Mitochondria in White, Brown, and Beige Adipocytes
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
27073398
PubMed Central
PMC4814709
DOI
10.1155/2016/6067349
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Mitochondria play a key role in energy metabolism in many tissues, including cardiac and skeletal muscle, brain, liver, and adipose tissue. Three types of adipose depots can be identified in mammals, commonly classified according to their colour appearance: the white (WAT), the brown (BAT), and the beige/brite/brown-like (bAT) adipose tissues. WAT is mainly involved in the storage and mobilization of energy and BAT is predominantly responsible for nonshivering thermogenesis. Recent data suggest that adipocyte mitochondria might play an important role in the development of obesity through defects in mitochondrial lipogenesis and lipolysis, regulation of adipocyte differentiation, apoptosis, production of oxygen radicals, efficiency of oxidative phosphorylation, and regulation of conversion of white adipocytes into brown-like adipocytes. This review summarizes the main characteristics of each adipose tissue subtype and describes morphological and functional modifications focusing on mitochondria and their activity in healthy and unhealthy adipocytes.
Zobrazit více v PubMed
Castro A. V. B., Kolka C. M., Kim S. P., Bergman R. N. Obesity, insulin resistance and comorbidities—mechanisms of association. Arquivos Brasileiros de Endocrinologia e Metabologia. 2014;58(6):600–609. doi: 10.1590/0004-2730000003223. PubMed DOI PMC
Luna-Luna M., Medina-Urrutia A., Vargas-Alarcón G., Coss-Rovirosa F., Vargas-Barrón J., Pérez-Méndez Ó. Adipose tissue in metabolic syndrome: onset and progression of atherosclerosis. Archives of Medical Research. 2015;46(5):392–407. doi: 10.1016/j.arcmed.2015.05.007. PubMed DOI
Mission J. F., Marshall N. E., Caughey A. B. Pregnancy risks associated with obesity. Obstetrics and Gynecology Clinics of North America. 2015;42(2):335–353. doi: 10.1016/j.ogc.2015.01.008. PubMed DOI
Zimmet P., Alberti K. G. M. M., Shaw J. Global and societal implications of the diabetes epidemic. Nature. 2001;414(6865):782–787. doi: 10.1038/414782a. PubMed DOI
Cai L., Lubitz J., Flegal K. M., Pamuk E. R. The predicted effects of chronic obesity in middle age on medicare costs and mortality. Medical Care. 2010;48(6):510–517. doi: 10.1097/mlr.0b013e3181dbdb20. PubMed DOI
Géloën A., Roy P. E., Bukowiecki L. J. Regression of white adipose tissue in diabetic rats. American Journal of Physiology—Endocrinology and Metabolism. 1989;257(4, part 1):E547–E553. PubMed
Lowell B. B., Flier J. S. Brown adipose tissue, β3-adrenergic receptors, and obesity. Annual Review of Medicine. 1997;48:307–316. doi: 10.1146/annurev.med.48.1.307. PubMed DOI
Park A., Kim W. K., Bae K.-H. Distinction of white, beige and brown adipocytes derived from mesenchymal stem cells. World Journal of Stem Cells. 2014;6(1):33–42. doi: 10.4252/wjsc.v6.i1.33. PubMed DOI PMC
Giralt M., Villarroya F. White, brown, beige/brite: different adipose cells for different functions? Endocrinology. 2013;154(9):2992–3000. doi: 10.1210/en.2013-1403. PubMed DOI
Cook A., Cowan C. StemBook. Cambridge, Mass, USA: Harvard Stem Cell Institute; 2008. Adipose. PubMed
De Pauw A., Tejerina S., Raes M., Keijer J., Arnould T. Mitochondrial (dys)function in adipocyte (de)differentiation and systemic metabolic alterations. The American Journal of Pathology. 2009;175(3):927–939. doi: 10.2353/ajpath.2009.081155. PubMed DOI PMC
