Suppressing of slow magnetic relaxation in tetracoordinate Co(II) field-induced single-molecule magnet in hybrid material with ferromagnetic barium ferrite

. 2015 Jun 03 ; 5 () : 10761. [epub] 20150603

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid26039085

The novel field-induced single-molecule magnet based on a tetracoordinate mononuclear heteroleptic Co(II) complex involving two heterocyclic benzimidazole (bzi) and two thiocyanido ligands, [Co(bzi)2(NSC)2], (CoL4), was prepared and thoroughly characterized. The analysis of AC susceptibility data resulted in the spin reversal energy barrier U = 14.7 cm(-1), which is in good agreement with theoretical prediction, U(theor). = 20.2 cm(-1), based on axial zero-field splitting parameter D = -10.1 cm(-1) fitted from DC magnetic data. Furthermore, mutual interactions between CoL4 and ferromagnetic barium ferrite BaFe12O19 (BaFeO) in hybrid materials resulted in suppressing of slow relaxation of magnetization in CoL4 for 1:2, 1:1 and 2:1 mass ratios of CoL4 and BaFeO despite the lack of strong magnetic interactions between two magnetic phases.

Zobrazit více v PubMed

Boča R. Zero-field splitting in metal complexes. Coord. Chem. Rev. 248, 757–815 (2004).

Gatteschi D., Sessoli R., Villain J. Molecular Nanomagnets, Oxford University Press, Oxford, U.K., 2006.

Zadrozny J. M., Long J. R. Slow magnetic relaxation in a pseudotetrahedral cobalt(II) complex with easy-plane anisotropy. Chem. Commun. 48, 3927–3929 (2012). PubMed

Ishikawa N., Sugita M., Ishikawa T., Koshihara S. & Kaizu Y. Lanthanide double-decker complexes functioning as magnets at the single-molecular level. J. Am. Chem. Soc. 125, 8694–8695 (2003). PubMed

Freedman D. E. et al.. Slow magnetic relaxation in a high-spin iron(II) Complex. J. Am. Chem. Soc. 132, 1224–1225 (2010). PubMed

Jurca T. et al.. Single-molecule magnet behavior with a single metal center enhanced through peripheral ligand modifications. J. Am. Chem. Soc. 133, 15814–15817 (2011). PubMed

Eichhöfer A., Lan Y., Mereacre V., Bodenstein T. & Weigend F. Slow magnetic relaxation in trigonal-planar mononuclear Fe(II) and Co(II) bis(trimethylsilyl)amido complexes - A comparative Study. Inorg. Chem. 53, 1962–1974 (2014). PubMed

Zadrozny J. M. & Long J. R. Slow magnetic relaxation at zero field in the tetrahedral complex [Co(SPh)4]2−. J. Am. Chem. Soc. 133, 20732–20734 (2011). PubMed

Habib F. et al.. Influence of the ligand field on slow magnetization relaxation versus spin crossover in mononuclear cobalt complexes. Angew. Chem., Int. Ed. 52, 11290–11293 (2013). PubMed

Colacio E. et al.. Slow magnetic relaxation in a CoII–YIII single-ion magnet with positive axial zero-field splitting. Angew. Chem., Int. Ed. 52, 9130–9134 (2013). PubMed

Herchel R., Tuček J., Trávníček Z., Petridis D. & Zbořil R. Crystal water molecules as magnetic tuners in molecular metamagnets exhibiting antiferro–ferro–paramagnetic transitions. Inorg. Chem. 50, 9153–9163 (2011). PubMed

Zoppellaro G., Tuček J., Herchel R., Šafářová K. & Zbořil R. Fe3O4 nanocrystals tune the magnetic regime of the Fe/Ni molecular magnet: A new class of magnetic superstructures. Inorg. Chem. 52, 8144−8150 (2013). PubMed

Titiš J., Miklovič J. & Boča R. Magnetostructural study of tetracoordinate cobalt(II) complexes. Magnetostructural study of tetracoordinate cobalt(II) complexes. Inorg. Chem. Commun. 35, 72–75 (2013).

