretti M. C., et al. Reversible transdifferentiation of secretory epithelial cells into adipocytes in the mammary gland. Proceedings of the National Academy of Sciences of the United States of America. 2004;101(48):16801–16806. doi: 10.1073/pnas.0407647101. PubMed DOI PMC

Wang Q. A., Tao C., Gupta R. K., Scherer P. E. Tracking adipogenesis during white adipose tissue development, expansion and regeneration. Nature Medicine. 2013;19(10):1338–1344. doi: 10.1038/nm.3324. PubMed DOI PMC

De Matteis R., Lucertini F., Guescini M., et al. Exercise as a new physiological stimulus for brown adipose tissue activity. Nutrition, Metabolism and Cardiovascular Diseases. 2013;23(6):582–590. doi: 10.1016/j.numecd.2012.01.013. PubMed DOI

Sun C., Zeng R., Cao G., Song Z., Zhang Y., Liu C. Vibration training triggers brown adipocyte relative protein expression in rat white adipose tissue. BioMed Research International. 2015;2015:10. doi: 10.1155/2015/919401.919401 PubMed DOI PMC

Bartelt A., Heeren J. Adipose tissue browning and metabolic health. Nature Reviews Endocrinology. 2014;10(1):24–36. doi: 10.1038/nrendo2013204. PubMed DOI

Forner F., Kumar C., Luber C. A., Fromme T., Klingenspor M., Mann M. Proteome differences between brown and white fat mitochondria reveal specialized metabolic functions. Cell Metabolism. 2009;10(4):324–335. doi: 10.1016/j.cmet.2009.08.014. PubMed DOI

Boudina S., Graham T. E. Mitochondrial function/dysfunction in white adipose tissue. Experimental Physiology. 2014;99(9):1168–1178. doi: 10.1113/expphysiol.2014.081414. PubMed DOI

Oller do Nascimento C. M., Ribeiro E. B., Oyama L. M. Metabolism and secretory function of white adipose tissue: effect of dietary fat. Anais da Academia Brasileira de Ciências. 2009;81(3):453–466. doi: 10.1590/s0001-37652009000300010. PubMed DOI

Orava J., Nuutila P., Lidell M. E., et al. Different metabolic responses of human brown adipose tissue to activation by cold and insulin. Cell Metabolism. 2011;14(2):272–279. doi: 10.1016/j.cmet.2011.06.012. PubMed DOI

Sugden M. C., Holness M. J. Mechanisms underlying regulation of the expression and activities of the mammalian pyruvate dehydrogenase kinases. Archives of Physiology and Biochemistry. 2006;112(3):139–149. doi: 10.1080/13813450600935263. PubMed DOI

Nicholls D. G., Locke R. M. Thermogenic mechanisms in brown fat. Physiological Reviews. 1984;64(1):1–64. PubMed

Cannon B., Nedergaard J. Brown adipose tissue: function and physiological significance. Physiological Reviews. 2004;84(1):277–359. doi: 10.1152/physrev.00015.2003. PubMed DOI

Kajimura S., Saito M. A new era in brown adipose tissue biology: molecular control of brown fat development and energy homeostasis. Annual Review of Physiology. 2014;76:225–249. doi: 10.1146/annurev-physiol-021113-170252. PubMed DOI PMC

Busiello R. A., Savarese S., Lombardi A. Mitochondrial uncoupling proteins and energy metabolism. Frontiers in Physiology. 2015;6, article 36 doi: 10.3389/fphys.2015.00036. PubMed DOI PMC

Nicholls D. G. Stoicheiometries of proton translocation by mitochondria. Biochemical Society Transactions. 1977;5(1):200–203. doi: 10.1042/bst0050200. PubMed DOI

Bouillaud F., Couplan E., Pecqueur C., Ricquier D. Homologues of the uncoupling protein from brown adipose tissue (UCP1): UCP2, UCP3, BMCP1 and UCP4. Biochimica et Biophysica Acta (BBA)—Bioenergetics. 2001;1504(1):107–119. doi: 10.1016/s0005-2728(00)00241-3. PubMed DOI

Nibbelink M., Moulin K., Arnaud E., Duval C., Pénicaud L., Casteilla L. Brown fat UCP1 is specifically expressed in uterine longitudinal smooth muscle cells. The Journal of Biological Chemistry. 2001;276(50):47291–47295. doi: 10.1074/jbc.m105658200. PubMed DOI

Kim M., Goto T., Yu R., et al. Fish oil intake induces UCP1 upregulation in brown and white adipose tissue via the sympathetic nervous system. Scientific Reports. 2015;5 doi: 10.1038/srep18013.18013 PubMed DOI PMC