Yin X., Lanza I. R., Swain J. M., Sarr M. G., Nair K. S., Jensen M. D. Adipocyte mitochondrial function is reduced in human obesity independent of fat cell size. Journal of Clinical Endocrinology and Metabolism. 2014;99(2):E209–E216. doi: 10.1210/jc.2013-3042. PubMed DOI PMC
Peschechera A., Eckel J. ‘Browning’ of adipose tissue—regulation and therapeutic perspectives. Archives of Physiology and Biochemistry. 2013;119(4):151–160. doi: 10.3109/13813455.2013.796995. PubMed DOI
Wang C.-H., Wang C.-C., Wei Y.-H. Mitochondrial dysfunction in insulin insensitivity: implication of mitochondrial role in type 2 diabetes. Annals of the New York Academy of Sciences. 2010;1201:157–165. doi: 10.1111/j.1749-6632.2010.05625.x. PubMed DOI
Logan D. C. The mitochondrial compartment. Journal of Experimental Botany. 2006;57(6):1225–1243. doi: 10.1093/jxb/erj151. PubMed DOI
Zhang Y., Zeng X., Jin S. Autophagy in adipose tissue biology. Pharmacological Research. 2012;66(6):505–512. doi: 10.1016/j.phrs.2012.09.004. PubMed DOI
Kim J.-A., Wei Y., Sowers J. R. Role of mitochondrial dysfunction in insulin resistance. Circulation Research. 2008;102(4):401–414. doi: 10.1161/circresaha.107.165472. PubMed DOI PMC
Benard G., Faustin B., Passerieux E., et al. Physiological diversity of mitochondrial oxidative phosphorylation. American Journal of Physiology—Cell Physiology. 2006;291(6):C1172–C1182. doi: 10.1152/ajpcell.00195.2006. PubMed DOI
Zeviani M., Di Donato S. Mitochondrial disorders. Brain. 2004;127(10):2153–2172. doi: 10.1093/brain/awh259. PubMed DOI
Lenaz G. Role of mitochondria in oxidative stress and ageing. Biochimica et Biophysica Acta—Bioenergetics. 1998;1366(1-2):53–67. doi: 10.1016/s0005-2728(98)00120-0. PubMed DOI
Wang X. The expanding role of mitochondria in apoptosis. Genes and Development. 2001;15(22):2922–2933. PubMed
Medina-Gómez G. Mitochondria and endocrine function of adipose tissue. Best Practice and Research: Clinical Endocrinology and Metabolism. 2012;26(6):791–804. doi: 10.1016/j.beem.2012.06.002. PubMed DOI
Peirce V., Carobbio S., Vidal-Puig A. The different shades of fat. Nature. 2014;510(7503):76–83. doi: 10.1038/nature13477. PubMed DOI
Stephens J. M. The fat controller: adipocyte development. PLoS Biology. 2012;10(11) doi: 10.1371/journal.pbio.1001436.e1001436 PubMed DOI PMC
Shan T., Liang X., Bi P., Zhang P., Liu W., Kuang S. Distinct populations of adipogenic and myogenic Myf5-lineage progenitors in white adipose tissues. Journal of Lipid Research. 2013;54(8):2214–2224. doi: 10.1194/jlr.m038711. PubMed DOI PMC
Sanchez-Gurmaches J., Hung C.-M., Sparks C. A., Tang Y., Li H., Guertin D. A. PTEN loss in the Myf5 lineage redistributes body fat and reveals subsets of white adipocytes that arise from Myf5 precursors. Cell Metabolism. 2012;16(3):348–362. doi: 10.1016/j.cmet.2012.08.003. PubMed DOI PMC
Cypess A. M., White A. P., Vernochet C., et al. Anatomical localization, gene expression profiling and functional characterization of adult human neck brown fat. Nature Medicine. 2013;19(5):635–639. doi: 10.1038/nm.3112. PubMed DOI PMC
Vargas D., Rosales W., Lizcano F. Modifications of human subcutaneous admsc after PPARγ activation and cold exposition. Stem Cells International. 2015;2015:8. doi: 10.1155/2015/196348.196348 PubMed DOI PMC
Symonds M. E. Brown adipose tissue growth and development. Scientifica. 2013;2013:14. doi: 10.1155/2013/305763.305763 PubMed DOI PMC
Jespersen N. Z., Larsen T. J., Peijs L., et al. A classical brown adipose tissue mrna signature partly overlaps with brite in the supraclavicular region of adult humans. Cell Metabolism. 2013;17(5):798–805. doi: 10.1016/j.cmet.2013.04.011. PubMed DOI