Mirceva A. & Golic L. Structure of cobalt diquinoline diisothiocyanate. Acta Cryst. 46, 1001–1003 (1990).

Wang W., Huang D., Zhu H., Chen C. & Liu Q. Monoclinic form of dichlorobis(quinoline-N)cobalt(II). Acta Cryst. E57, m587–m588 (2001).

Laing M. & Carr G. Dichlorobis(4-methylpyridine)cobalt(II). Acta Cryst. B31, 2683–2684 (1975).

Carlin R. L., Chirico R. D., Sinn E., Mennenga G. & De Jongh L. J. Magnetic ordering in cobalt chloride-triphenylphosphine (CoCl2.2P(C6H5)3) and cobalt bromide-triphenylphosphine (CoBr2.2P(C6H5)3). Inorg. Chem. 21, 2218–2222 (1982).

Desiraju G., Steiner T. The Weak Hydrogen Bond In Structural Chemistry and Biology. OUP/International Union of Crystallography, 2001.

Chi Y.-H. et al.. π-π Stacking, spin density and magnetic coupling strength. Dalton Trans. 42, 15559–15569 (2013). PubMed

Rajnák C., Titiš J., Fuhr O., Ruben M. & Boča R. Single-Molecule Magnetism in a Pentacoordinate Cobalt(II) Complex Supported by an Antenna Ligand. Inorg. Chem. 53, 8200–8202 (2014). PubMed

Ruiz E., Cano J., Alvarez S. & Alemany P. Broken symmetry approach to calculation of exchange coupling constants for homobinuclear and heterobinuclear transition metal complexes. J. Comput. Chem. 20, 1391–1400 (1999).

Ruiz E., Rodriguez-Fortea A., Cano J., Alvarez S. & Alemany P. About the calculation of exchange coupling constants in polynuclear transition metal complexes. J. Comput. Chem. 24, 982–989 (2003). PubMed

Herchel R., Váhovská L., Potočňák I. & Trávníček Z. Slow magnetic relaxation in octahedral cobalt(II) field-induced single-ion magnet with positive axial and large rhombic anisotropy. Inorg. Chem. 53, 5896–5898 (2014). PubMed

Boča R. Theoretical Foundations of Molecular Magnetism, Elsevier, Amsterdam, 1999.

Press W.H, Flannery B.P., Teukolsky S.A., Vetterling W. T. Numerical Recipes in Fortran 77. The Art of Scientific Computing, 2nd Edition, Cambridge University Press, 1992.

Lodi Rizzini A. et al.. Coupling single molecule magnets to ferromagnetic substrates. Phys. Rev. Lett. 107, 177205 (2011). PubMed

Klar D. et al.. Antiferromagnetic coupling of TbPc2 molecules to ultrathin Ni and Co films. Beilstein J. Nanotechnol. 4, 320–324 (2013). PubMed PMC

Lodi Rizzini A. et al.. Coupling of single, double, and triple-decker metal-phthalocyanine complexes to ferromagnetic and antiferromagnetic substrates. Surf. Sci. 630, 361–374 (2014).

Mannini M. et al.. Magnetic memory of a single-molecule quantum magnet wired to a gold surface. Nat. Mater. 8, 194–197 (2009). PubMed

Mannini M. et al.. Magnetic behaviour of TbPc2 single-molecule magnets chemically grafted on silicon surface. Nat. Commun. 5, Article number : 4582 (2014). PubMed PMC

Noda Y., Noro S.-i., Akutagawa T. & Nakamura T. Gold nanoparticle assemblies stabilized by bis(phthalocyaninato)lanthanide(III) complexes through van der Waals interactions. Sci. Rep. 4, 3758 (2014). PubMed PMC

Perfetti M. et al.. Grafting single molecule magnets on gold nanoparticles. Small 10, 323–329 (2014). PubMed

Sheldrick G. M., A short history of SHELX. Acta Crystallogr., Sect. A: Found. Crystallogr. 64, 112 (2008). PubMed

Farrugia L. J., WinGX suite for small-molecule single-crystal crystallography. J. Appl. Crystallogr. 32, 837 (1999).

