Evolution of plant telomerase RNAs: farther to the past, deeper to the roots

. 2021 Jul 21 ; 49 (13) : 7680-7694.

Jazyk angličtina Země Velká Británie, Anglie Médium print

Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.

Perzistentní odkaz   https://www.medvik.cz/link/pmid34181710

The enormous sequence heterogeneity of telomerase RNA (TR) subunits has thus far complicated their characterization in a wider phylogenetic range. Our recent finding that land plant TRs are, similarly to known ciliate TRs, transcribed by RNA polymerase III and under the control of the type-3 promoter, allowed us to design a novel strategy to characterize TRs in early diverging Viridiplantae taxa, as well as in ciliates and other Diaphoretickes lineages. Starting with the characterization of the upstream sequence element of the type 3 promoter that is conserved in a number of small nuclear RNAs, and the expected minimum TR template region as search features, we identified candidate TRs in selected Diaphoretickes genomes. Homologous TRs were then used to build covariance models to identify TRs in more distant species. Transcripts of the identified TRs were confirmed by transcriptomic data, RT-PCR and Northern hybridization. A templating role for one of our candidates was validated in Physcomitrium patens. Analysis of secondary structure demonstrated a deep conservation of motifs (pseudoknot and template boundary element) observed in all published TRs. These results elucidate the evolution of the earliest eukaryotic TRs, linking the common origin of TRs across Diaphoretickes, and underlying evolutionary transitions in telomere repeats.

Zobrazit více v PubMed

Koonin E.V. The origin of introns and their role in eukaryogenesis: a compromise solution to the introns-early versus introns-late debate?. Biol. Direct. 2006; 1:22. PubMed PMC

Sykorova E., Fajkus J.. Structure-function relationships in telomerase genes. Biol. Cell. 2009; 101:375–392. PubMed

Podlevsky J.D., Chen J.J.L.. Evolutionary perspectives of telomerase RNA structure and function. RNA Biol. 2016; 13:720–732. PubMed PMC

Waldl M., Thiel B.C., Ochsenreiter R., Holzenleiter A., Oliveira J.V.D., Walter M.E.M.T., Wolfinger M.T., Stadler P.F.. TERribly difficult: searching for telomerase RNAs in Saccharomycetes. Genes-Basel. 2018; 9:372. PubMed PMC

Fajkus P., Peska V., Zavodnik M., Fojtova M., Fulneckova J., Dobias S., Kilar A., Dvorackova M., Zachova D., Necasova I.et al. .. Telomerase RNAs in land plants. Nucleic Acids Res. 2019; 47:9842–9856. PubMed PMC

Song J.R., Logeswaran D., Castillo-Gonzalez C., Li Y., Bose S., Aklilu B.B., Ma Z.Y., Polkhovskiy A., Chen J.J.L., Shippen D.E.. The conserved structure of plant telomerase RNA provides the missing link for an evolutionary pathway from ciliates to humans. PNAS. 2019; 116:24542–24550. PubMed PMC

Dew-Budd K., Cheung J., Palos K., Forsythe E.S., Beilstein M.A.. Evolutionary and biochemical analyses reveal conservation of the Brassicaceae telomerase ribonucleoprotein complex. PLoS One. 2020; 15:e0222687. PubMed PMC

Lingner J., Hendrick L.L., Cech T.R.. Telomerase RNAs of different ciliates have a common secondary structure and a permuted template. Genes Dev. 1994; 8:1984–1998. PubMed

Hargrove B.W., Bhattacharyya A., Domitrovich A.M., Kapler G.M., Kirk K., Shippen D.E., Kunkel G.R.. Identification of an essential proximal sequence element in the promoter of the telomerase RNA gene of Tetrahymena thermophila. Nucleic Acids Res. 1999; 27:4269–4275. PubMed PMC

Wu J., Okada T., Fukushima T., Tsudzuki T., Sugiura M., Yukawa Y.. A novel hypoxic stress-responsive long non-coding RNA transcribed by RNA polymerase III in Arabidopsis. RNA Biol. 2012; 9:302–313. PubMed