Sharp L. Z., Shinoda K., Ohno H., et al. Human BAT possesses molecular signatures that resemble beige/brite cells. PLoS ONE. 2012;7(11) doi: 10.1371/journal.pone.0049452.e49452 PubMed DOI PMC
Corvera S., Gealekman O. Adipose tissue angiogenesis: impact on obesity and type-2 diabetes. Biochimica et Biophysica Acta—Molecular Basis of Disease. 2014;1842(3):463–472. doi: 10.1016/j.bbadis.2013.06.003. PubMed DOI PMC
Lemoine A. Y., Ledoux S., Larger E. Adipose tissue angiogenesis in obesity. Thrombosis and Haemostasis. 2013;110(4):661–669. doi: 10.1160/TH13-01-0073. PubMed DOI
Sarjeant K., Stephens J. M. Adipogenesis. Cold Spring Harbor perspectives in Biology. 2012;4(9)a008417 PubMed PMC
Orava J., Nuutila P., Noponen T., et al. Blunted metabolic responses to cold and insulin stimulation in brown adipose tissue of obese humans. Obesity. 2013;21(11):2279–2287. doi: 10.1002/oby.20456. PubMed DOI
Tewari N., Awad S., Macdonald I. A., Lobo D. N. Obesity-related insulin resistance: implications for the surgical patient. International Journal of Obesity. 2015;39(11):1575–1588. doi: 10.1038/ijo.2015.100. PubMed DOI
Poher A.-L., Altirriba J., Veyrat-Durebex C., Rohner-Jeanrenaud F. Brown adipose tissue activity as a target for the treatment of obesity/insulin resistance. Frontiers in Physiology. 2015;6, article 4 doi: 10.3389/fphys.2015.00004. PubMed DOI PMC
Schlessinger K., Li W., Tan Y., et al. Gene expression in WAT from healthy humans and monkeys correlates with FGF21-induced browning of WAT in mice. Obesity. 2015;23(9):1818–1829. doi: 10.1002/oby.21153. PubMed DOI
Virtanen K. A., Lidell M. E., Orava J., et al. Functional brown adipose tissue in healthy adults. The New England Journal of Medicine. 2009;360(15):1518–1525. doi: 10.1056/nejmoa0808949. PubMed DOI
Cypess A. M., Lehman S., Williams G., et al. Identification and importance of brown adipose tissue in adult humans. The New England Journal of Medicine. 2009;360(15):1509–1517. doi: 10.1056/nejmoa0810780. PubMed DOI PMC
Stephens M., Ludgate M., Rees D. A. Brown fat and obesity: the next big thing? Clinical Endocrinology. 2011;74(6):661–670. doi: 10.1111/j.1365-2265.2011.04018.x. PubMed DOI
Wu J., Boström P., Sparks L. M., et al. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell. 2012;150(2):366–376. doi: 10.1016/j.cell.2012.05.016. PubMed DOI PMC
Waldén T. B., Hansen I. R., Timmons J. A., Cannon B., Nedergaard J. Recruited vs. nonrecruited molecular signatures of brown, ‘brite,’ and white adipose tissues. American Journal of Physiology—Endocrinology and Metabolism. 2012;302(1):E19–E31. doi: 10.1152/ajpendo.00249.2011. PubMed DOI
Himms-Hagen J., Melnyk A., Zingaretti M. C., Ceresi E., Barbatelli G., Cinti S. Multilocular fat cells in WAT of CL-316243-treated rats derive directly from white adipocytes. American Journal of Physiology—Cell Physiology. 2000;279(3):C670–C681. PubMed
Morroni M., Giordano A., Zingaretti M. C., et al. Reversible transdifferentiation of secretory epithelial cells into adipocytes in the mammary gland. Proceedings of the National Academy of Sciences of the United States of America. 2004;101(48):16801–16806. doi: 10.1073/pnas.0407647101. PubMed DOI PMC
Wang Q. A., Tao C., Gupta R. K., Scherer P. E. Tracking adipogenesis during white adipose tissue development, expansion and regeneration. Nature Medicine. 2013;19(10):1338–1344. doi: 10.1038/nm.3324. PubMed DOI PMC
De Matteis R., Lucertini F., Guescini M., et al. Exercise as a new physiological stimulus for brown adipose tissue activity. Nutrition, Metabolism and Cardiovascular Diseases. 2013;23(6):582–590. doi: 10.1016/j.numecd.2012.01.013. PubMed DOI
Sun C., Zeng R., Cao G., Song Z., Zhang Y., Liu C. Vibration training triggers brown adipocyte relative protein expression in rat white adipose tissue. BioMed Research International. 2015;2015:10. doi: 10.1155/2015/919401.919401 PubMed DOI PMC
Bartelt A., Heeren J. Adipose tissue browning and metabolic health. Nature Reviews Endocrinology. 2014;10(1):24–36. doi: 10.1038/nrendo2013204. PubMed DOI
Forner F., Kumar C., Luber C. A., Fromme T., Klingenspor M., Mann M. Proteome differences between brown and white fat mitochondria reveal specialized metabolic functions. Cell Metabolism. 2009;10(4):324–335. doi: 10.1016/j.cmet.2009.08.014. PubMed DOI
Boudina S., Graham T. E. Mitochondrial function/dysfunction in white adipose tissue. Experimental Physiology. 2014;99(9):1168–1178. doi: 10.1113/expphysiol.2014.081414. PubMed DOI
Oller do Nascimento C. M., Ribeiro E. B., Oyama L. M. Metabolism and secretory function of white adipose tissue: effect of dietary fat. Anais da Academia Brasileira de Ciências. 2009;81(3):453–466. doi: 10.1590/s0001-37652009000300010. PubMed DOI
Orava J., Nuutila P., Lidell M. E., et al. Different metabolic responses of human brown adipose tissue to activation by cold and insulin. Cell Metabolism. 2011;14(2):272–279. doi: 10.1016/j.cmet.2011.06.012. PubMed DOI
Sugden M. C., Holness M. J. Mechanisms underlying regulation of the expression and activities of the mammalian pyruvate dehydrogenase kinases. Archives of Physiology and Biochemistry. 2006;112(3):139–149. doi: 10.1080/13813450600935263. PubMed DOI
Nicholls D. G., Locke R. M. Thermogenic mechanisms in brown fat. Physiological Reviews. 1984;64(1):1–64. PubMed
Cannon B., Nedergaard J. Brown adipose tissue: function and physiological significance. Physiological Reviews. 2004;84(1):277–359. doi: 10.1152/physrev.00015.2003. PubMed DOI
Kajimura S., Saito M. A new era in brown adipose tissue biology: molecular control of brown fat development and energy homeostasis. Annual Review of Physiology. 2014;76:225–249. doi: 10.1146/annurev-physiol-021113-170252. PubMed DOI PMC
Busiello R. A., Savarese S., Lombardi A. Mitochondrial uncoupling proteins and energy metabolism. Frontiers in Physiology. 2015;6, article 36 doi: 10.3389/fphys.2015.00036. PubMed DOI PMC
Nicholls D. G. Stoicheiometries of proton translocation by mitochondria. Biochemical Society Transactions. 1977;5(1):200–203. doi: 10.1042/bst0050200. PubMed DOI
Bouillaud F., Couplan E., Pecqueur C., Ricquier D. Homologues of the uncoupling protein from brown adipose tissue (UCP1): UCP2, UCP3, BMCP1 and UCP4. Biochimica et Biophysica Acta (BBA)—Bioenergetics. 2001;1504(1):107–119. doi: 10.1016/s0005-2728(00)00241-3. PubMed DOI
Nibbelink M., Moulin K., Arnaud E., Duval C., Pénicaud L., Casteilla L. Brown fat UCP1 is specifically expressed in uterine longitudinal smooth muscle cells. The Journal of Biological Chemistry. 2001;276(50):47291–47295. doi: 10.1074/jbc.m105658200. PubMed DOI
Kim M., Goto T., Yu R., et al. Fish oil intake induces UCP1 upregulation in brown and white adipose tissue via the sympathetic nervous system. Scientific Reports. 2015;5 doi: 10.1038/srep18013.18013 PubMed DOI PMC
Nedergaard J., Cannon B. The ‘novel’ ‘uncoupling’ UCP2 and UCP3: what do they really do? Pros and cons for suggested functions. Experimental Physiology. 2003;88(1):65–84. doi: 10.1113/eph8802502. PubMed DOI
Echtay K. S. Mitochondrial uncoupling proteins—what is their physiological role? Free Radical Biology and Medicine. 2007;43(10):1351–1371. doi: 10.1016/j.freeradbiomed.2007.08.011. PubMed DOI
