Testing the large genome constraint hypothesis in tropical rhizomatous herbs: life strategies, plant traits and habitat preferences in gingers

. 2024 Feb ; 117 (4) : 1223-1238. [epub] 20231122

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37991980

Grantová podpora
RVO 67985939 Akademie Věd České Republiky
GJ20-12579Y Grantová Agentura České Republiky
CESNET LM2015042 Ministerstvo Školství, Mládeže a Tělovýchovy
DKRVO 2019-2023/4.II.d Ministerstvo Školství, Mládeže a Tělovýchovy
National Museum, 00023272 Ministerstvo Školství, Mládeže a Tělovýchovy

Plant species with large genomes tend to be excluded from climatically more extreme environments with a shorter growing season. Species that occupy such environments are assumed to be under natural selection for more rapid growth and smaller genome size (GS). However, evidence for this is available only for temperate organisms. Here, we study the evolution of GS in two subfamilies of the tropical family Zingiberaceae to find out whether species with larger genomes are confined to environments where the vegetative season is longer. We tested our hypothesis on 337 ginger species from regions with contrasting climates by correlating their GS with an array of plant traits and environmental variables. We revealed 16-fold variation in GS which was tightly related to shoot seasonality. Negative correlations of GS with latitude, temperature and precipitation emerged in the subfamily Zingiberoidae, demonstrating that species with larger GS are excluded from areas with a shorter growing season. In the subfamily Alpinioideae, GS turned out to be correlated with the type of stem and light requirements and its members cope with seasonality mainly by adaptation to shady and moist habitats. The Ornstein-Uhlenbeck models suggested that evolution in regions with humid climates favoured larger GS than in drier regions. Our results indicate that climate seasonality exerts an upper constraint on GS not only in temperate regions but also in the tropics, unless species with large genomes find alternative ways to escape from that constraint.

Zobrazit více v PubMed

Aasamaa, K., Sõber, A. & Rahi, M. (2001) Leaf anatomical characteristics associated with shoot hydraulic conductance, stomatal conductance and stomatal sensitivity to changes of leaf water status in temperate deciduous trees. Australian Journal of Plant Physiology, 28(8), 765-774. Available from: https://doi.org/10.1071/pp00157

Aiello-Lammens, M.E., Boria, R.A., Radosavljevic, A., Vilela, B. & Anderson, R.P. (2015) spThin: an R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography, 38(5), 541-545. Available from: https://doi.org/10.1111/ecog.01132

Akaike, H. (1974) A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716-723. Available from: https://doi.org/10.1109/TAC.1974.1100705

Allen, K., Dupuy, J.M., Gei, M.G., Hulshof, C., Medvigy, D., Pizano, C. et al. (2017) Will seasonally dry tropical forests be sensitive or resistant to future changes in rainfall regimes? Environmental Research Letters, 12(2), 023001. Available from: https://doi.org/10.1088/1748-9326/aa5968

Anderson, L., Stack, S., Fox, M. & Chuanshan, Z. (1985) The relationship between genome size and synaptonemal complex length in higher plants. Experimental Cell Research, 156, 367-378. Available from: https://doi.org/10.1016/0014-4827(85)90544-0

Avdulov, N.P. (1931) Karyo-systematische untersuchung der Familie Gramineen. Bulletin of applied botany, of genetics and plant-breeding, 4(Supplement 43), 1-428.

