Trigonally Distorted Hexacoordinate Co(II) Single-Ion Magnets

. 2022 Jan 29 ; 15 (3) : . [epub] 20220129

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35161010

Grantová podpora
714850 European Research Council - International
LTAUSA19060 INTER-EXCELLENCE

By simple reactions involving various cobalt(II) carboxylates (acetate and in situ prepared pivalate and 4-hydroxybenzoate salts) and neocuproine (neo), we were able to prepare three different carboxylate complexes with the general formula [Co(neo)(RCOO)2] (R = -CH3 for 1, (CH3)3C- for 2, and 4OH-C4H6- for 3). The [Co(neo)(RCOO)2] molecules in the crystal structures of 1-3 adopt a rather distorted coordination environment, with the largest trigonal distortion observed for 1, whereas 2 and 3 are similarly distorted from ideal octahedral geometry. The combined theoretical and experimental investigations of magnetic properties revealed that the spin Hamiltonian formalism was not a valid approach and the L-S Hamiltonian had to be used to reveal very large magnetic anisotropies for 1-3. The measurements of AC susceptibility showed that all three compounds exhibited slow-relaxation of magnetization in a weak external static magnetic field, and thus can be classified as field-induced single-ion magnets. It is noteworthy that 1 also exhibits a weak AC signal in a zero-external magnetic field.

Zobrazit více v PubMed

Boča R. Theoretical Foundations of Molecular Magnetism. Elsevier; Amsterdam, The Netherlands: 1999. p. 873.

Pavlov A.A., Nehrkorn J., Zubkevich S.V., Fedin M.V., Holldack K., Schnegg A., Novikov V.V. A Synergy and Struggle of EPR, Magnetometry and NMR: A Case Study of Magnetic Interaction Parameters in a Six-Coordinate Cobalt (II) Complex. Inorg. Chem. 2020;59:10746–10755. doi: 10.1021/acs.inorgchem.0c01191. PubMed DOI

Matos C.R.M.O., Sarmiento C.V., Silva H.C., Ferreira G.B., Guedes G.P., Nunes W.C., Ronconi C.M. Field-induced single-ion magnets exhibiting tri-axial anisotropy in a 1D Co (ii) coordination polymer with a rigid ligand 4,4′-(buta-1,3-diyne-1,4-diyl)dibenzoate. Dalton Trans. 2021;50:15003–15014. doi: 10.1039/D1DT01961A. PubMed DOI

Świtlicka A., Palion-Gazda J., Machura B., Cano J., Lloret F., Julve M. Field-induced slow magnetic relaxation in pseudooctahedral cobalt (II) complexes with positive axial and large rhombic anisotropy. Dalton Trans. 2019;48:1404–1417. doi: 10.1039/C8DT03965H. PubMed DOI

Gómez-Coca S., Aravena D., Morales R., Ruiz E. Large Magnetic Anisotropy in Mononuclear Metal Complexes. Coord. Chem. Rev. 2015;289–290:379–392. doi: 10.1016/j.ccr.2015.01.021. DOI

Ganzhorn M., Wernsdorfer W. In: Molecular Magnets. Bartolome J., Luis F., Fernandez J.F., editors. Springer; Berlin/Heidelberg, Germany: 2014. pp. 319–364.

Frost J.M., Harriman K.L.M., Murugesu M. The Rise of 3-d Single-Ion Magnets in Molecular Magnetism: Towards Materials from Molecules? Chem. Sci. 2016;7:2470–2491. doi: 10.1039/C5SC03224E. PubMed DOI PMC

Craig G.A., Murrie M. 3d Single-Ion Magnets. Chem. Soc. Rev. 2015;44:2135–2147. doi: 10.1039/C4CS00439F. PubMed DOI

Yao X.N., Du J.Z., Zhang Y.Q., Leng X.B., Yang M.W., Jiang S., Wang Z.X., Ouyang Z.W., Deng L., Wang B.W., et al. Two-Coordinate Co (II) Imido Complexes as Outstanding Single-Molecule Magnets. J. Am. Chem. Soc. 2017;139:373–380. doi: 10.1021/jacs.6b11043. PubMed DOI