Nedergaard J., Cannon B. The ‘novel’ ‘uncoupling’ UCP2 and UCP3: what do they really do? Pros and cons for suggested functions. Experimental Physiology. 2003;88(1):65–84. doi: 10.1113/eph8802502. PubMed DOI

Echtay K. S. Mitochondrial uncoupling proteins—what is their physiological role? Free Radical Biology and Medicine. 2007;43(10):1351–1371. doi: 10.1016/j.freeradbiomed.2007.08.011. PubMed DOI

Sluse F. E., Jarmuszkiewicz W., Navet R., Douette P., Mathy G., Sluse-Goffart C. M. Mitochondrial UCPs: new insights into regulation and impact. Biochimica et Biophysica Acta (BBA)—Bioenergetics. 2006;1757(5-6):480–485. doi: 10.1016/j.bbabio.2006.02.004. PubMed DOI

Mattiasson G., Sullivan P. G. The emerging functions of UCP2 in health, disease, and therapeutics. Antioxidants and Redox Signaling. 2006;8(1-2):1–38. doi: 10.1089/ars.2006.8.1. PubMed DOI

Pecqueur C., Alves-Guerra M.-C., Gelly C., et al. Uncoupling protein 2, in vivo distribution, induction upon oxidative stress, and evidence for translational regulation. The Journal of Biological Chemistry. 2001;276(12):8705–8712. doi: 10.1074/jbc.m006938200. PubMed DOI

Power G. G. Biology of temperature: the mammalian fetus. Journal of Developmental Physiology. 1989;12(6):295–304. PubMed

Lowell B. B., Spiegelman B. M. Towards a molecular understanding of adaptive thermogenesis. Nature. 2000;404(6778):652–660. PubMed

Zhang M., Wang M., Zhao Z.-T. Uncoupling protein 2 gene polymorphisms in association with overweight and obesity susceptibility: a meta-analysis. Meta Gene. 2014;2(1):143–159. doi: 10.1016/j.mgene.2013.10.009. PubMed DOI PMC

Acosta A., Camilleri M., Shin A., et al. Association of UCP-3 rs1626521 with obesity and stomach functions in humans. Obesity. 2015;23(4):898–906. doi: 10.1002/oby.21039. PubMed DOI PMC

Carey A. L., Vorlander C., Reddy-Luthmoodoo M., et al. Reduced UCP-1 content in in vitro differentiated beige/brite adipocytes derived from preadipocytes of human subcutaneous white adipose tissues in obesity. PLoS ONE. 2014;9(3) doi: 10.1371/journal.pone.0091997.e91997 PubMed DOI PMC

Akhmedov A. T., Rybin V., Marín-García J. Mitochondrial oxidative metabolism and uncoupling proteins in the failing heart. Heart Failure Reviews. 2015;20(2):227–249. doi: 10.1007/s10741-014-9457-4. PubMed DOI

Cornelius C., Trovato Salinaro A., Scuto M., et al. Cellular stress response, sirtuins and UCP proteins in Alzheimer disease: role of vitagenes. Immunity and Ageing. 2013;10(1, article 41) doi: 10.1186/1742-4933-10-41. PubMed DOI PMC

Robbins D., Zhao Y. New aspects of mitochondrial Uncoupling Proteins (UCPs) and their roles in tumorigenesis. International Journal of Molecular Sciences. 2011;12(8):5285–5293. doi: 10.3390/ijms12085285. PubMed DOI PMC

Wilson-Fritch L., Nicoloro S., Chouinard M., et al. Mitochondrial remodeling in adipose tissue associated with obesity and treatment with rosiglitazone. The Journal of Clinical Investigation. 2004;114(9):1281–1289. doi: 10.1172/jci200421752. PubMed DOI PMC

Yehuda-Shnaidman E., Buehrer B., Pi J., Kumar N., Collins S. Acute stimulation of white adipocyte respiration by PKA-induced lipolysis. Diabetes. 2010;59(10):2474–2483. doi: 10.2337/db10-0245. PubMed DOI PMC

López-Ibarra Z., Modrego J., Valero-Muñoz M., et al. Metabolic differences between white and brown fat from fasting rabbits at physiological temperature. Journal of Molecular Endocrinology. 2015;54(2):105–113. doi: 10.1530/jme-14-0255. PubMed DOI

Kopecký J., Rossmeisl M., Flachs P., Bardová K., Brauner P. Mitochondrial uncoupling and lipid metabolism in adipocytes. Biochemical Society Transactions. 2001;29, part 6:791–797. doi: 10.1042/0300-5127:0290791. PubMed DOI

Gregoire F. M., Smas C. M., Sul H. S. Understanding adipocyte differentiation. Physiological Reviews. 1998;78(3):783–809. PubMed

Tormos K. V., Anso E., Hamanaka R. B., et al. Mitochondrial complex III ROS regulate adipocyte differentiation. Cell Metabolism. 2011;14(4):537–544. doi: 10.1016/j.cmet.2011.08.007. PubMed DOI PMC

Liu D., Lin Y., Kang T., et al. Mitochondrial dysfunction and adipogenic reduction by prohibitin silencing in 3T3-L1 cells. PLoS ONE. 2012;7(3) doi: 10.1371/journal.pone.0034315.e34315 PubMed DOI PMC

Wilson-Fritch L., Burkart A., Bell G., et al. Mitochondrial biogenesis and remodeling during adipogenesis and in response to the insulin sensitizer rosiglitazone. Molecular and Cellular Biology. 2003;23(3):1085–1094. doi: 10.1128/MCB.23.3.1085-1094.2003. PubMed DOI PMC

Lu R.-H., Ji H., Chang Z.-G., Su S.-S., Yang G.-S. Mitochondrial development and the influence of its dysfunction during rat adipocyte differentiation. Molecular Biology Reports. 2010;37(5):2173–2182. doi: 10.1007/s11033-009-9695-z. PubMed DOI

Kajimoto K., Terada H., Baba Y., Shinohara Y. Essential role of citrate export from mitochondria at early differentiation stage of 3T3-L1 cells for their effective differentiation into fat cells, as revealed by studies using specific inhibitors of mitochondrial di- and tricarboxylate carriers. Molecular Genetics and Metabolism. 2005;85(1):46–53. doi: 10.1016/j.ymgme.2005.01.006. PubMed DOI

Li B., Shin J., Lee K. Interferon-stimulated gene ISG12b1 inhibits adipogenic differentiation and mitochondrial biogenesis in 3T3-L1 cells. Endocrinology. 2009;150(3):1217–1224. doi: 10.1210/en.2008-0727. PubMed DOI

Yang Y. R., Jang H.-J., Choi S.-S., et al. Obesity resistance and increased energy expenditure by white adipose tissue browning in Oga +/− mice. Diabetologia. 2015;58(12):2867–2876. doi: 10.1007/s00125-015-3736-z. PubMed DOI

Vernochet C., Damilano F., Mourier A., et al. Adipose tissue mitochondrial dysfunction triggers a lipodystrophic syndrome with insulin resistance, hepatosteatosis, and cardiovascular complications. The FASEB Journal. 2014;28(10):4408–4419. doi: 10.1096/fj.14-253971. PubMed DOI PMC

Keuper M., Jastroch M., Yi C.-X., et al. Spare mitochondrial respiratory capacity permits human adipocytes to maintain ATP homeostasis under hypoglycemic conditions. The FASEB Journal. 2014;28(2):761–770. doi: 10.1096/fj.13-238725. PubMed DOI

Dong J., Dong Y., Dong Y., Chen F., Mitch W. E., Zhang L. Inhibition of myostatin in mice improves insulin sensitivity via irisin-mediated cross talk between muscle and adipose tissues. International Journal of Obesity. 2016;40(3):434–442. doi: 10.1038/ijo.2015.200. PubMed DOI PMC

Montgomery M. K., Turner N. Mitochondrial dysfunction and insulin resistance: an update. Endocrine Connections. 2014;4(1):R1–R15. doi: 10.1530/EC-14-0092. PubMed DOI PMC

Chan D. C. Mitochondria: dynamic organelles in disease, aging, and development. Cell. 2006;125(7):1241–1252. doi: 10.1016/j.cell.2006.06.010. PubMed DOI

Turner N., Heilbronn L. K. Is mitochondrial dysfunction a cause of insulin resistance? Trends in Endocrinology and Metabolism. 2008;19(9):324–330. doi: 10.1016/j.tem.2008.08.001. PubMed DOI

Betteridge D. J. What is oxidative stress? Metabolism: Clinical and Experimental. 2000;49(2, supplement 1):3–8. PubMed

Johannsen D. L., Ravussin E. The role of mitochondria in health and disease. Current Opinion in Pharmacology. 2009;9(6):780–786. doi: 10.1016/j.coph.2009.09.002. PubMed DOI PMC

Furukawa S., Fujita T., Shimabukuro M., et al. Increased oxidative stress in obesity and its impact on metabolic syndrome. The Journal of Clinical Investigation. 2004;114(12):1752–1761. doi: 10.1172/jci200421625. PubMed DOI PMC

Wang C.-H., Wang C.-C., Huang H.-C., Wei Y.-H. Mitochondrial dysfunction leads to impairment of insulin sensitivity and adiponectin secretion in adipocytes. The FEBS Journal. 2013;280(4):1039–1050. doi: 10.1111/febs.12096. PubMed DOI

Kahn C. R. Insulin resistance, insulin insensitivity, and insulin unresponsiveness: a necessary distinction. Metabolism: Clinical and Experimental. 1978;27(12, supplement 2):1893–1902. doi: 10.1016/s0026-0495(78)80007-9. PubMed DOI

Boyer F., Vidot J. B., Dubourg A. G., Rondeau P., Essop M. F., Bourdon E. Oxidative stress and adipocyte biology: focus on the role of AGEs. Oxidative Medicine and Cellular Longevity. 2015;2015:9. doi: 10.1155/2015/534873.534873 PubMed DOI PMC

Wang C.-H., Tsai T.-F., Wei Y.-H. Role of mitochondrial dysfunction and dysregulation of Ca2+ homeostasis in insulin insensitivity of mammalian cells. Annals of the New York Academy of Sciences. 2015;1350:66–76. doi: 10.1111/nyas.12838. PubMed DOI

Heinonen S., Buzkova J., Muniandy M., et al. Impaired mitochondrial biogenesis in adipose tissue in acquired obesity. Diabetes. 2015;64(9):3135–3145. doi: 10.2337/db14-1937. PubMed DOI

Sutherland L. N., Capozzi L. C., Turchinsky N. J., Bell R. C., Wright D. C. Time course of high-fat diet-induced reductions in adipose tissue mitochondrial proteins: potential mechanisms and the relationship to glucose intolerance. American Journal of Physiology—Endocrinology and Metabolism. 2008;295(5):E1076–E1083. doi: 10.1152/ajpendo.90408.2008. PubMed DOI

Martin S. D., Morrison S., Konstantopoulos N., McGee S. L. Mitochondrial dysfunction has divergent, cell type-dependent effects on insulin action. Molecular Metabolism. 2014;3(4):408–418. doi: 10.1016/j.molmet.2014.02.001. PubMed DOI PMC

Walley A. J., Blakemore A. I. F., Froguel P. Genetics of obesity and the prediction of risk for health. Human Molecular Genetics. 2006;15(2):R124–R130. doi: 10.1093/hmg/ddl215. PubMed DOI

Kujoth G. C., Bradshaw P. C., Haroon S., Prolla T. A. The role of mitochondrial DNA mutations in mammalian aging. PLoS Genetics. 2007;3, article e24 doi: 10.1371/journal.pgen.0030024. PubMed DOI PMC

Kristensen J. M., Skov V., Petersson S. J., et al. A PGC-1α- and muscle fibre type-related decrease in markers of mitochondrial oxidative metabolism in skeletal muscle of humans with inherited insulin resistance. Diabetologia. 2014;57(5):1006–1015. doi: 10.1007/s00125-014-3187-y. PubMed DOI

Skov V., Glintborg D., Knudsen S., et al. Reduced expression of nuclear-encoded genes involved in mitochondrial oxidative metabolism in skeletal muscle of insulin-resistant women with polycystic ovary syndrome. Diabetes. 2007;56(9):2349–2355. doi: 10.2337/db07-0275. PubMed DOI

Gao C.-L., Zhu C., Zhao Y.-P., et al. Mitochondrial dysfunction is induced by high levels of glucose and free fatty acids in 3T3-L1 adipocytes. Molecular and Cellular Endocrinology. 2010;320(1-2):25–33. doi: 10.1016/j.mce.2010.01.039. PubMed DOI

Kamel M. A., Helmy M. H., Hanafi M. Y., Mahmoud S. A., Abo Elfetooh H. Impaired peripheral glucose sensing in F1 offspring of diabetic pregnancy. Journal of Physiology and Biochemistry. 2014;70(3):685–699. doi: 10.1007/s13105-014-0338-z. PubMed DOI

Wang M., Wang X. C., Zhang Z. Y., Mou B., Hu R. M. Impaired mitochondrial oxidative phosphorylation in multiple insulin-sensitive tissues of humans with type 2 diabetes mellitus. Journal of International Medical Research. 2010;38(3):769–781. PubMed

Puigserver P., Wu Z., Park C. W., Graves R., Wright M., Spiegelman B. M. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell. 1998;92(6):829–839. doi: 10.1016/S0092-8674(00)81410-5. PubMed DOI

Pardo R., Enguix N., Lasheras J., Feliu J. E., Kralli A., Villena J. A. Rosiglitazone-induced mitochondrial biogenesis in white adipose tissue is independent of peroxisome proliferator-activated receptor γ coactivator-1α . PLoS ONE. 2011;6(11) doi: 10.1371/journal.pone.0026989.e26989 PubMed DOI PMC

Tiraby C., Tavernier G., Lefort C., et al. Acquirement of brown fat cell features by human white adipocytes. The Journal of Biological Chemistry. 2003;278(35):33370–33376. doi: 10.1074/jbc.m305235200. PubMed DOI

Semple R. K., Crowley V. C., Sewter C. P., et al. Expression of the thermogenic nuclear hormone receptor coactivator PGC-1alpha is reduced in the adipose tissue of morbidly obese subjects. International Journal of Obesity. 2004;28(1):176–179. doi: 10.1038/sj.ijo.0802482. PubMed DOI

Zimmet P. Globalization, coca-colonization and the chronic disease epidemic: can the doomsday scenario be averted? Journal of Internal Medicine. 2000;247(3):301–310. doi: 10.1046/j.1365-2796.2000.00625.x. PubMed DOI

Hoppeler H., Flück M. Plasticity of skeletal muscle mitochondria: structure and function. Medicine and Science in Sports and Exercise. 2003;35(1):95–104. doi: 10.1097/00005768-200301000-00016. PubMed DOI

Stallknecht B., Vinten J., Ploug T., Galbo H. Increased activities of mitochondrial enzymes in white adipose tissue in trained rats. American Journal of Physiology—Endocrinology and Metabolism. 1991;261(3, part 1):E410–E414. PubMed

Trevellin E., Scorzeto M., Olivieri M., et al. Exercise training induces mitochondrial biogenesis and glucose uptake in subcutaneous adipose tissue through eNOS-dependent mechanisms. Diabetes. 2014;63(8):2800–2811. doi: 10.2337/db13-1234. PubMed DOI

Knudsen J. G., Murholm M., Carey A. L., et al. Role of IL-6 in exercise training- and cold-induced UCP1 expression in subcutaneous white adipose tissue. PLoS ONE. 2014;9(1) doi: 10.1371/journal.pone.0084910.e84910 PubMed DOI PMC

Ringholm S., Grunnet Knudsen J., Leick L., Lundgaard A., Munk Nielsen M., Pilegaard H. PGC-1α is required for exercise- and exercise training-induced UCP1 up-regulation in mouse white adipose tissue. PLoS ONE. 2013;8(5) doi: 10.1371/journal.pone.0064123.e64123 PubMed DOI PMC

Sutherland L. N., Bomhof M. R., Capozzi L. C., Basaraba S. A. U., Wright D. C. Exercise and adrenaline increase PGC-1α mRNA expression in rat adipose tissue. The Journal of Physiology. 2009;587(7):1607–1617. doi: 10.1113/jphysiol.2008.165464. PubMed DOI PMC

Stanford K. I., Middelbeek R. J., Townsend K. L., et al. A novel role for subcutaneous adipose tissue in exercise-induced improvements in glucose homeostasis. Diabetes. 2015;64(6):2002–2014. doi: 10.2337/db14-0704. PubMed DOI PMC

Carrière A., Carmona M.-C., Fernandez Y., et al. Mitochondrial reactive oxygen species control the transcription factor CHOP-10/GADD153 and adipocyte differentiation: a mechanism for hypoxia-dependent effect. The Journal of Biological Chemistry. 2004;279(39):40462–40469. doi: 10.1074/jbc.m407258200. PubMed DOI

Zhang Y., Marsboom G., Toth P. T., Rehman J. Mitochondrial respiration regulates adipogenic differentiation of human mesenchymal stem cells. PLoS ONE. 2013;8(10) doi: 10.1371/journal.pone.0077077.e77077 PubMed DOI PMC

Cawthorn W. P., Scheller E. L., MacDougald O. A. Adipose tissue stem cells meet preadipocyte commitment: going back to the future. Journal of Lipid Research. 2012;53(2):227–246. doi: 10.1194/jlr.r021089. PubMed DOI PMC

Exley M. A., Hand L., O'Shea D., Lynch L. Interplay between the immune system and adipose tissue in obesity. Journal of Endocrinology. 2014;223(2):R41–R48. doi: 10.1530/joe-13-0516. PubMed DOI

Saely C. H., Geiger K., Drexel H. Brown versus white adipose tissue: a mini-review. Gerontology. 2012;58(1):15–23. doi: 10.1159/000321319. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Obesogens in Foods

. 2022 May 09 ; 12 (5) : . [epub] 20220509

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...