Probing spin-electric transitions in a molecular exchange qubit
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
PubMed
39885147
PubMed Central
PMC11782546
DOI
10.1038/s41467-025-56453-1
PII: 10.1038/s41467-025-56453-1
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Electric fields represent an ideal means for controlling spins at the nanoscale and, more specifically, for manipulating protected degrees of freedom in multispin systems. Here we perform low-temperature magnetic far-IR spectroscopy on a molecular spin triangle (Fe3) and provide initial experimental evidence suggesting spin-electric transitions in polynuclear complexes. The co-presence of electric- and magnetic-dipole transitions, allows us to estimate the spin-electric coupling. Based on spin Hamiltonian simulations of the spectra, we identify the observed transitions and introduce the concept of a generalized exchange qubit. This applies to a wide class of molecular spin triangles, and includes the scalar chirality and the partial spin sum qubits as special cases.
Institute of Physics Charles University Ke Karlovu 5 Prague Czech Republic
Istituto Nanoscienze CNR Centro S3 via Campi 213a Modena 41125 Italy
Scientific Computing Theory and Data Division Paul Scherrer Institute Villigen PSI Switzerland
Zobrazit více v PubMed
Bacon, D., Kempe, J., Lidar, D. A. & Whaley, K. B. Universal fault-tolerant quantum computation on decoherence-free subspaces. Phys. Rev. Lett.85, 1758–1761 (2000). PubMed
DiVincenzo, D. P., Bacon, D., Kempe, J., Burkard, G. & Whaley, K. B. Universal quantum computation with the exchange interaction. Nature408, 339–342 (2000). PubMed
Burkard, G., Ladd, T. D., Pan, A., Nichol, J. M. & Petta, J. R. Semiconductor spin qubits. Rev. Mod. Phys.95, 025003 (2023).
Boudalis, A. K. Half‐integer spin triangles: old dogs, new tricks. Chem. A Eur. J.27, 7022–7042 (2021). PubMed
Ferrer, S. et al. Antisymmetric exchange in triangular tricopper(II) complexes: correlation among structural, magnetic, and electron paramagnetic resonance parameters. Inorg. Chem.51, 985–1001 (2012). PubMed
Trif, M., Troiani, F., Stepanenko, D. & Loss, D. Spin-electric coupling in molecular magnets. Phys. Rev. Lett.101, 217201 (2008). PubMed
Trif, M., Troiani, F., Stepanenko, D. & Loss, D. Spin electric effects in molecular antiferromagnets. Phys. Rev. B82, 045429 (2010).
Troiani, F., Stepanenko, D. & Loss, D. Hyperfine-induced decoherence in triangular spin-cluster qubits. Phys. Rev. B86, 161409 (2012).
Boudalis, A. K., Robert, J. & Turek, P. First demonstration of magnetoelectric coupling in a polynuclear molecular nanomagnet: single-crystal EPR studies of [Fe3O(O2CPh)6(py)3]ClO4⋅py under static electric fields. Chem. Eur. J.24, 14896–14900 (2018). PubMed
Robert, J., Parizel, N., Turek, P. & Boudalis, A. K. Polyanisotropic magnetoelectric coupling in an electrically controlled molecular spin qubit. J. Am. Chem. Soc.141, 19765–19775 (2019). PubMed
Johnson, A. I., Islam, F., Canali, C. M. & Pederson, M. R. A multiferroic molecular magnetic qubit. J. Chem. Phys.151, 174105 (2019). PubMed
Yazback, M., Liu, S., Shatruk, M., Christou, G. & Cheng, H.-P. Search for toroidal ground state and magnetoelectric effects in molecular spin triangles with antiferromagnetic exchange. J. Phys. Chem. A127, 3814–3823 (2023). PubMed
Lewkowitz, M. et al. Direct observation of electric field-induced magnetism in a molecular magnet. Sci. Rep.13, 2769 (2023). PubMed PMC
Liu, J. et al. Electric field control of spins in molecular magnets. Phys. Rev. Lett.122, 037202 (2019). PubMed
Fittipaldi, M. et al. Electric field modulation of magnetic exchange in molecular helices. Nat. Mater.18, 329–334 (2019). PubMed
Kintzel, B. et al. Spin–electric coupling in a cobalt(ii)‐based spin triangle revealed by electric‐field‐modulated electron spin resonance spectroscopy. Angew. Chem. Int Ed.60, 8832–8838 (2021). PubMed PMC
Georgopoulou, A. N., Margiolaki, I., Psycharis, V. & Boudalis, A. K. Dynamic versus static character of the magnetic jahn–teller effect: magnetostructural studies of [Fe3O(O2CPh)6(py)3]ClO4·py. Inorg. Chem.56, 762–772 (2017). PubMed
van Slageren, J. et al. Frequency-domain magnetic resonance spectroscopy of molecular magnetic materials. Phys. Chem. Chem. Phys.5, 3837–3843 (2003).