Sluse F. E., Jarmuszkiewicz W., Navet R., Douette P., Mathy G., Sluse-Goffart C. M. Mitochondrial UCPs: new insights into regulation and impact. Biochimica et Biophysica Acta (BBA)—Bioenergetics. 2006;1757(5-6):480–485. doi: 10.1016/j.bbabio.2006.02.004. PubMed DOI
Mattiasson G., Sullivan P. G. The emerging functions of UCP2 in health, disease, and therapeutics. Antioxidants and Redox Signaling. 2006;8(1-2):1–38. doi: 10.1089/ars.2006.8.1. PubMed DOI
Pecqueur C., Alves-Guerra M.-C., Gelly C., et al. Uncoupling protein 2, in vivo distribution, induction upon oxidative stress, and evidence for translational regulation. The Journal of Biological Chemistry. 2001;276(12):8705–8712. doi: 10.1074/jbc.m006938200. PubMed DOI
Power G. G. Biology of temperature: the mammalian fetus. Journal of Developmental Physiology. 1989;12(6):295–304. PubMed
Lowell B. B., Spiegelman B. M. Towards a molecular understanding of adaptive thermogenesis. Nature. 2000;404(6778):652–660. PubMed
Zhang M., Wang M., Zhao Z.-T. Uncoupling protein 2 gene polymorphisms in association with overweight and obesity susceptibility: a meta-analysis. Meta Gene. 2014;2(1):143–159. doi: 10.1016/j.mgene.2013.10.009. PubMed DOI PMC
Acosta A., Camilleri M., Shin A., et al. Association of UCP-3 rs1626521 with obesity and stomach functions in humans. Obesity. 2015;23(4):898–906. doi: 10.1002/oby.21039. PubMed DOI PMC
Carey A. L., Vorlander C., Reddy-Luthmoodoo M., et al. Reduced UCP-1 content in in vitro differentiated beige/brite adipocytes derived from preadipocytes of human subcutaneous white adipose tissues in obesity. PLoS ONE. 2014;9(3) doi: 10.1371/journal.pone.0091997.e91997 PubMed DOI PMC
Akhmedov A. T., Rybin V., Marín-García J. Mitochondrial oxidative metabolism and uncoupling proteins in the failing heart. Heart Failure Reviews. 2015;20(2):227–249. doi: 10.1007/s10741-014-9457-4. PubMed DOI
Cornelius C., Trovato Salinaro A., Scuto M., et al. Cellular stress response, sirtuins and UCP proteins in Alzheimer disease: role of vitagenes. Immunity and Ageing. 2013;10(1, article 41) doi: 10.1186/1742-4933-10-41. PubMed DOI PMC
Robbins D., Zhao Y. New aspects of mitochondrial Uncoupling Proteins (UCPs) and their roles in tumorigenesis. International Journal of Molecular Sciences. 2011;12(8):5285–5293. doi: 10.3390/ijms12085285. PubMed DOI PMC
Wilson-Fritch L., Nicoloro S., Chouinard M., et al. Mitochondrial remodeling in adipose tissue associated with obesity and treatment with rosiglitazone. The Journal of Clinical Investigation. 2004;114(9):1281–1289. doi: 10.1172/jci200421752. PubMed DOI PMC
Yehuda-Shnaidman E., Buehrer B., Pi J., Kumar N., Collins S. Acute stimulation of white adipocyte respiration by PKA-induced lipolysis. Diabetes. 2010;59(10):2474–2483. doi: 10.2337/db10-0245. PubMed DOI PMC
López-Ibarra Z., Modrego J., Valero-Muñoz M., et al. Metabolic differences between white and brown fat from fasting rabbits at physiological temperature. Journal of Molecular Endocrinology. 2015;54(2):105–113. doi: 10.1530/jme-14-0255. PubMed DOI
Kopecký J., Rossmeisl M., Flachs P., Bardová K., Brauner P. Mitochondrial uncoupling and lipid metabolism in adipocytes. Biochemical Society Transactions. 2001;29, part 6:791–797. doi: 10.1042/0300-5127:0290791. PubMed DOI
Gregoire F. M., Smas C. M., Sul H. S. Understanding adipocyte differentiation. Physiological Reviews. 1998;78(3):783–809. PubMed
Tormos K. V., Anso E., Hamanaka R. B., et al. Mitochondrial complex III ROS regulate adipocyte differentiation. Cell Metabolism. 2011;14(4):537–544. doi: 10.1016/j.cmet.2011.08.007. PubMed DOI PMC
