Trigonally Distorted Hexacoordinate Co(II) Single-Ion Magnets
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
714850
European Research Council - International
LTAUSA19060
INTER-EXCELLENCE
PubMed
35161010
PubMed Central
PMC8839918
DOI
10.3390/ma15031064
PII: ma15031064
Knihovny.cz E-zdroje
- Klíčová slova
- cobalt(II), magnetic anisotropy, single-ion magnets,
- Publikační typ
- časopisecké články MeSH
By simple reactions involving various cobalt(II) carboxylates (acetate and in situ prepared pivalate and 4-hydroxybenzoate salts) and neocuproine (neo), we were able to prepare three different carboxylate complexes with the general formula [Co(neo)(RCOO)2] (R = -CH3 for 1, (CH3)3C- for 2, and 4OH-C4H6- for 3). The [Co(neo)(RCOO)2] molecules in the crystal structures of 1-3 adopt a rather distorted coordination environment, with the largest trigonal distortion observed for 1, whereas 2 and 3 are similarly distorted from ideal octahedral geometry. The combined theoretical and experimental investigations of magnetic properties revealed that the spin Hamiltonian formalism was not a valid approach and the L-S Hamiltonian had to be used to reveal very large magnetic anisotropies for 1-3. The measurements of AC susceptibility showed that all three compounds exhibited slow-relaxation of magnetization in a weak external static magnetic field, and thus can be classified as field-induced single-ion magnets. It is noteworthy that 1 also exhibits a weak AC signal in a zero-external magnetic field.
Zobrazit více v PubMed
Boča R. Theoretical Foundations of Molecular Magnetism. Elsevier; Amsterdam, The Netherlands: 1999. p. 873.
Pavlov A.A., Nehrkorn J., Zubkevich S.V., Fedin M.V., Holldack K., Schnegg A., Novikov V.V. A Synergy and Struggle of EPR, Magnetometry and NMR: A Case Study of Magnetic Interaction Parameters in a Six-Coordinate Cobalt (II) Complex. Inorg. Chem. 2020;59:10746–10755. doi: 10.1021/acs.inorgchem.0c01191. PubMed DOI
Matos C.R.M.O., Sarmiento C.V., Silva H.C., Ferreira G.B., Guedes G.P., Nunes W.C., Ronconi C.M. Field-induced single-ion magnets exhibiting tri-axial anisotropy in a 1D Co (ii) coordination polymer with a rigid ligand 4,4′-(buta-1,3-diyne-1,4-diyl)dibenzoate. Dalton Trans. 2021;50:15003–15014. doi: 10.1039/D1DT01961A. PubMed DOI
Świtlicka A., Palion-Gazda J., Machura B., Cano J., Lloret F., Julve M. Field-induced slow magnetic relaxation in pseudooctahedral cobalt (II) complexes with positive axial and large rhombic anisotropy. Dalton Trans. 2019;48:1404–1417. doi: 10.1039/C8DT03965H. PubMed DOI
Gómez-Coca S., Aravena D., Morales R., Ruiz E. Large Magnetic Anisotropy in Mononuclear Metal Complexes. Coord. Chem. Rev. 2015;289–290:379–392. doi: 10.1016/j.ccr.2015.01.021. DOI
Ganzhorn M., Wernsdorfer W. In: Molecular Magnets. Bartolome J., Luis F., Fernandez J.F., editors. Springer; Berlin/Heidelberg, Germany: 2014. pp. 319–364.