Beaulieu, J.M., Jhwueng, D.-C., Boettiger, C. & O'Meara, B.C. (2012) Modeling stabilizing selection: Expanding the Ornstein-Uhlenbeck model of adaptive evolution. Evolution, 66(8), 2369-2383. Available from: https://doi.org/10.1111/j.1558-5646.2012.01619.x

Beaulieu, J.M., Leitch, I.J., Patel, S., Pendharkar, A. & Knight, C.A. (2008) Genome size is a strong predictor of cell size and stomatal density in angiosperms. New Phytologist, 179(4), 975-986. Available from: https://doi.org/10.1111/j.1469-8137.2008.02528.x

Beaulieu, J.M. & O'Meara, B.C. (2016) Detecting hidden diversification shifts in models of trait-dependent speciation and extinction. Systematic Biology, 65(4), 583-601. Available from: https://doi.org/10.1093/sysbio/syw022

Bennett, M.D. (1987) Variation in genomic form in plants and its ecological implications. New Phytologist, 106(s1), 177-200. Available from: https://doi.org/10.1111/j.1469-8137.1987.tb04689.x

Bennett, M.D. & Leitch, I.J. (2011) Nuclear DNA amounts in angiosperms: targets, trends and tomorrow. Annals of Botany, 107(3), 467-590. Available from: https://doi.org/10.1093/aob/mcq258

Bennett, M.D. & Smith, L.B. (1976) Nuclear DNA amounts in angiosperms. Philosophical Transactions of the Royal Society (London) B Biological Sciences, 274, 227-274. Available from: https://doi.org/10.1098/rstb.1976.0044

Bennetzen, J.L., Ma, J. & Devos, K.M. (2005) Mechanisms of recent genome size variation in flowering plants. Annals of Botany, 95(1), 127-132. Available from: https://doi.org/10.1093/aob/mci008

Bilinski, P., Albert, P.S., Berg, J.J., Birchler, J.A., Grote, M.N., Lorant, A. et al. (2018) Parallel altitudinal clines reveal trends in adaptive evolution of genome size in Zea mays. PLoS Genetics, 14(5), e1007162. Available from: https://doi.org/10.1371/journal.pgen.1007162

Böhmová, A., Leong-Škorničková, J., Šída, O., Poulsen, A.D., Newman, M.F. & Fér, T. (2023) Next-generation sequencing data show rapid radiation and several long-distance dispersal events in early Costaceae. Molecular Phylogenetics and Evolution, 179, 107664. Available from: https://doi.org/10.1016/j.ympev.2022.107664

Brummitt, R.K. (2001) World geographical scheme for recording plant distributions, 2nd edition. Pittsburgh, USA: Hunt Institute for Botanical Documentation, Carnegie Mellon University. Available from: http://www.huntbotanical.org/publications/show.php?122.2022-12-20

Cacho, N.I., McIntyre, P.J., Kliebenstein, D.J. & Strauss, S.Y. (2021) Genome size evolution is associated with climate seasonality and glucosinolates, but not life history, soil nutrients or range size, across a clade of mustards. Annals of Botany, 127, 887-902. Available from: https://doi.org/10.1093/aob/mcab028

Carta, A. & Peruzzi, L. (2016) Testing the large genome constraint hypothesis: plant traits, habitat and climate seasonality in Liliaceae. New Phytologist, 210(2), 709-716. Available from: https://doi.org/10.1111/nph.13769

Chamberlain, S., Oldoni, D., Barve, V., Desmet, P., Geffert, L., Mcglinn, D. et al. (2022) rgbif: Interface to the global biodiversity information facility API. https://CRAN.R-project.org/package=rgbif

Chen, Z.Y., Chen, S.J., Huang, X.X. & Huang, S.P. (1988) A report on chromosome numbers on Chinese Zingiberaceae. Guihaia, 8, 143-147.

Cooper, N., Thomas, G.H., Venditti, C., Meade, A. & Freckleton, R.P. (2016) A cautionary note on the use of Ornstein-Uhlenbeck models in macroevolutionary studies. Biological Journal of the Linniean Society, 118, 64-77. Available from: https://doi.org/10.1111/bij.12701

Craine, J.M. & Dybzinski, R. (2013) Mechanisms of plant competition for nutrients, water and light. Functional Ecology, 27(4), 833-840. Available from: https://doi.org/10.1111/1365-2435.12081

de Boer, H., Newman, M., Poulsen, A.D., Droop, A.J., Fér, T., Thu Hiền, L.T. et al. (2018) Convergent morphology in Alpinieae (Zingiberaceae): Recircumscribing Amomum as a monophyletic genus. Taxon, 67(1), 6-36. Available from: https://doi.org/10.12705/671.2

Díez, C.M., Gaut, B.S., Meca, E., Scheinvar, E., Montes-Hernandez, S., Eguiarte, L.E. et al. (2013) Genome size variation in wild and cultivated maize along altitudinal gradients. New Phytologist, 199(1), 264-276. Available from: https://doi.org/10.1111/nph.12247

Du, Y., Bi, Y., Zhang, M., Yang, F., Jia, G. & Zhang, X. (2017) Genome size diversity in Lilium (Liliaceae) is correlated with karyotype and environmental traits. Frontiers in Plant Science, 8, 1303. Available from: https://doi.org/10.3389/fpls.2017.01303

Farris, J.S., Källersjö, M., Kluge, A.G. & Bult, C. (1994) Testing significance of incongruence. Cladistics, 10(3), 315-319. Available from: https://doi.org/10.1111/j.1096-0031.1994.tb00181.x

Francis, D., Davies, M.S. & Barlow, P.W. (2008) A strong nucleotypic effect on the cell cycle regardless of ploidy level. Annals of Botany, 101(6), 747-757. Available from: https://doi.org/10.1093/aob/mcn038

Freckleton, R.P., Harvey, P.H. & Pagel, M. (2002) Phylogenetic analysis and comparative data: a test and review of evidence. The American Naturalist, 160(6), 712-726. Available from: https://doi.org/10.1086/343873

Geiger, R. (1954) Klassifikation der Klimate nach W. Köppen [Classification of climates after W. Köppen). Berlin: Springer.

Govaerts, R., Bernet, P., Kratochvíl, K., Gerlach, G., Carr, G., Alrich, P. et al. (2021) World checklist of Orchidaceae. Facilitated by the Royal Botanic Gardens, Kew http://apps.kew.org/wcsp/retrieved.2021-04-01

Greilhuber, J. & Leitch, I.J. (2013) Genome size and the phenotype. In: Leitch, I.J., Greilhuber, J., Dolezel, J. & Wendel, J. (Eds.) Plant genome diversity volume 2: Physical structure, behaviour and evolution of plant genomes. Wien: Springer-Verlag. Available from: https://www.springer.com/la/book/9783709111598

Greilhuber, J., Temsch, E.M. & Loureiro, J.C.M. (2007) Nuclear DNA content measurement. In: Flow cytometry with plant cells. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, pp. 67-101. Available from: https://doi.org/10.1002/9783527610921.ch4

Grime, J.P. (1983) Prediction of weed and crop response to climate based upon measurements of nuclear DNA content. Aspects of Applied Biology, 4, 87-98.

Grime, J.P. & Mowforth, M.A. (1982) Variation in genome size-An ecological interpretation. Nature, 299(5879), 151-153. Available from: https://doi.org/10.1038/299151a0

Grotkopp, E., Rejmánek, M., Sanderson, M.J. & Rost, T.L. (2004) Evolution of genome size in pines (Pinus) and its life-history correlates: Supertree analyses. Evolution, 58(8), 1705-1729. Available from: https://doi.org/10.1111/j.0014-3820.2004.tb00456.x

Guo, C., Gao, S., Krzton, A. & Zhang, L. (2019) Geographic body size variation of a tropical anuran: effects of water deficit and precipitation seasonality on Asian common toad from southern Asia. BMC Evolutionary Biology, 19(1), 208. Available from: https://doi.org/10.1186/s12862-019-1531-z

Hall, T. (2004) BioEdit, Biological sequence alignment editor for Win95/98/NT/2K/XP, version 7.0.4.1. http://www.mbio.ncsu.edu/BioEdit/bioedit.html

Hammer, O. (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4(1), 9.