Bunting P.C., Atanasov M., Damgaard-Møller E., Perfetti M., Crassee I., Orlita M., Overgaard J., Slageren J., Neese F., Long J.R. A Linear Cobalt (II) Complex with Maximal Orbital Angular Momentum from a Non-Aufbau Ground State. Science. 2018;362:eaat7319. doi: 10.1126/science.aat7319. PubMed DOI

Deng Y.F., Wang Z., Ouyang Z.W., Yin B., Zheng Z., Zheng Y.Z. Large Easy-Plane Magnetic Anisotropy in a Three-Coordinate Cobalt (II) Complex [Li(THF)4][Co(NPh2)3] Chem. Eur. J. 2016;22:14821–14825. doi: 10.1002/chem.201603238. PubMed DOI

Das C., Rasamsetty A., Tripathi S., Shanmugam M. Magnetization Relaxation Dynamics of a Rare Coordinatively Unsaturated Co(II) Complex: Experimental and Theoretical Insights. Chem. Comm. 2020;56:13397–13400. doi: 10.1039/D0CC05963C. PubMed DOI

Chen Y., Yang Q., Peng G., Zhang Y.Q., Ren X.M. Influence of F-Position and Solvent on Coordination Geometry and Single Ion Magnet Behavior of Co (II) Complexes. Dalton Trans. 2021;50:13830–13840. doi: 10.1039/D1DT02148F. PubMed DOI

Cui H.H., Lu F., Chen X.T., Zhang Y.Q., Tong W., Xue Z.L. Zero-Field Slow Magnetic Relaxation and Hysteresis Loop in Four-Coordinate CoII Single-Ion Magnets with Strong Easy-Axis Anisotropy. Inorg. Chem. 2019;58:12555–12564. doi: 10.1021/acs.inorgchem.9b01175. PubMed DOI

Tripathi S., Vaidya S., Ansari K.U., Ahmed N., Rivière E., Spillecke L., Koo C., Klingeler R., Mallah T., Rajaraman G., et al. Influence of a Counteranion on the Zero-Field Splitting of Tetrahedral Cobalt(II) Thiourea Complexes. Inorg. Chem. 2019;58:9085–9100. doi: 10.1021/acs.inorgchem.9b00632. PubMed DOI

Novikov V.V., Pavlov A.A., Nelyubina Y.V., Boulon M.-E., Varzatskii O.A., Voloshin Y.Z., Winpenny R.E.P. A Trigonal Prismatic Mononuclear Cobalt (II) Complex Showing Single-Molecule Magnet Behavior. J. Am. Chem. Soc. 2015;137:9792–9795. doi: 10.1021/jacs.5b05739. PubMed DOI

Pavlov A.A., Nelyubina Y.V., Kats S.V., Penkova L.V., Efimov N.N., Dmitrienko A.O., Vologzhanina A.V., Belov A.S., Voloshin Y.Z., Novikov V.V. Polymorphism in a Cobalt-Based Single-Ion Magnet Tuning Its Barrier to Magnetization Relaxation. J. Phys. Chem. Lett. 2016;7:4111–4116. doi: 10.1021/acs.jpclett.6b02091. PubMed DOI

Gomez-Coca S., Cremades E., Aliaga-Alcalde N., Ruiz E. Mononuclear Single-Molecule Magnets: Tailoring the Magnetic Anisotropy of First-Row Transition-Metal Complexes. J. Am. Chem. Soc. 2013;135:7010–7018. doi: 10.1021/ja4015138. PubMed DOI

Ozumerzifon T.J., Bhowmick I., Spaller W.C., Rappé A.K., Shores M.P. Toward Steric Control of Guest Binding Modality: A Cationic Co (II) Complex Exhibiting Cation Binding and Zero-Field Relaxation. Chem. Comm. 2017;53:4211–4214. doi: 10.1039/C7CC01172E. PubMed DOI

Yao B., Deng Y.-F., Li T., Xiong J., Wang B.-W., Zheng Z., Zhang Y.-Z. Construction and Magnetic Study of a Trigonal-Prismatic Cobalt (II) Single-Ion Magnet. Inorg. Chem. 2018;57:14047–14051. doi: 10.1021/acs.inorgchem.8b02692. PubMed DOI

Zhu Y.Y., Cui C., Zhang Y.Q., Jia J.H., Guo X., Gao C., Qian K., Jiang S., Wang B.W., Wang Z.M., et al. Zero-Field Slow Magnetic Relaxation from Single Co (II) Ion: A Transition Metal Single-Molecule Magnet with High Anisotropy Barrier. Chem. Sci. 2013;4:1802–1806. doi: 10.1039/c3sc21893g. DOI

Yao B., Singh M.K., Deng Y.F., Wang Y.N., Dunbar K.R., Zhang Y.Z. Trigonal Prismatic Cobalt (II) Single-Ion Magnets: Manipulating the Magnetic Relaxation through Symmetry Control. Inorg. Chem. 2020;59:8505–8513. doi: 10.1021/acs.inorgchem.0c00950. PubMed DOI

Feng M., Tong M.-L. Single Ion Magnets from 3d to 5f: Developments and Strategies. Chem. Eur. J. 2018;24:7574–7594. doi: 10.1002/chem.201705761. PubMed DOI

Zadrozny J.M., Xiao D.J., Atanasov M., Long G.J., Grandjean F., Neese F., Long J.R. Magnetic blocking in a linear iron (I) complex. Nat. Chem. 2013;5:577–581. doi: 10.1038/nchem.1630. PubMed DOI

Werncke G.C., Bunting P.C., Duhayon C., Long J.R., Bontemps S., Sabo-Etienne S. Two-Coordinate Iron (I) Complex [Fe{N(SiMe3)2}2]: Synthesis, Properties, and Redox Activity. Angew. Chem. Int. Ed. 2015;54:245–248. doi: 10.1002/anie.201408802. PubMed DOI

Mossin S., Tran B.L., Adhikari D., Pink M., Heinemann F.W., Sutter J., Szilagyi R.K., Meyer K., Mindiola D.J. A Mononuclear Fe (III) Single Molecule Magnet with a 3/2↔5/2 Spin Crossover. J. Am. Chem. Soc. 2012;134:13651–13661. doi: 10.1021/ja302660k. PubMed DOI PMC

Rechkemmer Y., Breitgoff F.D., van der Meer M., Atanasov M., Hakl M., Orlita M., Neugebauer P., Neese F., Sarkar B., van Slageren J. A Four-Coordinate Cobalt (II) Single-Ion Magnet with Coercivity and a Very High Energy Barrier. Nat. Commun. 2016;7:10467. doi: 10.1038/ncomms10467. PubMed DOI PMC

Fataftah M.S., Zadrozny J.M., Rogers D.M., Freedman D.E. A Mononuclear Transition Metal Single-Molecule Magnet in a Nuclear Spin-Free Ligand Environment. Inorg. Chem. 2014;53:10716–10721. doi: 10.1021/ic501906z. PubMed DOI

Vaidya S., Tewary S., Singh S.K., Langley S.K., Murray K.S., Lan Y., Wernsdorfer W., Rajaraman G., Shanmugam M. What Controls the Sign and Magnitude of Magnetic Anisotropy in Tetrahedral Cobalt(II) Single-Ion Magnets? Inorg. Chem. 2016;55:9564–9578. doi: 10.1021/acs.inorgchem.6b01073. PubMed DOI

Tu D., Shao D., Yan H., Lu C. A Carborane-Incorporated Mononuclear Co(II) Complex Showing Zero-Field Slow Magnetic Relaxation. Chem. Comm. 2016;52:14326–14329. doi: 10.1039/C6CC07728E. PubMed DOI

Yao X.N., Yang M.W., Xiong J., Liu J.J., Gao C., Meng Y.S., Jiang S.D., Wang B.W., Gao S. Enhanced Magnetic Anisotropy in a Tellurium-Coordinated Cobalt Single-Ion Magnet. Inorg. Chem. Front. 2017;4:701–705. doi: 10.1039/C6QI00543H. DOI

Zadrozny J.M., Long J.R. Slow Magnetic Relaxation at Zero Field in the Tetrahedral Complex [Co(SPh) 4]2- J. Am. Chem. Soc. 2011;133:20732–20734. doi: 10.1021/ja2100142. PubMed DOI

Ye B.H., Tong M.L., Chen X.M. Metal-Organic Molecular Architectures with 2,2′-Bipyridyl-like and Carboxylate Ligands. Coord. Chem. Rev. 2005;249:545–565. doi: 10.1016/j.ccr.2004.07.006. DOI

Nemec I., Herchel R., Trávníček Z. Two polymorphic Co (ii) field-induced single-ion magnets with enormous angular distortion from the ideal octahedron. Dalton Trans. 2018;47:1614–1623. doi: 10.1039/C7DT03992A. PubMed DOI

Bruker . APEX3. Bruker AXS Inc.; Madison, WI, USA: 2015.

Sheldrick G.M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. 2015;71:3–8. doi: 10.1107/S2053229614024218. PubMed DOI PMC

Bourhis L.J., Dolomanov O.V., Gildea R.J., Howard J.A.K., Puschmann H. The Anatomy of a Comprehensive Constrained, Restrained Refinement Program for the Modern Computing Environment—Olex2. Acta Crystallogr. 2015;71:59–75. doi: 10.1107/S2053273314022207. PubMed DOI PMC

Dolomanov O.V., Bourhis L.J., Gildea R.J., Howard J.A.K., Puschmann H. IUCr OLEX2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Crystallogr. 2009;42:339–341. doi: 10.1107/S0021889808042726. DOI

Macrae C.F., Sovago I., Cottrell S.J., Galek P.T.A., McCabe P., Pidcock E., Platings M., Shields G.P., Stevens J.S., Towler M., et al. Mercury 4.0: From Visualization to Analysis, Design and Prediction. J. Appl. Crystallogr. 2020;53:226–235. doi: 10.1107/S1600576719014092. PubMed DOI PMC

Alvarez S. Polyhedra in (Inorganic) Chemistry. Dalton Trans. 2005:2209–2233. doi: 10.1039/b503582c. PubMed DOI

Misochko E.Y., Akimov A.v., Korchagin D.v., Nehrkorn J., Ozerov M., Palii A.v., Clemente-Juan J.M., Aldoshin S.M. Purely Spectroscopic Determination of the Spin Hamiltonian Parameters in High-Spin Six-Coordinated Cobalt (II) Complexes with Large Zero-Field Splitting. Inorg. Chem. 2019;58:16434–16444. doi: 10.1021/acs.inorgchem.9b02195. PubMed DOI

Figgis B.N., Gerloch M., Lewis J., Mabbs F.E., Webb G.A. The Magnetic Behaviour of Cubic-Field 4T1g Terms in Lower Symmetry. J. Chem. Soc. A. 1968;57:2086–2093. doi: 10.1039/j19680002086. DOI

Griffith J.S. The Theory of Transition-Metal. Ions. Cambridge University Press and Assessment; Cambridge, UK: 2009. p. 455.

Mingos D.M.P. Magnetic Functions Beyond the Spin-Hamiltonian. Springer; Berling/Heidelberg, Germany: 2006. p. 278.

Boča R. A Handbook of Magnetochemical Formulae. Elsevier; Amsterdam, The Netherlands: 2012. p. 1010.

Herchel R., Boča R. Program. Polymagnet. Slovak Technical University; Bratislava, Slovakia: 2021.

Boča R. Program. MIF with FIT Module. University of SS Cyril and Methodius; Trnava, Slovakia: 2019.

Malmqvist P.Å., Roos B.O. The CASSCF State Interaction Method. Chem. Phys. Lett. 1989;155:189–194. doi: 10.1016/0009-2614(89)85347-3. DOI

Angeli C., Cimiraglia R., Malrieu J.P. N-Electron Valence State Perturbation Theory: A Fast Implementation of the Strongly Contracted Variant. Chem. Phys. Lett. 2001;350:297–305. doi: 10.1016/S0009-2614(01)01303-3. DOI

Angeli C., Cimiraglia R., Evangelisti S., Leininger T., Malrieu J.-P. Introduction of N-Electron Valence States for Multireference Perturbation Theory. J. Chem. Phys. 2001;114:10252. doi: 10.1063/1.1361246. DOI

Neese F. Software Update: The ORCA Program System, Version 4.0. Wiley Interdiscip. Rev. Comp. Mol. Sci. 2018;8:e1327. doi: 10.1002/wcms.1327. DOI

Neese F., Wennmohs F., Becker U., Riplinger C. The ORCA Quantum Chemistry Program Package. J. Chem. Phys. 2020;152:224108. doi: 10.1063/5.0004608. PubMed DOI

Weigend F., Ahlrichs R. Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy. Phys. Chem. Chem. Phys. 2005;7:3297–3305. doi: 10.1039/b508541a. PubMed DOI

Weigend F. Accurate Coulomb-Fitting Basis Sets for H to Rn. Phys. Chem. Chem. Phys. 2006;8:1057–1065. doi: 10.1039/b515623h. PubMed DOI

Hellweg A., Hättig C., Höfener S., Klopper W. Optimized Accurate Auxiliary Basis Sets for RI-MP2 and RI-CC2 Calculations for the Atoms Rb to Rn. Theor. Chem. Acc. 2007;117:587–597. doi: 10.1007/s00214-007-0250-5. DOI

Izsák R., Neese F. An Overlap Fitted Chain of Spheres Exchange Method. J. Chem. Phys. 2011;135:144105. doi: 10.1063/1.3646921. PubMed DOI

Neese F., Wennmohs F., Hansen A., Becker U. Efficient, Approximate and Parallel Hartree–Fock and Hybrid DFT Calculations. A ‘Chain-of-Spheres’ Algorithm for the Hartree–Fock Exchange. Chem. Phys. 2009;356:98–109. doi: 10.1016/j.chemphys.2008.10.036. DOI

Mingos D.M.P., Day P., Dahl J.P. Molecular Electronic Structures of Transition Metal Complexes II. Springer; Berlin/Heidelberg, Germany: 2012. p. 236.

Singh S.K., Eng J., Atanasov M., Neese F. Covalency and Chemical Bonding in Transition Metal Complexes: An Ab Initio Based Ligand Field Perspective. Coord. Chem. Rev. 2017;344:2–25. doi: 10.1016/j.ccr.2017.03.018. DOI

Zoufalý P., Kliuikov A., Čižmár E., Císařová I., Herchel R. Cis and Trans Isomers of Fe (II) and Co (II) Complexes with Oxadiazole Derivatives—Structural and Magnetic Properties. Eur. J. Inorg. Chem. 2021;2021:1190–1199. doi: 10.1002/ejic.202001148. DOI

Drahoš B., Šalitroš I., Císařová I., Herchel R. A Multifunctional Magnetic Material Based on a Solid Solution of Fe (II)/Co (II) Complexes with a Macrocyclic Cyclam-Based Ligand. Dalton Trans. 2021;50:11147–11157. doi: 10.1039/D1DT01534F. PubMed DOI

Ghosh S., Kamilya S., Rouzières M., Herchel R., Mehta S., Mondal A. Reversible Spin-State Switching and Tuning of Nuclearity and Dimensionality via Nonlinear Pseudohalides in Cobalt (II) Complexes. Inorg. Chem. 2020;59:17638–17649. doi: 10.1021/acs.inorgchem.0c02887. PubMed DOI

Chibotaru L.F., Ungur L. Ab Initio Calculation of Anisotropic Magnetic Properties of Complexes. I. Unique Definition of Pseudospin Hamiltonians and Their Derivation. J. Phys. Chem. 2012;137:064112. doi: 10.1063/1.4739763. PubMed DOI

Dey A., Kalita P., Chandrasekhar V. Lanthanide(III)-Based Single-Ion Magnets. ACS Omega. 2018;3:9462–9475. doi: 10.1021/acsomega.8b01204. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...