Ancient hybridization in Curcuma (Zingiberaceae)-Accelerator or brake in lineage diversifications?
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37537754
DOI
10.1111/tpj.16408
Knihovny.cz E-zdroje
- Klíčová slova
- chromosome counts, diversification, hybridization, phylogenomics, species networks,
- MeSH
- Curcuma * genetika MeSH
- fylogeneze MeSH
- hybridizace genetická MeSH
- zázvorníkovité * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Hybridization is a widespread phenomenon in the evolution of plants and exploring its role is crucial to understanding diversification processes of many taxonomic groups. Recently, more attention is focused on the role of ancient hybridization that has repeatedly been shown as triggers of evolutionary radiation, although in some cases, it can prevent further diversification. The causes, frequency, and consequences of ancient hybridization remain to be explored. Here, we present an account of several events of ancient hybridization in turmeric, the economically important plant genus Curcuma (Zingiberaceae), which harbors about 130 known species. We analyzed 1094 targeted low-copy genes and plastomes obtained by next-generation sequencing of 37 species of Curcuma, representing the known genetic diversity and spanning the geographical distribution of the genus. Using phylogenetic network analysis, we show that the entire genus Curcuma as well as its most speciose lineage arose via introgression from the genus Pyrgophyllum and one of the extinct lineages, respectively. We also document a single event of ancient hybridization, with C. vamana as a product, that represents an evolutionary dead end. We further discuss distinct circumstances of those hybridization events that deal mainly with (in)congruence in chromosome counts of the parental lineages.
Czech Academy of Sciences Institute of Botany Průhonice Czech Republic
Department of Biological Sciences National University of Singapore Singapore
Department of Botany Charles University Prague Czech Republic
Department of Botany National Museum Prague Prague Czech Republic
Zobrazit více v PubMed
Abbott, R., Albach, D., Ansell, S., Arntzen, J.W., Baird, S.J.E., Bierne, N. et al. (2013) Hybridization and speciation. Journal of Evolutionary Biology, 26, 229-246.
Arnold, M.L. (1997) Natural hybridization and evolution. New York: Oxford University Press.
Ashokan, A., Xavier, A., Suksathan, P., Ardiyani, M., Leong-Škorničková, J., Newman, M. et al. (2022) Himalayan orogeny and monsoon intensification explain species diversification in an endemic ginger (Hedychium: Zingiberaceae) from the Indo-Malayan Realm. Molecular Phylogenetics and Evolution, 170, 107440.
Barton, N.H. & Hewitt, G.M. (1985) Analysis of hybrid zones. Annual Review of Ecology and Systematics, 16, 113-148.
Bernhardt, N., Brassac, J., Dong, X., Willing, E.-M., Poskar, C.H., Kilian, B. et al. (2020) Genome-wide sequence information reveals recurrent hybridization among diploid wheat wild relatives. The Plant Journal, 102, 493-506.
Blischak, P.D., Chifman, J., Wolfe, A.D. & Kubatko, L.S. (2018) HyDe: a python package for genome-scale hybridization detection. Systematic Biology, 67, 821-829.
Borowiec, M.L. (2016) AMAS: a fast tool for alignment manipulation and computing of summary statistics. PeerJ, 4, e1660.
Borowiec, M.L., Lee, E.K., Chiu, J.C. & Plachetzki, D.C. (2015) Extracting phylogenetic signal and accounting for bias in whole-genome data sets supports the Ctenophora as sister to remaining Metazoa. BMC Genomics, 16, 987.
Bryant, D. & Moulton, V. (2004) Neighbor-Net: an agglomerative method for the construction of phylogenetic networks. Molecular Biology and Evolution, 21, 255-265.
Capella-Gutiérrez, S., Silla-Martínez, J.M. & Gabaldón, T. (2009) trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics, 25, 1972-1973.
Carlsen, M.M., Fér, T., Schmickl, R., Leong-Škorničková, J., Newman, M. & Kress, W.J. (2018) Resolving the rapid plant radiation of early diverging lineages in the tropical Zingiberales: pushing the limits of genomic data. Molecular Phylogenetics and Evolution, 128, 55-68.
Degnan, J.H. & Rosenberg, N.A. (2009) Gene tree discordance, phylogenetic inference and the multispecies coalescent. Trends in Ecology & Evolution, 24, 332-340.