Frost J.M., Harriman K.L.M., Murugesu M. The Rise of 3-d Single-Ion Magnets in Molecular Magnetism: Towards Materials from Molecules? Chem. Sci. 2016;7:2470–2491. doi: 10.1039/C5SC03224E. PubMed DOI PMC
Craig G.A., Murrie M. 3d Single-Ion Magnets. Chem. Soc. Rev. 2015;44:2135–2147. doi: 10.1039/C4CS00439F. PubMed DOI
Yao X.N., Du J.Z., Zhang Y.Q., Leng X.B., Yang M.W., Jiang S., Wang Z.X., Ouyang Z.W., Deng L., Wang B.W., et al. Two-Coordinate Co (II) Imido Complexes as Outstanding Single-Molecule Magnets. J. Am. Chem. Soc. 2017;139:373–380. doi: 10.1021/jacs.6b11043. PubMed DOI
Bunting P.C., Atanasov M., Damgaard-Møller E., Perfetti M., Crassee I., Orlita M., Overgaard J., Slageren J., Neese F., Long J.R. A Linear Cobalt (II) Complex with Maximal Orbital Angular Momentum from a Non-Aufbau Ground State. Science. 2018;362:eaat7319. doi: 10.1126/science.aat7319. PubMed DOI
Deng Y.F., Wang Z., Ouyang Z.W., Yin B., Zheng Z., Zheng Y.Z. Large Easy-Plane Magnetic Anisotropy in a Three-Coordinate Cobalt (II) Complex [Li(THF)4][Co(NPh2)3] Chem. Eur. J. 2016;22:14821–14825. doi: 10.1002/chem.201603238. PubMed DOI
Das C., Rasamsetty A., Tripathi S., Shanmugam M. Magnetization Relaxation Dynamics of a Rare Coordinatively Unsaturated Co(II) Complex: Experimental and Theoretical Insights. Chem. Comm. 2020;56:13397–13400. doi: 10.1039/D0CC05963C. PubMed DOI
Chen Y., Yang Q., Peng G., Zhang Y.Q., Ren X.M. Influence of F-Position and Solvent on Coordination Geometry and Single Ion Magnet Behavior of Co (II) Complexes. Dalton Trans. 2021;50:13830–13840. doi: 10.1039/D1DT02148F. PubMed DOI
Cui H.H., Lu F., Chen X.T., Zhang Y.Q., Tong W., Xue Z.L. Zero-Field Slow Magnetic Relaxation and Hysteresis Loop in Four-Coordinate CoII Single-Ion Magnets with Strong Easy-Axis Anisotropy. Inorg. Chem. 2019;58:12555–12564. doi: 10.1021/acs.inorgchem.9b01175. PubMed DOI
Tripathi S., Vaidya S., Ansari K.U., Ahmed N., Rivière E., Spillecke L., Koo C., Klingeler R., Mallah T., Rajaraman G., et al. Influence of a Counteranion on the Zero-Field Splitting of Tetrahedral Cobalt(II) Thiourea Complexes. Inorg. Chem. 2019;58:9085–9100. doi: 10.1021/acs.inorgchem.9b00632. PubMed DOI
Novikov V.V., Pavlov A.A., Nelyubina Y.V., Boulon M.-E., Varzatskii O.A., Voloshin Y.Z., Winpenny R.E.P. A Trigonal Prismatic Mononuclear Cobalt (II) Complex Showing Single-Molecule Magnet Behavior. J. Am. Chem. Soc. 2015;137:9792–9795. doi: 10.1021/jacs.5b05739. PubMed DOI
Pavlov A.A., Nelyubina Y.V., Kats S.V., Penkova L.V., Efimov N.N., Dmitrienko A.O., Vologzhanina A.V., Belov A.S., Voloshin Y.Z., Novikov V.V. Polymorphism in a Cobalt-Based Single-Ion Magnet Tuning Its Barrier to Magnetization Relaxation. J. Phys. Chem. Lett. 2016;7:4111–4116. doi: 10.1021/acs.jpclett.6b02091. PubMed DOI
Gomez-Coca S., Cremades E., Aliaga-Alcalde N., Ruiz E. Mononuclear Single-Molecule Magnets: Tailoring the Magnetic Anisotropy of First-Row Transition-Metal Complexes. J. Am. Chem. Soc. 2013;135:7010–7018. doi: 10.1021/ja4015138. PubMed DOI
Ozumerzifon T.J., Bhowmick I., Spaller W.C., Rappé A.K., Shores M.P. Toward Steric Control of Guest Binding Modality: A Cationic Co (II) Complex Exhibiting Cation Binding and Zero-Field Relaxation. Chem. Comm. 2017;53:4211–4214. doi: 10.1039/C7CC01172E. PubMed DOI
Yao B., Deng Y.-F., Li T., Xiong J., Wang B.-W., Zheng Z., Zhang Y.-Z. Construction and Magnetic Study of a Trigonal-Prismatic Cobalt (II) Single-Ion Magnet. Inorg. Chem. 2018;57:14047–14051. doi: 10.1021/acs.inorgchem.8b02692. PubMed DOI
Zhu Y.Y., Cui C., Zhang Y.Q., Jia J.H., Guo X., Gao C., Qian K., Jiang S., Wang B.W., Wang Z.M., et al. Zero-Field Slow Magnetic Relaxation from Single Co (II) Ion: A Transition Metal Single-Molecule Magnet with High Anisotropy Barrier. Chem. Sci. 2013;4:1802–1806. doi: 10.1039/c3sc21893g. DOI
Yao B., Singh M.K., Deng Y.F., Wang Y.N., Dunbar K.R., Zhang Y.Z. Trigonal Prismatic Cobalt (II) Single-Ion Magnets: Manipulating the Magnetic Relaxation through Symmetry Control. Inorg. Chem. 2020;59:8505–8513. doi: 10.1021/acs.inorgchem.0c00950. PubMed DOI
Feng M., Tong M.-L. Single Ion Magnets from 3d to 5f: Developments and Strategies. Chem. Eur. J. 2018;24:7574–7594. doi: 10.1002/chem.201705761. PubMed DOI
Zadrozny J.M., Xiao D.J., Atanasov M., Long G.J., Grandjean F., Neese F., Long J.R. Magnetic blocking in a linear iron (I) complex. Nat. Chem. 2013;5:577–581. doi: 10.1038/nchem.1630. PubMed DOI
Werncke G.C., Bunting P.C., Duhayon C., Long J.R., Bontemps S., Sabo-Etienne S. Two-Coordinate Iron (I) Complex [Fe{N(SiMe3)2}2]: Synthesis, Properties, and Redox Activity. Angew. Chem. Int. Ed. 2015;54:245–248. doi: 10.1002/anie.201408802. PubMed DOI
Mossin S., Tran B.L., Adhikari D., Pink M., Heinemann F.W., Sutter J., Szilagyi R.K., Meyer K., Mindiola D.J. A Mononuclear Fe (III) Single Molecule Magnet with a 3/2↔5/2 Spin Crossover. J. Am. Chem. Soc. 2012;134:13651–13661. doi: 10.1021/ja302660k. PubMed DOI PMC
Rechkemmer Y., Breitgoff F.D., van der Meer M., Atanasov M., Hakl M., Orlita M., Neugebauer P., Neese F., Sarkar B., van Slageren J. A Four-Coordinate Cobalt (II) Single-Ion Magnet with Coercivity and a Very High Energy Barrier. Nat. Commun. 2016;7:10467. doi: 10.1038/ncomms10467. PubMed DOI PMC
Fataftah M.S., Zadrozny J.M., Rogers D.M., Freedman D.E. A Mononuclear Transition Metal Single-Molecule Magnet in a Nuclear Spin-Free Ligand Environment. Inorg. Chem. 2014;53:10716–10721. doi: 10.1021/ic501906z. PubMed DOI
Vaidya S., Tewary S., Singh S.K., Langley S.K., Murray K.S., Lan Y., Wernsdorfer W., Rajaraman G., Shanmugam M. What Controls the Sign and Magnitude of Magnetic Anisotropy in Tetrahedral Cobalt(II) Single-Ion Magnets? Inorg. Chem. 2016;55:9564–9578. doi: 10.1021/acs.inorgchem.6b01073. PubMed DOI
Tu D., Shao D., Yan H., Lu C. A Carborane-Incorporated Mononuclear Co(II) Complex Showing Zero-Field Slow Magnetic Relaxation. Chem. Comm. 2016;52:14326–14329. doi: 10.1039/C6CC07728E. PubMed DOI
Yao X.N., Yang M.W., Xiong J., Liu J.J., Gao C., Meng Y.S., Jiang S.D., Wang B.W., Gao S. Enhanced Magnetic Anisotropy in a Tellurium-Coordinated Cobalt Single-Ion Magnet. Inorg. Chem. Front. 2017;4:701–705. doi: 10.1039/C6QI00543H. DOI
Zadrozny J.M., Long J.R. Slow Magnetic Relaxation at Zero Field in the Tetrahedral Complex [Co(SPh) 4]2- J. Am. Chem. Soc. 2011;133:20732–20734. doi: 10.1021/ja2100142. PubMed DOI
Ye B.H., Tong M.L., Chen X.M. Metal-Organic Molecular Architectures with 2,2′-Bipyridyl-like and Carboxylate Ligands. Coord. Chem. Rev. 2005;249:545–565. doi: 10.1016/j.ccr.2004.07.006. DOI
Nemec I., Herchel R., Trávníček Z. Two polymorphic Co (ii) field-induced single-ion magnets with enormous angular distortion from the ideal octahedron. Dalton Trans. 2018;47:1614–1623. doi: 10.1039/C7DT03992A. PubMed DOI
Bruker . APEX3. Bruker AXS Inc.; Madison, WI, USA: 2015.
Sheldrick G.M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. 2015;71:3–8. doi: 10.1107/S2053229614024218. PubMed DOI PMC
Bourhis L.J., Dolomanov O.V., Gildea R.J., Howard J.A.K., Puschmann H. The Anatomy of a Comprehensive Constrained, Restrained Refinement Program for the Modern Computing Environment—Olex2. Acta Crystallogr. 2015;71:59–75. doi: 10.1107/S2053273314022207. PubMed DOI PMC
Dolomanov O.V., Bourhis L.J., Gildea R.J., Howard J.A.K., Puschmann H. IUCr OLEX2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Crystallogr. 2009;42:339–341. doi: 10.1107/S0021889808042726. DOI
Macrae C.F., Sovago I., Cottrell S.J., Galek P.T.A., McCabe P., Pidcock E., Platings M., Shields G.P., Stevens J.S., Towler M., et al. Mercury 4.0: From Visualization to Analysis, Design and Prediction. J. Appl. Crystallogr. 2020;53:226–235. doi: 10.1107/S1600576719014092. PubMed DOI PMC
Alvarez S. Polyhedra in (Inorganic) Chemistry. Dalton Trans. 2005:2209–2233. doi: 10.1039/b503582c. PubMed DOI
Misochko E.Y., Akimov A.v., Korchagin D.v., Nehrkorn J., Ozerov M., Palii A.v., Clemente-Juan J.M., Aldoshin S.M. Purely Spectroscopic Determination of the Spin Hamiltonian Parameters in High-Spin Six-Coordinated Cobalt (II) Complexes with Large Zero-Field Splitting. Inorg. Chem. 2019;58:16434–16444. doi: 10.1021/acs.inorgchem.9b02195. PubMed DOI
Figgis B.N., Gerloch M., Lewis J., Mabbs F.E., Webb G.A. The Magnetic Behaviour of Cubic-Field 4T1g Terms in Lower Symmetry. J. Chem. Soc. A. 1968;57:2086–2093. doi: 10.1039/j19680002086. DOI
Griffith J.S. The Theory of Transition-Metal. Ions. Cambridge University Press and Assessment; Cambridge, UK: 2009. p. 455.
Mingos D.M.P. Magnetic Functions Beyond the Spin-Hamiltonian. Springer; Berling/Heidelberg, Germany: 2006. p. 278.
Boča R. A Handbook of Magnetochemical Formulae. Elsevier; Amsterdam, The Netherlands: 2012. p. 1010.
Herchel R., Boča R. Program. Polymagnet. Slovak Technical University; Bratislava, Slovakia: 2021.
Boča R. Program. MIF with FIT Module. University of SS Cyril and Methodius; Trnava, Slovakia: 2019.
Malmqvist P.Å., Roos B.O. The CASSCF State Interaction Method. Chem. Phys. Lett. 1989;155:189–194. doi: 10.1016/0009-2614(89)85347-3. DOI
Angeli C., Cimiraglia R., Malrieu J.P. N-Electron Valence State Perturbation Theory: A Fast Implementation of the Strongly Contracted Variant. Chem. Phys. Lett. 2001;350:297–305. doi: 10.1016/S0009-2614(01)01303-3. DOI
Angeli C., Cimiraglia R., Evangelisti S., Leininger T., Malrieu J.-P. Introduction of N-Electron Valence States for Multireference Perturbation Theory. J. Chem. Phys. 2001;114:10252. doi: 10.1063/1.1361246. DOI
Neese F. Software Update: The ORCA Program System, Version 4.0. Wiley Interdiscip. Rev. Comp. Mol. Sci. 2018;8:e1327. doi: 10.1002/wcms.1327. DOI
Neese F., Wennmohs F., Becker U., Riplinger C. The ORCA Quantum Chemistry Program Package. J. Chem. Phys. 2020;152:224108. doi: 10.1063/5.0004608. PubMed DOI
Weigend F., Ahlrichs R. Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy. Phys. Chem. Chem. Phys. 2005;7:3297–3305. doi: 10.1039/b508541a. PubMed DOI
Weigend F. Accurate Coulomb-Fitting Basis Sets for H to Rn. Phys. Chem. Chem. Phys. 2006;8:1057–1065. doi: 10.1039/b515623h. PubMed DOI
Hellweg A., Hättig C., Höfener S., Klopper W. Optimized Accurate Auxiliary Basis Sets for RI-MP2 and RI-CC2 Calculations for the Atoms Rb to Rn. Theor. Chem. Acc. 2007;117:587–597. doi: 10.1007/s00214-007-0250-5. DOI
Izsák R., Neese F. An Overlap Fitted Chain of Spheres Exchange Method. J. Chem. Phys. 2011;135:144105. doi: 10.1063/1.3646921. PubMed DOI
Neese F., Wennmohs F., Hansen A., Becker U. Efficient, Approximate and Parallel Hartree–Fock and Hybrid DFT Calculations. A ‘Chain-of-Spheres’ Algorithm for the Hartree–Fock Exchange. Chem. Phys. 2009;356:98–109. doi: 10.1016/j.chemphys.2008.10.036. DOI
Mingos D.M.P., Day P., Dahl J.P. Molecular Electronic Structures of Transition Metal Complexes II. Springer; Berlin/Heidelberg, Germany: 2012. p. 236.
Singh S.K., Eng J., Atanasov M., Neese F. Covalency and Chemical Bonding in Transition Metal Complexes: An Ab Initio Based Ligand Field Perspective. Coord. Chem. Rev. 2017;344:2–25. doi: 10.1016/j.ccr.2017.03.018. DOI
Zoufalý P., Kliuikov A., Čižmár E., Císařová I., Herchel R. Cis and Trans Isomers of Fe (II) and Co (II) Complexes with Oxadiazole Derivatives—Structural and Magnetic Properties. Eur. J. Inorg. Chem. 2021;2021:1190–1199. doi: 10.1002/ejic.202001148. DOI
Drahoš B., Šalitroš I., Císařová I., Herchel R. A Multifunctional Magnetic Material Based on a Solid Solution of Fe (II)/Co (II) Complexes with a Macrocyclic Cyclam-Based Ligand. Dalton Trans. 2021;50:11147–11157. doi: 10.1039/D1DT01534F. PubMed DOI
Ghosh S., Kamilya S., Rouzières M., Herchel R., Mehta S., Mondal A. Reversible Spin-State Switching and Tuning of Nuclearity and Dimensionality via Nonlinear Pseudohalides in Cobalt (II) Complexes. Inorg. Chem. 2020;59:17638–17649. doi: 10.1021/acs.inorgchem.0c02887. PubMed DOI
Chibotaru L.F., Ungur L. Ab Initio Calculation of Anisotropic Magnetic Properties of Complexes. I. Unique Definition of Pseudospin Hamiltonians and Their Derivation. J. Phys. Chem. 2012;137:064112. doi: 10.1063/1.4739763. PubMed DOI
Dey A., Kalita P., Chandrasekhar V. Lanthanide(III)-Based Single-Ion Magnets. ACS Omega. 2018;3:9462–9475. doi: 10.1021/acsomega.8b01204. PubMed DOI PMC