Mittal V., Ma B., Hernandez N.. SNAP(c): a core promoter factor with a built-in DNA-binding damper that is deactivated by the Oct-1 POU domain. Genes Dev. 1999; 13:1807–1821. PubMed PMC

Waibel F., Filipowicz W.. U6 Snrna genes of Arabidopsis are transcribed by RNA polymerase-III but contain the same 2 upstream promoter elements as RNA polymerase-II-transcribed U-Snrna genes. Nucleic Acids Res. 1990; 18:3451–3458. PubMed PMC

Waibel F., Filipowicz W.. RNA-polymerase specificity of transcription of Arabidopsis U-Snrna genes determined by promoter element spacing. Nature. 1990; 346:199–202. PubMed

Dergai O., Cousin P., Gouge J., Satia K., Praz V., Kuhlman T., Lhote P., Vannini A., Hernandez N.. Mechanism of selective recruitment of RNA polymerases II and III to snRNA gene promoters. Genes Dev. 2018; 32:711–722. PubMed PMC

Burki F., Shalchian-Tabrizi K., Pawlowski J.. Phylogenomics reveals a new ‘megagroup’ including most photosynthetic eukaryotes. Biol. Lett. 2008; 4:366–369. PubMed PMC

Fulneckova J., Hasikova T., Fajkus J., Lukesova A., Elias M., Sykorova E.. Dynamic evolution of telomeric sequences in the green algal order Chlamydomonadales. Genome Biol. Evol. 2012; 4:248–264. PubMed PMC

Nawrocki E.P., Eddy S.R.. Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics. 2013; 29:2933–2935. PubMed PMC

Griffiths-Jones S., Bateman A., Marshall M., Khanna A., Eddy S.R.. Rfam: an RNA family database. Nucleic Acids Res. 2003; 31:439–441. PubMed PMC

Bailey T.L., Elkan C.. Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc. Int. Conf. Intell. Syst. Mol. Biol. 1994; 2:28–36. PubMed

Raden M., Ali S.M., Alkhnbashi O.S., Busch A., Costa F., Davis J.A., Eggenhofer F., Gelhausen R., Georg J., Heyne S.et al. .. Freiburg RNA tools: a central online resource for RNA-focused research and teaching. Nucleic Acids Res. 2018; 46:W25–W29. PubMed PMC

Katoh K., Misawa K., Kuma K., Miyata T.. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002; 30:3059–3066. PubMed PMC

Fajkus P., Peska V., Sitova Z., Fulneckova J., Dvorackova M., Gogela R., Sykorova E., Hapala J., Fajkus J.. Allium telomeres unmasked: the unusual telomeric sequence (CTCGGTTATGGG)(n) is synthesized by telomerase. Plant J. 2016; 85:337–347. PubMed

Lorenz R., Bernhart S.H., Siederdissen C.H.Z., Tafer H., Flamm C., Stadler P.F., Hofacker I.L. ViennaRNA Package 2.0. Algorithm Mol Biol. 2011; 6:26. PubMed PMC

Dellaporta S.L., Wood J., Hicks J.B.. A plant DNA minipreparation: Version II. Plant Mol. Biol. Reporter. 1983; 1:19–21.

Peri S., Roberts S., Kreko I.R., McHan L.B., Naron A., Ram A., Murphy R.L., Lyons E., Gregory B.D., Devisetty U.K.et al. .. Read mapping and transcript assembly: a scalable and high-throughput workflow for the processing and analysis of ribonucleic acid sequencing data. Front. Genet. 2020; 10:1361. PubMed PMC

Grabherr M.G., Haas B.J., Yassour M., Levin J.Z., Thompson D.A., Amit I., Adiconis X., Fan L., Raychowdhury R., Zeng Q.D.et al. .. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 2011; 29:644. PubMed PMC

Benson G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 1999; 27:573–580. PubMed PMC

Peska V., Sitova Z., Fajkus P., Fajkus J.. BAL31-NGS approach for identification of telomeres de novo in large genomes. Methods. 2017; 114:16–27. PubMed

Mallett D.R., Chang M.Q., Cheng X.H., Bezanilla M.. Efficient and modular CRISPR-Cas9 vector system for Physcomitrella patens. Plant Direct. 2019; 3:e00168. PubMed PMC