Hansen, T.F. (1997) Stabilizing selection and the comparative analysis of adaptation. Evolution, 51(5), 1341-1351. Available from: https://doi.org/10.1111/j.1558-5646.1997.tb01457.x

Hetherington, A.M. & Woodward, F.I. (2003) The role of stomata in sensing and driving environmental change. Nature, 424(6951), 901-908. Available from: https://doi.org/10.1038/nature01843

Hijmans, R.J., Bivand, R., Pebesma, E. & Sumner, M.D. (2022) Terra: spatial data analysis. https://CRAN.R-project.org/package=terra

Hlavatá, K., Leong-Škorničková, J., Záveská, E., Šída, O., Newman, M., Mandáková, T. et al. (2023) Phylogenomics and genome size evolution in Amomum s. s. (Zingiberaceae): comparison of traditional and modern sequencing methods. Molecular Phylogenetics and Evolution, 178, 107666. Available from: https://doi.org/10.1016/j.ympev.2022.107666

Hodgson, J.G., Sharafi, M., Jalili, A., Díaz, S., Montserrat-Martí, G., Palmer, C. et al. (2010) Stomatal vs. genome size in angiosperms: the somatic tail wagging the genomic dog? Annals of Botany, 105(4), 573-584. Available from: https://doi.org/10.1093/aob/mcq011

Howard, C.C., Folk, R.A., Beaulieu, J.M. & Cellinese, N. (2019) The monocotyledonous underground: global climatic and phylogenetic patterns of geophyte diversity. American Journal of Botany, 106(6), 850-863. Available from: https://doi.org/10.1002/ajb2.1289

Huelsenbeck, J.P. & Ronquist, F. (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics, 17(8), 754-755. Available from: https://doi.org/10.1093/bioinformatics/17.8.754

Kang, M., Tao, J., Wang, J., Ren, C., Qi, Q., Xiang, Q.-Y. et al. (2014) Adaptive and nonadaptive genome size evolution in karst endemic flora of China. New Phytologist, 202(4), 1371-1381. Available from: https://doi.org/10.1111/nph.12726

Karger, D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W. et al. (2017) Climatologies at high resolution for the earth's land surface areas. Scientific Data, 4(1), 170122. Available from: https://doi.org/10.1038/sdata.2017.122

Knight, C.A. & Ackerly, D.D. (2002) Variation in nuclear DNA content across environmental gradients: a quantile regression analysis. Ecology Letters, 5(1), 66-76. Available from: https://doi.org/10.1046/j.1461-0248.2002.00283.x

Knight, C.A., Molinari, N.A. & Petrov, D.A. (2005) The large genome constraint hypothesis: evolution, ecology and phenotype. Annals of Botany, 95(1), 177-190. Available from: https://doi.org/10.1093/aob/mci011

Kress, W.J., Liu, A.-Z., Newman, M. & Li, Q.-J. (2005) The molecular phylogeny of Alpinia (Zingiberaceae): a complex and polyphyletic genus of gingers. American Journal of Botany, 92(1), 167-178. Available from: https://doi.org/10.3732/ajb.92.1.167

Kress, W.J., Mood, J., Sabu, M., Prince, L., Dey, S. & Sanoj, E. (2010) Larsenianthus, a new Asian genus of gingers (Zingiberaceae) with four species. PhytoKeys, 1, 15-32. Available from: https://doi.org/10.3897/phytokeys.1.658

Kress, W.J., Prince, L.M. & Williams, K.J. (2002) The phylogeny and a new classification of the gingers (Zingiberaceae): evidence from molecular data. American Journal of Botany, 89(10), 1682-1696. Available from: https://doi.org/10.3732/ajb.89.10.1682

Lapointe, L. (2001) How phenology influences physiology in deciduous forest spring ephemerals. Physiologia Plantarum, 113(2), 151-157. Available from: https://doi.org/10.1034/j.1399-3054.2001.1130201.x

Larsen, K., Lock, J.M., Maas, H. & Maas, P.J.M. (1998) Zingiberaceae. In: Flowering Plants Monocotyledons: Alismatanae and Commelinanae (except Gramineae). Berlin: Springer Berlin-Heidelberg, pp. 474-495.

Leong-Škorničková, J. & Newman, M. (2015) Gingers of Cambodia, Laos & Vietnam. Singapore: National Parks Board, Singapore Botanic Gardens.

Leong-Škorničková, J., Šída, O., Jarolímová, V., Sabu, M., Fér, T., Trávníček, P. et al. (2007) Chromosome numbers and genome size variation in Indian species of Curcuma (Zingiberaceae). Annals of Botany, 100(3), 505-526. Available from: https://doi.org/10.1093/aob/mcm144

Lertzman-Lepofsky, G., Mooers, A.Ø. & Greenberg, D.A. (2019) Ecological constraints associated with genome size across salamander lineages. Proceedings of the Royal Society B: Biological Sciences, 286(1911), 20191780. Available from: https://doi.org/10.1098/rspb.2019.1780

Levin, D.A. & Funderburg, S.W. (1979) Genome size in angiosperms: temperate versus tropical species. The American Naturalist, 114(6), 784-795. Available from: https://doi.org/10.1086/283528

Li, H., Su, G., Jiang, L. & Bao, Z. (2017) An efficient unified model for genome-wide association studies and genomic selection. Genetics Selection Evolution, 49(1), 64. Available from: https://doi.org/10.1186/s12711-017-0338-x

Lysak, M.A., Koch, M.A., Beaulieu, J.M., Meister, A. & Leitch, I.J. (2009) The dynamic ups and downs of genome size evolution in Brassicaceae. Molecular Biology and Evolution, 26(1), 85-98. Available from: https://doi.org/10.1093/molbev/msn223

Lyu, H., He, Z., Wu, C.-I. & Shi, S. (2018) Convergent adaptive evolution in marginal environments: unloading transposable elements as a common strategy among mangrove genomes. New Phytologist, 217(1), 428-438. Available from: https://doi.org/10.1111/nph.14784

Madlung, A. (2013) Polyploidy and its effect on evolutionary success: old questions revisited with new tools. Heredity, 110(2), 99-104. Available from: https://doi.org/10.1038/hdy.2012.79

Maherali, H., Walden, A.E. & Husband, B.C. (2009) Genome duplication and the evolution of physiological responses to water stress. New Phytologist, 184(3), 721-731. Available from: https://doi.org/10.1111/j.1469-8137.2009.02997.x

Manos, P.S. & Steele, K.P. (1997) Phylogenetic analyses of “higher” Hamamelididae based on plastid sequence data. American Journal of Botany, 84(10), 1407-1419. Available from: https://doi.org/10.2307/2446139

Meyerson, L.A., Pyšek, P., Lučanová, M., Wigginton, S., Tran, C.-T. & Cronin, J.T. (2020) Plant genome size influences stress tolerance of invasive and native plants via plasticity. Ecosphere, 11(5), e03145. Available from: https://doi.org/10.1002/ecs2.3145

Mowforth, M.A. & Grime, J.P. (1989) Intra-population variation in nuclear DNA amount, cell size and growth rate in Poa annua L. Functional Ecology, 3(3), 289-295. Available from: https://doi.org/10.2307/2389368

Müller, L.-L.B., Zotz, G. & Albach, D.C. (2019) Bromeliaceae subfamilies show divergent trends of genome size evolution. Scientific Reports, 9(1), 5136. Available from: https://doi.org/10.1038/s41598-019-41474-w

Ohri, D. (2008) Climate and growth form: the consequences for genome size in plants. Plant Biology, 7(5), 449-458. Available from: https://doi.org/10.1055/s-2005-865878

Orme, D., Freckleton, R., Thomas, G., Petzoldt, T., Fritz, S., Isaac, N. et al. (2018) caper: Comparative analyses of phylogenetics and evolution in R. R package v.1.0.1. Available from: https://rdrr.io/cran/caper/

Otto, F. (1990) DAPI staining of fixed cells for high-resolution flow cytometry of nuclear DNA. Methods in Cell Biology, 33, 105-110. Available from: https://doi.org/10.1016/s0091-679x(08)60516-6

Pagel, M. (1997) Inferring evolutionary processes from phylogenies. Zoologica Scripta, 26(4), 331-348. Available from: https://doi.org/10.1111/j.1463-6409.1997.tb00423.x

Pagel, M. (1999) Inferring the historical patterns of biological evolution. Nature, 401(6756), 877-884. Available from: https://doi.org/10.1038/44766

Pellicer, J., Fay, M.F. & Leitch, I.J. (2010) The largest eukaryotic genome of them all? Botanical Journal of the Linnean Society, 164(1), 10-15. Available from: https://doi.org/10.1111/j.1095-8339.2010.01072.x

Pellicer, J. & Leitch, I.J. (2020) The plant DNA C-values database (release 7.1): an updated online repository of plant genome size data for comparative studies. New Phytologist, 226(2), 301-305. Available from: https://doi.org/10.1111/nph.16261

Peng, Y., Yang, J., Leitch, I.J., Guignard, M.S., Seabloom, E.W., Cao, D. et al. (2022) Plant genome size modulates grassland community responses to multi-nutrient additions. New Phytologist, 236, 2091-2102. Available from: https://doi.org/10.1111/nph.18496

Popp, M., Erixon, P., Eggens, F. & Oxelman, B. (2005) Origin and evolution of a circumpolar polyploid species complex in Silene (Caryophyllaceae) inferred from low copy nuclear RNA polymerase introns, rDNA, and chloroplast DNA. Systematic Botany, 30(2), 302-313. Available from: https://doi.org/10.1600/0363644054223648

Posada, D. & Crandall, K.A. (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics, 14(9), 817-818. Available from: https://doi.org/10.1093/bioinformatics/14.9.817

Qiu, F., Baack, E.J., Whitney, K.D., Bock, D.G., Tetreault, H.M., Rieseberg, L.H. et al. (2019) Phylogenetic trends and environmental correlates of nuclear genome size variation in Helianthus sunflowers. New Phytologist, 221(3), 1609-1618. Available from: https://doi.org/10.1111/nph.15465

R Core Team. (2021) R: A language and environment for statistical computing R Foundation for statistical computing. Vienna, Austria: R foundation for statistical computing, Vienna, Austria.

Revell, L.J. (2012) phytools: an R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution, 3(2), 217-223. Available from: https://doi.org/10.1111/j.2041-210X.2011.00169.x

Roddy, A.B., Théroux-Rancourt, G., Abbo, T., Benedetti, J.W., Brodersen, C.R., Castro, M. et al. (2020) The scaling of genome size and cell size limits maximum rates of photosynthesis with implications for ecological strategies. International Journal of Plant Sciences, 181, 75-87. Available from: https://doi.org/10.1086/706186

Sakai, S., Kawakita, A., Ooi, K. & Inoue, T. (2013) Variation in the strength of association among pollination systems and floral traits: evolutionary changes in the floral traits of Bornean gingers (Zingiberaceae). American Journal of Botany, 100(3), 546-555. Available from: https://doi.org/10.3732/ajb.1200359

Sanderson, M.J. (2002) Estimating absolute rates of molecular evolution and divergence times: a penalized likelihood approach. Molecular Biology and Evolution, 19(1), 101-109. Available from: https://doi.org/10.1093/oxfordjournals.molbev.a003974

Škorničková, J. (2007) Taxonomic studies in Indian Curcuma L. (PhD Thesis, Charles University). Charles University, Prague https://dspace.cuni.cz/handle/20.500.11956/95918

Šmarda, P., Bureš, P., Horová, L., Leitch, I.J., Mucina, L., Pacini, E. et al. (2014) Ecological and evolutionary significance of genomic GC content diversity in monocots. Proceedings of the National Academy of Sciences, 111(39), E4096-E4102. Available from: https://doi.org/10.1073/pnas.1321152111

Šmarda, P., Hejcman, M., Březinová, A., Horová, L., Steigerová, H., Zedek, F. et al. (2013) Effect of phosphorus availability on the selection of species with different ploidy levels and genome sizes in a long-term grassland fertilization experiment. New Phytologist, 200, 911-921. Available from: https://doi.org/10.1111/nph.12399

Smith, S.A. & O'Meara, B.C. (2012) treePL: divergence time estimation using penalized likelihood for large phylogenies. Bioinformatics, 28(20), 2689-2690. Available from: https://doi.org/10.1093/bioinformatics/bts492

Souza, G., Costa, L., Guignard, M.S., Van-Lume, B., Pellicer, J., Gagnon, E. et al. (2019) Do tropical plants have smaller genomes? Correlation between genome size and climatic variables in the Caesalpinia group (Caesalpinioideae, Leguminosae). Perspectives in Plant Ecology, Evolution and Systematics, 38, 13-23. Available from: https://doi.org/10.1016/j.ppees.2019.03.002

Stamatakis, A. (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30(9), 1312-1313. Available from: https://doi.org/10.1093/bioinformatics/btu033

Stebbins, G.L. (1966) Chromosomal variation and evolution. Science, 152(3728), 1463-1469. Available from: https://doi.org/10.1126/science.152.3728.1463

Steele, K.P. & Vilgalys, R. (1994) Phylogenetic analyses of Polemoniaceae using nucleotide sequences of the plastid gene matK. Systematic Botany, 19(1), 126-142. Available from: https://doi.org/10.2307/2419717

Swofford, D.L. (2002) Phylogenetic Analysis Using Parsimony (*and Other Methods). Sunderland, Massachusetts: Sinauer Associates.

Takano, A. & Okada, H. (2002) Multiple occurrences of triploid formation in Globba (Zingiberaceae) from molecular evidence. Plant Systematics and Evolution, 230(3), 143-159. Available from: https://doi.org/10.1007/s006060200001

Trávníček, P., Čertner, M., Ponert, J., Chumová, Z., Jersáková, J. & Suda, J. (2019) Diversity in genome size and GC content shows adaptive potential in orchids and is closely linked to partial endoreplication, plant life-history traits and climatic conditions. New Phytologist, 224(4), 1642-1656. Available from: https://doi.org/10.1111/nph.15996

Veselý, P., Bureš, P., Šmarda, P. & Pavlíček, T. (2012) Genome size and DNA base composition of geophytes: the mirror of phenology and ecology? Annals of Botany, 109(1), 65-75. Available from: https://doi.org/10.1093/aob/mcr267

Werger, M.J.A. & Huber, H. (2006) Tuber size variation and organ preformation constrain growth responses of a spring geophyte. Oecologia, 147(3), 396-405. Available from: https://doi.org/10.1007/s00442-005-0280-4

White, W., Bruns, B., Lee, S. & Taylor, J. (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis, M.A., Gelfand, D.H., Sninsky, J.J. & White, T.J. (Eds.) PCR Protocols: A Guide to Methods and Applications. San Diego: Academic Press, pp. 315-322.

Williams, K.J., Kress, W.J. & Manos, P.S. (2004) The phylogeny, evolution, and classification of the genus Globba and tribe Globbeae (Zingiberaceae): appendages do matter. American Journal of Botany, 91(1), 100-114. Available from: https://doi.org/10.3732/ajb.91.1.100

Záveská, E., Fér, T., Šída, O., Krak, K., Marhold, K. & Leong-Škorničková, J. (2012) Phylogeny of Curcuma (Zingiberaceae) based on plastid and nuclear sequences: proposal of the new subgenus Ecomata. Taxon, 61(4), 747-763. Available from: https://doi.org/10.1002/tax.614004

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...