Liu D., Lin Y., Kang T., et al. Mitochondrial dysfunction and adipogenic reduction by prohibitin silencing in 3T3-L1 cells. PLoS ONE. 2012;7(3) doi: 10.1371/journal.pone.0034315.e34315 PubMed DOI PMC
Wilson-Fritch L., Burkart A., Bell G., et al. Mitochondrial biogenesis and remodeling during adipogenesis and in response to the insulin sensitizer rosiglitazone. Molecular and Cellular Biology. 2003;23(3):1085–1094. doi: 10.1128/MCB.23.3.1085-1094.2003. PubMed DOI PMC
Lu R.-H., Ji H., Chang Z.-G., Su S.-S., Yang G.-S. Mitochondrial development and the influence of its dysfunction during rat adipocyte differentiation. Molecular Biology Reports. 2010;37(5):2173–2182. doi: 10.1007/s11033-009-9695-z. PubMed DOI
Kajimoto K., Terada H., Baba Y., Shinohara Y. Essential role of citrate export from mitochondria at early differentiation stage of 3T3-L1 cells for their effective differentiation into fat cells, as revealed by studies using specific inhibitors of mitochondrial di- and tricarboxylate carriers. Molecular Genetics and Metabolism. 2005;85(1):46–53. doi: 10.1016/j.ymgme.2005.01.006. PubMed DOI
Li B., Shin J., Lee K. Interferon-stimulated gene ISG12b1 inhibits adipogenic differentiation and mitochondrial biogenesis in 3T3-L1 cells. Endocrinology. 2009;150(3):1217–1224. doi: 10.1210/en.2008-0727. PubMed DOI
Yang Y. R., Jang H.-J., Choi S.-S., et al. Obesity resistance and increased energy expenditure by white adipose tissue browning in Oga +/− mice. Diabetologia. 2015;58(12):2867–2876. doi: 10.1007/s00125-015-3736-z. PubMed DOI
Vernochet C., Damilano F., Mourier A., et al. Adipose tissue mitochondrial dysfunction triggers a lipodystrophic syndrome with insulin resistance, hepatosteatosis, and cardiovascular complications. The FASEB Journal. 2014;28(10):4408–4419. doi: 10.1096/fj.14-253971. PubMed DOI PMC
Keuper M., Jastroch M., Yi C.-X., et al. Spare mitochondrial respiratory capacity permits human adipocytes to maintain ATP homeostasis under hypoglycemic conditions. The FASEB Journal. 2014;28(2):761–770. doi: 10.1096/fj.13-238725. PubMed DOI
Dong J., Dong Y., Dong Y., Chen F., Mitch W. E., Zhang L. Inhibition of myostatin in mice improves insulin sensitivity via irisin-mediated cross talk between muscle and adipose tissues. International Journal of Obesity. 2016;40(3):434–442. doi: 10.1038/ijo.2015.200. PubMed DOI PMC
Montgomery M. K., Turner N. Mitochondrial dysfunction and insulin resistance: an update. Endocrine Connections. 2014;4(1):R1–R15. doi: 10.1530/EC-14-0092. PubMed DOI PMC
Chan D. C. Mitochondria: dynamic organelles in disease, aging, and development. Cell. 2006;125(7):1241–1252. doi: 10.1016/j.cell.2006.06.010. PubMed DOI
Turner N., Heilbronn L. K. Is mitochondrial dysfunction a cause of insulin resistance? Trends in Endocrinology and Metabolism. 2008;19(9):324–330. doi: 10.1016/j.tem.2008.08.001. PubMed DOI
Betteridge D. J. What is oxidative stress? Metabolism: Clinical and Experimental. 2000;49(2, supplement 1):3–8. PubMed
Johannsen D. L., Ravussin E. The role of mitochondria in health and disease. Current Opinion in Pharmacology. 2009;9(6):780–786. doi: 10.1016/j.coph.2009.09.002. PubMed DOI PMC
Furukawa S., Fujita T., Shimabukuro M., et al. Increased oxidative stress in obesity and its impact on metabolic syndrome. The Journal of Clinical Investigation. 2004;114(12):1752–1761. doi: 10.1172/jci200421625. PubMed DOI PMC
Wang C.-H., Wang C.-C., Huang H.-C., Wei Y.-H. Mitochondrial dysfunction leads to impairment of insulin sensitivity and adiponectin secretion in adipocytes. The FEBS Journal. 2013;280(4):1039–1050. doi: 10.1111/febs.12096. PubMed DOI
Kahn C. R. Insulin resistance, insulin insensitivity, and insulin unresponsiveness: a necessary distinction. Metabolism: Clinical and Experimental. 1978;27(12, supplement 2):1893–1902. doi: 10.1016/s0026-0495(78)80007-9. PubMed DOI
Boyer F., Vidot J. B., Dubourg A. G., Rondeau P., Essop M. F., Bourdon E. Oxidative stress and adipocyte biology: focus on the role of AGEs. Oxidative Medicine and Cellular Longevity. 2015;2015:9. doi: 10.1155/2015/534873.534873 PubMed DOI PMC
Wang C.-H., Tsai T.-F., Wei Y.-H. Role of mitochondrial dysfunction and dysregulation of Ca2+ homeostasis in insulin insensitivity of mammalian cells. Annals of the New York Academy of Sciences. 2015;1350:66–76. doi: 10.1111/nyas.12838. PubMed DOI
Heinonen S., Buzkova J., Muniandy M., et al. Impaired mitochondrial biogenesis in adipose tissue in acquired obesity. Diabetes. 2015;64(9):3135–3145. doi: 10.2337/db14-1937. PubMed DOI
Sutherland L. N., Capozzi L. C., Turchinsky N. J., Bell R. C., Wright D. C. Time course of high-fat diet-induced reductions in adipose tissue mitochondrial proteins: potential mechanisms and the relationship to glucose intolerance. American Journal of Physiology—Endocrinology and Metabolism. 2008;295(5):E1076–E1083. doi: 10.1152/ajpendo.90408.2008. PubMed DOI
Martin S. D., Morrison S., Konstantopoulos N., McGee S. L. Mitochondrial dysfunction has divergent, cell type-dependent effects on insulin action. Molecular Metabolism. 2014;3(4):408–418. doi: 10.1016/j.molmet.2014.02.001. PubMed DOI PMC
Walley A. J., Blakemore A. I. F., Froguel P. Genetics of obesity and the prediction of risk for health. Human Molecular Genetics. 2006;15(2):R124–R130. doi: 10.1093/hmg/ddl215. PubMed DOI
Kujoth G. C., Bradshaw P. C., Haroon S., Prolla T. A. The role of mitochondrial DNA mutations in mammalian aging. PLoS Genetics. 2007;3, article e24 doi: 10.1371/journal.pgen.0030024. PubMed DOI PMC
Kristensen J. M., Skov V., Petersson S. J., et al. A PGC-1α- and muscle fibre type-related decrease in markers of mitochondrial oxidative metabolism in skeletal muscle of humans with inherited insulin resistance. Diabetologia. 2014;57(5):1006–1015. doi: 10.1007/s00125-014-3187-y. PubMed DOI
Skov V., Glintborg D., Knudsen S., et al. Reduced expression of nuclear-encoded genes involved in mitochondrial oxidative metabolism in skeletal muscle of insulin-resistant women with polycystic ovary syndrome. Diabetes. 2007;56(9):2349–2355. doi: 10.2337/db07-0275. PubMed DOI
Gao C.-L., Zhu C., Zhao Y.-P., et al. Mitochondrial dysfunction is induced by high levels of glucose and free fatty acids in 3T3-L1 adipocytes. Molecular and Cellular Endocrinology. 2010;320(1-2):25–33. doi: 10.1016/j.mce.2010.01.039. PubMed DOI
Kamel M. A., Helmy M. H., Hanafi M. Y., Mahmoud S. A., Abo Elfetooh H. Impaired peripheral glucose sensing in F1 offspring of diabetic pregnancy. Journal of Physiology and Biochemistry. 2014;70(3):685–699. doi: 10.1007/s13105-014-0338-z. PubMed DOI
Wang M., Wang X. C., Zhang Z. Y., Mou B., Hu R. M. Impaired mitochondrial oxidative phosphorylation in multiple insulin-sensitive tissues of humans with type 2 diabetes mellitus. Journal of International Medical Research. 2010;38(3):769–781. PubMed
Puigserver P., Wu Z., Park C. W., Graves R., Wright M., Spiegelman B. M. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell. 1998;92(6):829–839. doi: 10.1016/S0092-8674(00)81410-5. PubMed DOI
Pardo R., Enguix N., Lasheras J., Feliu J. E., Kralli A., Villena J. A. Rosiglitazone-induced mitochondrial biogenesis in white adipose tissue is independent of peroxisome proliferator-activated receptor γ coactivator-1α . PLoS ONE. 2011;6(11) doi: 10.1371/journal.pone.0026989.e26989 PubMed DOI PMC