Macrae C. F. et al.. Mercury: Visualization and analysis of crystal structures. J. Appl. Crystallogr. 39, 453 (2006).

Neese F. The ORCA program system. WIREs Comput Mol Sci 2, 73–78 (2012).

van Lenthe E., Baerends E. J. & Snijders J. G. Relativistic regular 2-component Hamiltonians. J. Chem. Phys. 99, 4597–4610 (1993).

van Wullen C. Molecular density functional calculations in the regular relativistic approximation: Method, application to coinage metal diatomics, hydrides, fluorides and chlorides, and comparison with first-order relativistic calculations. J. Chem. Phys. 109, 392–399 (1998).

Pantazis D. A., Chen X.-Y., Landis C. R. & Neese F. All-electron scalar relativistic basis sets for third-row transition metal atoms. J. Chem. Theory Comput. 4, 908–919 (2008). PubMed

Vosko S. H., Wilk L. & Nusair M. Accurate spin-dependent electron liquid correlation energies for local spin-density calculations – a critical analysis. Can. J. Phys. 58, 1200–1211 (1980).

Lee C. T., Yang W. T. & Parr R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988). PubMed

Becke A. D. Density-functional thermochemistry. 3. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993).

Stephens P. J., Devlin F. J., Chabalowski C. F. & Frisch M. J. Ab-initio calculation of vibrational absorption circular-dichroism spectra using density-functional force-fields. J. Phys. Chem. 98, 11623–11627 (1994).

Neese F., Wennmohs F., Hansen A. & Becker U. Efficient, approximate and parallel Hartree-Fock and hybrid DFT calculations. A ‘chain-of-spheres’ algorithm for the Hartree-Fock exchange. Chem. Phys. 356, 98–109 (2009).

Malmqvist P. A. & Roos B. O. The CASSCF state interaction method. Chem. Phys. Lett. 155, 189–194 (1989).

Angeli C., Cimiraglia R., Evangelisti S., Leininger T. & Malrieu J. P. Introduction of n-electron valence states for multireference perturbation theory. J. Chem. Phys. 114, 10252–10264 (2001).

Angeli C., Cimiraglia R. & Malrieu J. P. N-electron valence state perturbation theory: a fast implementation of the strongly contracted variant. Chem.Phys. Lett. 350, 297–305 (2001).

Angeli C., Cimiraglia R. & Malrieu J. P. n-electron valence state perturbation theory: A spinless formulation and an efficient implementation of the strongly contracted and of the partially contracted variants. J. Chem. Phys. 117, 9138–9153 (2002).

Angeli C., Borini S., Cestari M. & Cimiraglia R. A quasidegenerate formulation of the second order n-electron valence state perturbation theory approach. J. Chem. Phys. 121, 4043–4049 (2004). PubMed

Angeli C., Bories B., Cavallini A. & Cimiraglia R. Third-order multireference perturbation theory: The n-electron valence state perturbation-theory approach. J. Chem. Phys. 124, 054108 (2006). PubMed

Ganyushin D. & Neese F. First-principles calculations of zero-field splitting parameters. J. Chem. Phys. 125, 024103 (2006). PubMed

Neese F. Efficient and accurate approximations to the molecular spin-orbit coupling operator and their use in molecular g-tensor calculations. J. Chem. Phys. 122, 034107 (2005). PubMed

Maurice R. et al.. Universal Theoretical Approach to Extract Anisotropic Spin Hamiltonians. J. Chem. Theory Comput. 5, 2977–2984 (2009). PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace