Probing spin-electric transitions in a molecular exchange qubit

. 2025 Jan 30 ; 16 (1) : 1198. [epub] 20250130

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39885147
Odkazy

PubMed 39885147
PubMed Central PMC11782546
DOI 10.1038/s41467-025-56453-1
PII: 10.1038/s41467-025-56453-1
Knihovny.cz E-zdroje

Electric fields represent an ideal means for controlling spins at the nanoscale and, more specifically, for manipulating protected degrees of freedom in multispin systems. Here we perform low-temperature magnetic far-IR spectroscopy on a molecular spin triangle (Fe3) and provide initial experimental evidence suggesting spin-electric transitions in polynuclear complexes. The co-presence of electric- and magnetic-dipole transitions, allows us to estimate the spin-electric coupling. Based on spin Hamiltonian simulations of the spectra, we identify the observed transitions and introduce the concept of a generalized exchange qubit. This applies to a wide class of molecular spin triangles, and includes the scalar chirality and the partial spin sum qubits as special cases.

Erratum v

PubMed

Zobrazit více v PubMed

Bacon, D., Kempe, J., Lidar, D. A. & Whaley, K. B. Universal fault-tolerant quantum computation on decoherence-free subspaces. Phys. Rev. Lett.85, 1758–1761 (2000). PubMed

DiVincenzo, D. P., Bacon, D., Kempe, J., Burkard, G. & Whaley, K. B. Universal quantum computation with the exchange interaction. Nature408, 339–342 (2000). PubMed

Burkard, G., Ladd, T. D., Pan, A., Nichol, J. M. & Petta, J. R. Semiconductor spin qubits. Rev. Mod. Phys.95, 025003 (2023).

Boudalis, A. K. Half‐integer spin triangles: old dogs, new tricks. Chem. A Eur. J.27, 7022–7042 (2021). PubMed

Ferrer, S. et al. Antisymmetric exchange in triangular tricopper(II) complexes: correlation among structural, magnetic, and electron paramagnetic resonance parameters. Inorg. Chem.51, 985–1001 (2012). PubMed

Trif, M., Troiani, F., Stepanenko, D. & Loss, D. Spin-electric coupling in molecular magnets. Phys. Rev. Lett.101, 217201 (2008). PubMed

Trif, M., Troiani, F., Stepanenko, D. & Loss, D. Spin electric effects in molecular antiferromagnets. Phys. Rev. B82, 045429 (2010).

Troiani, F., Stepanenko, D. & Loss, D. Hyperfine-induced decoherence in triangular spin-cluster qubits. Phys. Rev. B86, 161409 (2012).

Boudalis, A. K., Robert, J. & Turek, P. First demonstration of magnetoelectric coupling in a polynuclear molecular nanomagnet: single-crystal EPR studies of [Fe3O(O2CPh)6(py)3]ClO4⋅py under static electric fields. Chem. Eur. J.24, 14896–14900 (2018). PubMed

Robert, J., Parizel, N., Turek, P. & Boudalis, A. K. Polyanisotropic magnetoelectric coupling in an electrically controlled molecular spin qubit. J. Am. Chem. Soc.141, 19765–19775 (2019). PubMed

Johnson, A. I., Islam, F., Canali, C. M. & Pederson, M. R. A multiferroic molecular magnetic qubit. J. Chem. Phys.151, 174105 (2019). PubMed

Yazback, M., Liu, S., Shatruk, M., Christou, G. & Cheng, H.-P. Search for toroidal ground state and magnetoelectric effects in molecular spin triangles with antiferromagnetic exchange. J. Phys. Chem. A127, 3814–3823 (2023). PubMed

Lewkowitz, M. et al. Direct observation of electric field-induced magnetism in a molecular magnet. Sci. Rep.13, 2769 (2023). PubMed PMC

Liu, J. et al. Electric field control of spins in molecular magnets. Phys. Rev. Lett.122, 037202 (2019). PubMed

Fittipaldi, M. et al. Electric field modulation of magnetic exchange in molecular helices. Nat. Mater.18, 329–334 (2019). PubMed

Kintzel, B. et al. Spin–electric coupling in a cobalt(ii)‐based spin triangle revealed by electric‐field‐modulated electron spin resonance spectroscopy. Angew. Chem. Int Ed.60, 8832–8838 (2021). PubMed PMC

Georgopoulou, A. N., Margiolaki, I., Psycharis, V. & Boudalis, A. K. Dynamic versus static character of the magnetic jahn–teller effect: magnetostructural studies of [Fe3O(O2CPh)6(py)3]ClO4·py. Inorg. Chem.56, 762–772 (2017). PubMed

van Slageren, J. et al. Frequency-domain magnetic resonance spectroscopy of molecular magnetic materials. Phys. Chem. Chem. Phys.5, 3837–3843 (2003).

Georgeot, B. & Mila, F. Chirality of triangular antiferromagnetic clusters as a qubit. Phys. Rev. Lett.104, 200502 (2010). PubMed

Islam, M. F., Nossa, J. F., Canali, C. M. & Pederson, M. First-principles study of spin-electric coupling in a {Cu3} single molecular magnet. Phys. Rev. B82, 155446 (2010).

Azimi Mousolou, V., Canali, C. M. & Sjöqvist, E. Spin-electric Berry phase shift in triangular molecular magnets. Phys. Rev. B94, 235423 (2016).

Belinsky, M. I. Field-dependent spin chirality and frustration in V3 and Cu3 nanomagnets in transverse magnetic field. 1. Correlations between variable planar spin configurations, vector and scalar chiralities and magnetization. Chem. Phys.435, 62–94 (2014).

Kortz, U., Al-Kassem, N. K., Savelieff, M. G., Al Kadi, N. A. & Sadakane, M. Synthesis and characterization of copper-, Zinc-, manganese-, and cobalt-substituted dimeric heteropolyanions, [(α-XW9O33)2M3(H2O3]n- (n = 12, X = AsIII, SbIII, M = Cu2+, Zn2+; n = 10, X = SeIV, TeIV, M = Cu2+) and [(α-AsW9O33)2WO(H2O)M2(H2O)2]10- (M = Zn2+, Mn2+, Co2+). Inorganic Chem.40, 4742–4749 (2001). PubMed

Choi, K.-Y. et al. Observation of a half step magnetization in the {Cu3}-type triangular spin ring. Phys. Rev. Lett.96, 107202 (2006). PubMed

Choi, K.-Y. et al. Pulsed-field magnetization, electron spin resonance, and nuclear spin-lattice relaxation in the {Cu3} spin triangle. Phys. Rev. B77, 024406 (2008).

Chiorescu, I., Wernsdorfer, W., Müller, A., Bögge, H. & Barbara, B. Butterfly hysteresis loop and dissipative spin reversal in the S = 1/2, V15 molecular complex. Phys. Rev. Lett.84, 3454–3457 (2000). PubMed

Tsukerblat, B., Tarantul, A. & Müller, A. Crossover of the magnetic levels and adiabatic magnetization of the mesoscopic cluster V15. Phys. Lett. A353, 48–V59 (2006).

Yamase, T. et al. Spin-frustrated (VO)36+-triangle-sandwiching octadecatungstates as a new class of molecular magnets. Inorg. Chem.43, 8150–8157 (2004). PubMed

Jones, D. H., Sams, J. R. & Thompson, R. C. The magnetic behavior of clusters of the type [M3O(RCOO)6]+. an isotropic model involving dynamic distortions. J. Chem. Phys.81, 440 (1984).

Jayasooriya, U. A. et al. Exchange interactions in trinuclear basic chromium(III) clusters: direct observation of the magnetic spectrum by inelastic neutron scattering. J. Chem. Phys.98, 9303–9310 (1993).

Popov, A. I., Plis, V. I., Popkov, A. F. & Zvezdin, A. K. Jahn-Teller effect in multi-spin systems with high exchange interaction: ground state problem for V 15 nanocluster. Phys. Rev. B.69, 104418 (2004).

LeMardele, F. FieldOptic. https://github.com/LeMardele/FieldOptic (2024).

Rechkemmer, Y. et al. A four-coordinate cobalt(II) single-ion magnet with coercivity and a very high energy barrier. Nat. Commun.7, 10467 (2016). PubMed PMC

Shiddiq, M. et al. Enhancing coherence in molecular spin qubits via atomic clock transitions. Nature531, 348–351 (2016). PubMed

Kragskow, J. G. C. et al. Analysis of vibronic coupling in a 4f molecular magnet with FIRMS. Nat. Commun.13, 825 (2022). PubMed PMC

Islam, M. F., Withanage, K. P. K., Canali, C. M. & Pederson, M. R. Noncollinear first-principles studies of the spin-electric coupling in frustrated triangular molecular magnets. Phys. Rev. B109, 214407 (2024).

Nossa, J. F., Islam, M. F., Pederson, M. R. & Canali, C. M. Electric control of spin states in frustrated triangular molecular magnets. Phys. Rev. B107, 245402 (2023).

M86-EXX229V1 APEX3 User Manual. Bruker AXS Inc. (2016).

Sheldrick, G. M. SHELXT – Integrated space-group and crystal-structure determination. Acta Crystallogr. Sect. A Found. Adv.71, 3–8 (2015). PubMed PMC

Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C. Struct. Chem.71, 3–8 (2015). PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...