Georgeot, B. & Mila, F. Chirality of triangular antiferromagnetic clusters as a qubit. Phys. Rev. Lett.104, 200502 (2010). PubMed
Islam, M. F., Nossa, J. F., Canali, C. M. & Pederson, M. First-principles study of spin-electric coupling in a {Cu3} single molecular magnet. Phys. Rev. B82, 155446 (2010).
Azimi Mousolou, V., Canali, C. M. & Sjöqvist, E. Spin-electric Berry phase shift in triangular molecular magnets. Phys. Rev. B94, 235423 (2016).
Belinsky, M. I. Field-dependent spin chirality and frustration in V3 and Cu3 nanomagnets in transverse magnetic field. 1. Correlations between variable planar spin configurations, vector and scalar chiralities and magnetization. Chem. Phys.435, 62–94 (2014).
Kortz, U., Al-Kassem, N. K., Savelieff, M. G., Al Kadi, N. A. & Sadakane, M. Synthesis and characterization of copper-, Zinc-, manganese-, and cobalt-substituted dimeric heteropolyanions, [(α-XW9O33)2M3(H2O3]n- (n = 12, X = AsIII, SbIII, M = Cu2+, Zn2+; n = 10, X = SeIV, TeIV, M = Cu2+) and [(α-AsW9O33)2WO(H2O)M2(H2O)2]10- (M = Zn2+, Mn2+, Co2+). Inorganic Chem.40, 4742–4749 (2001). PubMed
Choi, K.-Y. et al. Observation of a half step magnetization in the {Cu3}-type triangular spin ring. Phys. Rev. Lett.96, 107202 (2006). PubMed
Choi, K.-Y. et al. Pulsed-field magnetization, electron spin resonance, and nuclear spin-lattice relaxation in the {Cu3} spin triangle. Phys. Rev. B77, 024406 (2008).
Chiorescu, I., Wernsdorfer, W., Müller, A., Bögge, H. & Barbara, B. Butterfly hysteresis loop and dissipative spin reversal in the S = 1/2, V15 molecular complex. Phys. Rev. Lett.84, 3454–3457 (2000). PubMed
Tsukerblat, B., Tarantul, A. & Müller, A. Crossover of the magnetic levels and adiabatic magnetization of the mesoscopic cluster V15. Phys. Lett. A353, 48–V59 (2006).
Yamase, T. et al. Spin-frustrated (VO)36+-triangle-sandwiching octadecatungstates as a new class of molecular magnets. Inorg. Chem.43, 8150–8157 (2004). PubMed
Jones, D. H., Sams, J. R. & Thompson, R. C. The magnetic behavior of clusters of the type [M3O(RCOO)6]+. an isotropic model involving dynamic distortions. J. Chem. Phys.81, 440 (1984).
Jayasooriya, U. A. et al. Exchange interactions in trinuclear basic chromium(III) clusters: direct observation of the magnetic spectrum by inelastic neutron scattering. J. Chem. Phys.98, 9303–9310 (1993).
Popov, A. I., Plis, V. I., Popkov, A. F. & Zvezdin, A. K. Jahn-Teller effect in multi-spin systems with high exchange interaction: ground state problem for V 15 nanocluster. Phys. Rev. B.69, 104418 (2004).
LeMardele, F. FieldOptic. https://github.com/LeMardele/FieldOptic (2024).
Rechkemmer, Y. et al. A four-coordinate cobalt(II) single-ion magnet with coercivity and a very high energy barrier. Nat. Commun.7, 10467 (2016). PubMed PMC
Shiddiq, M. et al. Enhancing coherence in molecular spin qubits via atomic clock transitions. Nature531, 348–351 (2016). PubMed
Kragskow, J. G. C. et al. Analysis of vibronic coupling in a 4f molecular magnet with FIRMS. Nat. Commun.13, 825 (2022). PubMed PMC
Islam, M. F., Withanage, K. P. K., Canali, C. M. & Pederson, M. R. Noncollinear first-principles studies of the spin-electric coupling in frustrated triangular molecular magnets. Phys. Rev. B109, 214407 (2024).
Nossa, J. F., Islam, M. F., Pederson, M. R. & Canali, C. M. Electric control of spin states in frustrated triangular molecular magnets. Phys. Rev. B107, 245402 (2023).
M86-EXX229V1 APEX3 User Manual. Bruker AXS Inc. (2016).
Sheldrick, G. M. SHELXT – Integrated space-group and crystal-structure determination. Acta Crystallogr. Sect. A Found. Adv.71, 3–8 (2015). PubMed PMC
Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C. Struct. Chem.71, 3–8 (2015). PubMed PMC