Tiraby C., Tavernier G., Lefort C., et al. Acquirement of brown fat cell features by human white adipocytes. The Journal of Biological Chemistry. 2003;278(35):33370–33376. doi: 10.1074/jbc.m305235200. PubMed DOI
Semple R. K., Crowley V. C., Sewter C. P., et al. Expression of the thermogenic nuclear hormone receptor coactivator PGC-1alpha is reduced in the adipose tissue of morbidly obese subjects. International Journal of Obesity. 2004;28(1):176–179. doi: 10.1038/sj.ijo.0802482. PubMed DOI
Zimmet P. Globalization, coca-colonization and the chronic disease epidemic: can the doomsday scenario be averted? Journal of Internal Medicine. 2000;247(3):301–310. doi: 10.1046/j.1365-2796.2000.00625.x. PubMed DOI
Hoppeler H., Flück M. Plasticity of skeletal muscle mitochondria: structure and function. Medicine and Science in Sports and Exercise. 2003;35(1):95–104. doi: 10.1097/00005768-200301000-00016. PubMed DOI
Stallknecht B., Vinten J., Ploug T., Galbo H. Increased activities of mitochondrial enzymes in white adipose tissue in trained rats. American Journal of Physiology—Endocrinology and Metabolism. 1991;261(3, part 1):E410–E414. PubMed
Trevellin E., Scorzeto M., Olivieri M., et al. Exercise training induces mitochondrial biogenesis and glucose uptake in subcutaneous adipose tissue through eNOS-dependent mechanisms. Diabetes. 2014;63(8):2800–2811. doi: 10.2337/db13-1234. PubMed DOI
Knudsen J. G., Murholm M., Carey A. L., et al. Role of IL-6 in exercise training- and cold-induced UCP1 expression in subcutaneous white adipose tissue. PLoS ONE. 2014;9(1) doi: 10.1371/journal.pone.0084910.e84910 PubMed DOI PMC
Ringholm S., Grunnet Knudsen J., Leick L., Lundgaard A., Munk Nielsen M., Pilegaard H. PGC-1α is required for exercise- and exercise training-induced UCP1 up-regulation in mouse white adipose tissue. PLoS ONE. 2013;8(5) doi: 10.1371/journal.pone.0064123.e64123 PubMed DOI PMC
Sutherland L. N., Bomhof M. R., Capozzi L. C., Basaraba S. A. U., Wright D. C. Exercise and adrenaline increase PGC-1α mRNA expression in rat adipose tissue. The Journal of Physiology. 2009;587(7):1607–1617. doi: 10.1113/jphysiol.2008.165464. PubMed DOI PMC
Stanford K. I., Middelbeek R. J., Townsend K. L., et al. A novel role for subcutaneous adipose tissue in exercise-induced improvements in glucose homeostasis. Diabetes. 2015;64(6):2002–2014. doi: 10.2337/db14-0704. PubMed DOI PMC
Carrière A., Carmona M.-C., Fernandez Y., et al. Mitochondrial reactive oxygen species control the transcription factor CHOP-10/GADD153 and adipocyte differentiation: a mechanism for hypoxia-dependent effect. The Journal of Biological Chemistry. 2004;279(39):40462–40469. doi: 10.1074/jbc.m407258200. PubMed DOI
Zhang Y., Marsboom G., Toth P. T., Rehman J. Mitochondrial respiration regulates adipogenic differentiation of human mesenchymal stem cells. PLoS ONE. 2013;8(10) doi: 10.1371/journal.pone.0077077.e77077 PubMed DOI PMC
Cawthorn W. P., Scheller E. L., MacDougald O. A. Adipose tissue stem cells meet preadipocyte commitment: going back to the future. Journal of Lipid Research. 2012;53(2):227–246. doi: 10.1194/jlr.r021089. PubMed DOI PMC
Exley M. A., Hand L., O'Shea D., Lynch L. Interplay between the immune system and adipose tissue in obesity. Journal of Endocrinology. 2014;223(2):R41–R48. doi: 10.1530/joe-13-0516. PubMed DOI
Saely C. H., Geiger K., Drexel H. Brown versus white adipose tissue: a mini-review. Gerontology. 2012;58(1):15–23. doi: 10.1159/000321319. PubMed DOI