Durand, E.Y., Patterson, N., Reich, D. & Slatkin, M. (2011) Testing for ancient admixture between closely related populations. Molecular Biology and Evolution, 28, 2239-2252.
Eaton, D.A.R. & Ree, R.H. (2013) Inferring phylogeny and introgression using RADseq data: an example from flowering plants (Pedicularis: Orobanchaceae). Systematic Biology, 62, 689-706.
Edelman, N.B. & Mallet, J. (2021) Prevalence and adaptive impact of introgression. Annual Review of Genetics, 55, 265-283.
Fehrer, J., Gemeinholzer, B., Chrtek, J. & Bräutigam, S. (2007) Incongruent plastid and nuclear DNA phylogenies reveal ancient intergeneric hybridization in Pilosella hawkweeds (Hieracium, Cichorieae, Asteraceae). Molecular Phylogenetics and Evolution, 42, 347-361.
Fér, T. & Schmickl, R.E. (2018) HybPhyloMaker: target enrichment data analysis from raw reads to species trees. Evolutionary Bioinformatics Online, 14, 1176934317742613.
Ferrer Obiol, J., James, H.F., Chesser, R.T., Bretagnolle, V., González-Solís, J., Rozas, J. et al. (2021) Integrating sequence capture and restriction site-associated DNA sequencing to resolve recent radiations of pelagic seabirds. Systematic Biology, 70, 976-996.
Fitch, W.M. (1997) Networks and viral evolution. Journal of Molecular Evolution, 44, S65-S75.
Goldman, N. & Yang, Z. (2008) Introduction. Statistical and computational challenges in molecular phylogenetics and evolution. Philosophical Transactions of the Royal Society B: Biological Sciences, 363, 3889-3892.
Goulet, B.E., Roda, F. & Hopkins, R. (2017) Hybridization in plants: old ideas, new techniques. Plant Physiology, 173, 65-78.
Green, R.E., Krause, J., Briggs, A.W., Maricic, T., Stenzel, U., Kircher, M. et al. (2010) A draft sequence of the Neandertal genome. Science, 328, 710-722.
Hejase, H.A. & Liu, K.J. (2016) A scalability study of phylogenetic network inference methods using empirical datasets and simulations involving a single reticulation. BMC Bioinformatics, 17, 422.
Herder, F., Nolte, A.W., Pfaender, J., Schwarzer, J., Hadiaty, R.K. & Schliewen, U.K. (2006) Adaptive radiation and hybridization in Wallace's Dreamponds: evidence from sailfin silversides in the Malili Lakes of Sulawesi. Proceedings of the Royal Society B: Biological Sciences, 273, 2209-2217.
Hodcroft, E. (2016) TreeCollapserCL 4. Available from: http://emmahodcroft.com/TreeCollapseCL.html. Accessed on 7th June 2023
Huerta-Cepas, J., Serra, F. & Bork, P. (2016) ETE 3: reconstruction, analysis, and visualization of phylogenomic data. Molecular Biology and Evolution, 33, 1635-1638.
Hughes, C.E., Eastwood, R.J. & Donovan Bailey, C. (2006) From famine to feast? Selecting nuclear DNA sequence loci for plant species-level phylogeny reconstruction. Philosophical Transactions of the Royal Society B: Biological Sciences, 361, 211-225.
Huson, D.H. & Bryant, D. (2006) Application of phylogenetic networks in evolutionary studies. Molecular Biology and Evolution, 23, 254-267.
Junier, T. & Zdobnov, E.M. (2010) The Newick utilities: high-throughput phylogenetic tree processing in the UNIX shell. Bioinformatics, 26, 1669-1670.
Katoh, K. & Standley, D.M. (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution, 30, 772-780.
Keuler, R., Garretson, A., Saunders, T., Erickson, R.J., St. Andre, N., Grewe, F. et al. (2020) Genome-scale data reveal the role of hybridization in lichen-forming fungi. Scientific Reports, 10, 1497.
Knowles, L.L. & Kubatko, L.S. (2010) Estimating species trees: practical and theoretical aspects. Hoboken, N.J: Wiley-Blackwell.
Leong-Škorničková, J., Šída, O., Jarolímová, V., Sabu, M., Fér, T., Trávníček, P. et al. (2007) Chromosome numbers and genome size variation in Indian species of Curcuma (Zingiberaceae). Annals of Botany, 100, 505-526.
Leong-Škorničková, J., Šída, O., Záveská, E. & Marhold, K. (2015) History of infrageneric classification, typification of supraspecific names and outstanding transfers in Curcuma (Zingiberaceae). Taxon, 64, 362-373.
Lysak, M.A. (2014) Live and let die: centromere loss during evolution of plant chromosomes. The New Phytologist, 203, 1082-1089.
Malinsky, M., Matschiner, M. & Svardal, H. (2021) Dsuite - Fast D -statistics and related admixture evidence from VCF files. Molecular Ecology Resources, 21, 584-595.
Mallet, J. (2005) Hybridization as an invasion of the genome. Trends in Ecology & Evolution, 20, 229-237.
Mayr, E. (1963) Animal Species and Evolution. Cambridge, MA: Harvard University Press.
Meier, J.I., Marques, D.A., Mwaiko, S., Wagner, C.E., Excoffier, L. & Seehausen, O. (2017) Ancient hybridization fuels rapid cichlid fish adaptive radiations. Nature Communications, 8, 14363.
Mirarab, S., Reaz, R., Bayzid, M.S., Zimmermann, T., Swenson, M.S. & Warnow, T. (2014) ASTRAL: genome-scale coalescent-based species tree estimation. Bioinformatics, 30, i541-i548.
Olave, M. & Meyer, A. (2020) Implementing large genomic single nucleotide polymorphism data sets in phylogenetic network reconstructions: a case study of particularly rapid radiations of Cichlid fish. Systematic Biology, 69, 848-862.
Parks, M., Cronn, R. & Liston, A. (2009) Increasing phylogenetic resolution at low taxonomic levels using massively parallel sequencing of chloroplast genomes. BMC Biology, 7, 84.
Payseur, B.A. & Rieseberg, L.H. (2016) A genomic perspective on hybridization and speciation. Molecular Ecology, 25, 2337-2360.
Pelser, P.B., Kennedy, A.H., Tepe, E.J., Shidler, J.B., Nordenstam, B., Kadereit, J.W. et al. (2010) Patterns and causes of incongruence between plastid and nuclear Senecioneae (Asteraceae) phylogenies. American Journal of Botany, 97, 856-873.
POWO. (2023) Plants of the World Online. Kew: Facilitated by the Royal Botanic Gardens. Available from: http://www.plantsoftheworldonline.org/. Accessed on 7th June 2023
Puangpairote, T., Maknoi, C., Jenjittikul, T., Anamthawat-Jonsson, K. & Soontornchainaksaeng, P. (2016) Natural triploidy in phyto-oestrogen producing Curcuma species and cultivars from Thailand. Euphytica, 208, 47-61.
Rathi, R.S., Pradheep, K., Roy, S., Singh, S.K. & Misra, A.K. (2016) Stahlianthus involucratus (King ex Baker) Craib ex Loes.: a new record to the flora of Mizoram, India. Journal of Threatened Taxa, 8, 8629.
Renoult, J.P., Kjellberg, F., Grout, C., Santoni, S. & Khadari, B. (2009) Cyto-nuclear discordance in the phylogeny of Ficus section Galoglychia and host shifts in plant-pollinator associations. BMC Evolutionary Biology, 9, 248.
Rieseberg, L.H. & Carney, S.E. (1998) Plant hybridization. The New Phytologist, 140, 599-624.
Seehausen, O. (2004) Hybridization and adaptive radiation. Trends in Ecology & Evolution, 19, 198-207.
Smith, S.A. & Dunn, C.W. (2008) Phyutility: a phyloinformatics tool for trees, alignments and molecular data. Bioinformatics, 24, 715-716.
Smith, S.A., Moore, M.J., Brown, J.W. & Yang, Y. (2015) Analysis of phylogenomic datasets reveals conflict, concordance, and gene duplications with examples from animals and plants. BMC Evolutionary Biology, 15, 150.
Solís-Lemus, C. & Ané, C. (2016) Inferring phylogenetic networks with maximum pseudolikelihood under incomplete lineage sorting. PLoS Genetics, 12, e1005896.
Solís-Lemus, C., Bastide, P. & Ané, C. (2017) PhyloNetworks: a package for phylogenetic networks. Molecular Biology and Evolution, 34, 3292-3298.
Soltis, D.E., Soltis, P.S. & Tate, J.A. (2004) Advances in the study of polyploidy since plant speciation. The New Phytologist, 161, 173-191.
Soltis, P.S. & Soltis, D.E. (2009) The role of hybridization in plant speciation. Annual Review of Plant Biology, 60, 561-588.
Stamatakis, A. (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30, 1312-1313.
Stull, G.W., Soltis, P.S., Soltis, D.E., Gitzendanner, M.A. & Smith, S.A. (2020) Nuclear phylogenomic analyses of asterids conflict with plastome trees and support novel relationships among major lineages. American Journal of Botany, 107, 790-805.
Stull, G.W., Pham, K.K., Soltis, P.S. & Soltis, D.E. (2023) Deep reticulation: the long legacy of hybridization in vascular plant evolution. The Plant Journal, 114, 743-766.
Suarez-Gonzalez, A., Lexer, C. & Cronk, Q.C.B. (2018) Adaptive introgression: a plant perspective. Biology Letters, 14, 20170688.
Sun, M., Soltis, D.E., Soltis, P.S., Zhu, X., Burleigh, J.G. & Chen, Z. (2015) Deep phylogenetic incongruence in the angiosperm clade Rosidae. Molecular Phylogenetics and Evolution, 83, 156-166.
Taylor, S.A. & Larson, E.L. (2019) Insights from genomes into the evolutionary importance and prevalence of hybridization in nature. Nature Ecology and Evolution, 3, 170-177.
Than, C., Ruths, D. & Nakhleh, L. (2008) PhyloNet: a software package for analyzing and reconstructing reticulate evolutionary relationships. BMC Bioinformatics, 9, 322.
Wagner, C.E., Keller, I., Wittwer, S., Selz, O.M., Mwaiko, S., Greuter, L. et al. (2013) Genome-wide RAD sequence data provide unprecedented resolution of species boundaries and relationships in the Lake Victoria cichlid adaptive radiation. Molecular Ecology, 22, 787-798.
Wang, H.-X., Morales-Briones, D.F., Moore, M.J., Wen, J. & Wang, H.-F. (2021) A phylogenomic perspective on gene tree conflict and character evolution in Caprifoliaceae using target enrichment data, with Zabelioideae recognized as a new subfamily. Journal of Systematics and Evolution, 59, 897-914.
Wen, D., Yu, Y., Zhu, J. & Nakhleh, L. (2018) Inferring phylogenetic networks using PhyloNet. Systematic Biology, 67, 735-740.
Wiens, J.J., Kuczynski, C.A., Smith, S.A., Mulcahy, D.G., Sites, J.W., Townsend, T.M. et al. (2008) Branch lengths, support, and congruence: testing the phylogenomic approach with 20 nuclear loci in snakes. Systematic Biology, 57, 420-431.
Wu, T.L. & Chen, Z.Y. (1989) Pyrgophyllum, a New Genus of Zingiberaceae from China. Journal of Systematics and Evolution, 27, 124-128.
Wyman, S.K., Jansen, R.K. & Boore, J.L. (2004) Automatic annotation of organellar genomes with DOGMA. Bioinformatics, 20, 3252-3255.
Yakimowski, S.B. & Rieseberg, L.H. (2014) The role of homoploid hybridization in evolution: a century of studies synthesizing genetics and ecology. American Journal of Botany, 101, 1247-1258.
Yu, Y. & Nakhleh, L. (2015) A maximum pseudo-likelihood approach for phylogenetic networks. BMC Genomics, 16, S10.
Záveská, E., Fér, T., Šída, O., Leong-Škorničková, J., Sabu, M. & Marhold, K. (2011) Genetic diversity patterns in Curcuma reflect differences in genome size. Botanical Journal of the Linnean Society, 165, 388-401.
Záveská, E., Fér, T., Šída, O., Krak, K., Marhold, K. & Leong-Škorničková, J. (2012) Phylogeny of Curcuma (Zingiberaceae) based on plastid and nuclear sequences: proposal of the new subgenus Ecomata. Taxon, 61, 747-763.
Záveská, E., Fér, T., Šída, O., Marhold, K. & Leong-Škorničková, J. (2016) Hybridization among distantly related species: examples from the polyploid genus Curcuma (Zingiberaceae). Molecular Phylogenetics and Evolution, 100, 303-321.
Zhang, B.-W., Xu, L.-L., Li, N., Yan, P.C., Jiang, X.H., Woeste, K.E. et al. (2019) Phylogenomics reveals an ancient hybrid origin of the Persian walnut. Molecular Biology and Evolution, 36, 2451-2461.