Concordet J.P., Haeussler M.. CRISPOR: intuitive guide selection for CRISPR/Cas9 genome editing experiments and screens. Nucleic Acids Res. 2018; 46:W242–W245. PubMed PMC

Liu Y.C., Vidali L.. Efficient polyethylene glycol (PEG) mediated transformation of the moss Physcomitrella patens. J. Visual. Exp. 2011; 2560. PubMed PMC

Fajkus J., Fulneckova J., Hulanova M., Berkova K., Riha K., Matyasek R.. Plant cells express telomerase activity upon transfer to callus culture, without extensively changing telomere lengths. Mol. Gen. Genet. 1998; 260:470–474. PubMed

Goffova I., Vagnerova R., Peska V., Franek M., Havlova K., Hola M., Zachova D., Fojtova M., Cuming A., Kamisugi Y.et al. .. Roles of RAD51 and RTEL1 in telomere and rDNA stability in Physcomitrella patens. Plant J. 2019; 98:1090–1105. PubMed

Fojtová M., Fajkus P., Polanská P., Fajkus J.. Terminal restriction fragments (TRF) method to analyze telomere lengths. Bio-protocol. 2015; 5:e1671.

Ijdo J.W., Wells R.A., Baldini A., Reeders S.T.. Improved telomere detection using a telomere repeat probe (Ttaggg)N generated by PCR. Nucleic Acids Res. 1991; 19:4780–4780. PubMed PMC

Lyčka M., Peska V., Demko M., Spyroglou I., Kilar A., Fajkus J., Fojtová M.. WALTER: an easy way to online evaluate telomere lengths from terminal restriction fragment analysis. BMC Bioinformatics. 2021; 22:145. PubMed PMC

Logeswaran D., Li Y., Podlevsky J.D., Chen J.J.. Monophyletic origin and divergent evolution of animal telomerase RNA. Mol. Biol. Evol. 2021; 38:215–228. PubMed PMC

Eddy S.R., Durbin R.. Rna sequence-analysis using covariance-models. Nucleic Acids Res. 1994; 22:2079–2088. PubMed PMC

Slabodnick M.M., Ruby J.G., Reiff S.B., Swart E.C., Gosai S., Prabakaran S., Witkowska E., Larue G.E., Fisher S., Freeman R.M.et al. .. The macronuclear genome of Stentor coeruleus reveals tiny introns in a giant cell. Curr. Biol. 2017; 27:569–575. PubMed PMC

Fernandes N.M., Schrago C.G.. A multigene timescale and diversification dynamics of Ciliophora evolution. Mol. Phylogenet Evol. 2019; 139:106521. PubMed

Greider C.W., Blackburn E.H.. A telomeric sequence in the rna of tetrahymena telomerase required for telomere repeat synthesis. Nature. 1989; 337:331–337. PubMed

Fulneckova J., Sevcikova T., Fajkus J., Lukesova A., Lukes M., Vlcek C., Lang B.F., Kim E., Elias M., Sykorova E.. A broad phylogenetic survey unveils the diversity and evolution of telomeres in eukaryotes. Genome Biol. Evol. 2013; 5:468–483. PubMed PMC

Romero D.P., Blackburn E.H.. A conserved secondary structure for telomerase RNA. Cell. 1991; 67:343–353. PubMed

Orum H., Nielsen H., Engberg J.. Structural organization of the genes encoding the small nuclear RNAs U1 to U6 of Tetrahymena-Thermophila is very similar to that of plant small nuclear-RNA genes. J. Mol. Biol. 1992; 227:114–121. PubMed

Schramm L., Hernandez N.. Recruitment of RNA polymerase III to its target promoters. Genes Dev. 2002; 16:2593–2620. PubMed

Kiss T., Marshallsay C., Filipowicz W.. Alteration of the RNA-polymerase specificity of U3 Snrna genes during evolution and in vitro. Cell. 1991; 65:517–526. PubMed

Antal M., Mougin A., Kis M., Boros E., Steger G., Jakab G., Solymosy F., Branlant C.. Molecular characterization at the RNA and gene levels of U3 snoRNA from a unicellular green alga, Chlamydomonas reinhardtii. Nucleic Acids Res. 2000; 28:2959–2968. PubMed PMC

Petracek M.E., Lefebvre P.A., Silflow C.D., Berman J.. Chlamydomonas telomere sequences are A+T-rich but contain three consecutive G-C base pairs. PNAS. 1990; 87:8222–8226. PubMed PMC

Lemieux C., Turmel M., Otis C., Pombert J.F.. A streamlined and predominantly diploid genome in the tiny marine green alga Chloropicon primus. Nat. Commun. 2019; 10:4061. PubMed PMC

Krasovec M., Vancaester E., Rombauts S., Bucchini F., Yau S., Hemon C., Lebredonchel H., Grimsley N., Moreau H., Sanchez-Brosseau S.et al. .. Genome analyses of the microalga Picochlorum provide insights into the evolution of thermotolerance in the green lineage. Genome Biol. Evol. 2018; 10:2347–2365. PubMed PMC

Peska V., Garcia S.. Origin, diversity, and evolution of telomere sequences in plants. Front Plant Sci. 2020; 11:117. PubMed PMC

Autexier C., Greider C.W.. Mutational analysis of the Tetrahymena telomerase RNA: identification of residues affecting telomerase activity in vitro. Nucleic Acids Res. 1998; 26:787–795. PubMed PMC

Tzfati Y., Knight Z., Roy R., Blackburn E.H.. A novel pseudoknot element is essential for the action of a yeast telomerase. Genes Dev. 2003; 17:1779–1788. PubMed PMC

Chen J.L., Greider C.W.. Functional analysis of the pseudoknot structure in human telomerase RNA. PNAS. 2005; 102:8080–8085. PubMed PMC

Cash D.D., Cohen-Zontag O., Kim N.K., Shefer K., Brown Y., Ulyanov N.B., Tzfati Y., Feigon J.. Pyrimidine motif triple helix in the Kluyveromyces lactis telomerase RNA pseudoknot is essential for function in vivo. PNAS. 2013; 110:10970–10975. PubMed PMC

Tzfati Y., Fulton T.B., Roy J., Blackburn E.H.. Template boundary in a yeast telomerase specified by RNA structure. Science. 2000; 288:863–867. PubMed

Chen J.L., Greider C.W.. Template boundary definition in mammalian telomerase. Genes Dev. 2003; 17:2747–2752. PubMed PMC

Jansson L.I., Akiyama B.M., Ooms A., Lu C., Rubin S.M., Stone M.D.. Structural basis of template-boundary definition in Tetrahymena telomerase. Nat. Struct. Mol. Biol. 2015; 22:883–888. PubMed PMC

Chen J.L., Blasco M.A., Greider C.W.. Secondary structure of vertebrate telomerase RNA. Cell. 2000; 100:503–514. PubMed

Dandjinou A.T., Levesque N., Larose S., Lucier J.F., Elela S.A., Wellinger R.J., Grp R.. A phylogenetically based secondary structure for the yeast telomerase RNA. Curr. Biol. 2004; 14:1148–1158. PubMed

Gunisova S., Elboher E., Nosek J., Gorkovoy V., Brown Y., Lucier J.F., Laterreur N., Wellinger R.J., Tzfati Y., Tomaska L.. Identification and comparative analysis of telomerase RNAs from Candida species reveal conservation of functional elements. RNA. 2009; 15:546–559. PubMed PMC

Wang Y.Q., Gallagher-Jones M., Susac L., Song H., Feigon J.. 2020) A structurally conserved human and Tetrahymena telomerase catalytic core. PNAS. 117:31078–31087. PubMed PMC

Lundblad V., Blackburn E.H.. An alternative pathway for yeast telomere maintenance rescues Est1- senescence. Cell. 1993; 73:347–360. PubMed

Kockler Z.W., Comeron J.M., Malkova A.. A unified alternative telomere-lengthening pathway in yeast survivor cells. Mol. Cell. 2021; 81:1816–1829. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace