Editorial: Telomere Flexibility and Versatility: A Role of Telomeres in Adaptive Potential

. 2021 ; 12 () : 771938. [epub] 20211004

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu úvodníky

Perzistentní odkaz   https://www.medvik.cz/link/pmid34671387
Komentář

Editorial on the Research Topic Telomere Flexibility and Versatility: A Role of Telomeres in Adaptive Potential PubMed

Zobrazit více v PubMed

Barry J. D., Ginger M. L., Burton P., McCulloch R. (2003). Why Are Parasite Contingency Genes Often Associated with Telomeres. Int. J. Parasitol. 33, 29–45. 10.1016/s0020-7519(02)00247-3 PubMed DOI

Blackburn E. H. (1991). Structure and Function of Telomeres. Nature 350, 569–573. 10.1038/350569a0 PubMed DOI

Blackburn E. H. (1990). Telomeres: Structure and Synthesis. J. Biol. Chem. 265, 5919–5921. 10.1016/s0021-9258(19)39264-6 PubMed DOI

Červenák F., Sepšiová R., Nosek J., Tomáška Ľ. (2021). Step-by-Step Evolution of Telomeres: Lessons from Yeasts. Genome Biol. Evol. 13, evaa268. 10.1093/gbe/evaa268 PubMed DOI PMC

Coluzzi E., Buonsante R., Leone S., Asmar A. J., Miller K. L., Cimini D., et al. (2017). Transient ALT Activation Protects Human Primary Cells from Chromosome Instability Induced by Low Chronic Oxidative Stress. Sci. Rep. 7, 43309. 10.1038/srep43309 PubMed DOI PMC

Coluzzi E., Leone S., Sgura A. (2019). Oxidative Stress Induces Telomere Dysfunction and Senescence by Replication Fork Arrest. Cells 8, 19. 10.3390/cells8010019 PubMed DOI PMC

Fajkus P., Kilar A., Nelson A. D. L., Holá M., Peška V., Goffová I., et al. (2021). Evolution of Plant Telomerase RNAs: Farther to the Past, Deeper to the Roots. Nucleic Acids Res. 49, 7680–7694. 10.1093/nar/gkab545 PubMed DOI PMC

Fajkus P., Peška V., Závodník M., Fojtová M., Fulnečková J., Dobias Š., et al. (2019). Telomerase RNAs in Land Plants. Nucleic Acids Res. 47, 9842–9856. 10.1093/nar/gkz695 PubMed DOI PMC

Fumagalli M., Rossiello F., Clerici M., Barozzi S., Cittaro D., Kaplunov J. M., et al. (2012). Telomeric DNA Damage Is Irreparable and Causes Persistent DNA-Damage-Response Activation. Nat. Cel Biol. 14, 355–365. 10.1038/ncb2466 PubMed DOI PMC

Gomes N. M. V., Shay J. W., Wright W. E. (2010). Telomere Biology in Metazoa. FEBS Lett. 584, 3741–3751. 10.1016/j.febslet.2010.07.031 PubMed DOI PMC

Hewitt G., Jurk D., Marques F. D. M., Correia-Melo C., Hardy T., Gackowska A., et al. (2012). Telomeres Are Favoured Targets of a Persistent DNA Damage Response in Ageing and Stress-Induced Senescence. Nat. Commun. 3, 708. 10.1038/ncomms1708 PubMed DOI PMC

Jehi S. E., Li X., Sandhu R., Ye F., Benmerzouga I., Zhang M., et al. (2014). Suppression of Subtelomeric VSG Switching by Trypanosoma Brucei TRF Requires its TTAGGG Repeat-Binding Activity. Nucleic Acids Res. 42, 12899–12911. 10.1093/nar/gku942 PubMed DOI PMC

Keely S. P., Renauld H., Wakefield A. E., Cushion M. T., Smulian A. G., Fosker N., et al. (2005). Gene Arrays at Pneumocystis Carinii Telomeres. Genetics 170, 1589–1600. 10.1534/genetics.105.040733 PubMed DOI PMC

Korandová M., Krůček T., Szakosová K., Kodrík D., Kühnlein R. P., Tomášková J., et al. (2018). Chronic Low-Dose Pro-oxidant Treatment Stimulates Transcriptional Activity of Telomeric Retroelements and Increases Telomere Length in Drosophila. J. Insect Physiol. 104, 1–8. 10.1016/j.jinsphys.2017.11.002 PubMed DOI

Li B. (2012). Telomere Components as Potential Therapeutic Targets for Treating Microbial Pathogen Infections. Front. Oncol. 2, 156. 10.3389/fonc.2012.00156 PubMed DOI PMC

Liu H., Xie Y., Zhang Z., Mao P., Liu J., Ma W., et al. (2018). Telomeric Recombination Induced by DNA Damage Results in Telomere Extension and Length Heterogeneity. Neoplasia, 905–916. 10.1016/j.neo.2018.07.004 PubMed DOI PMC

Mason J. M., Reddy H. M., Capkova Frydrychova R. (2011). “Telomere Maintenance in Organisms without Telomerase,” in DNA Replication-Current Adv. Editor Seligman H. Rijeka: Croatia, InTech, 323–346. 10.5772/19348 DOI

Mason J. M. O., McEachern M. J. (2018). Chromosome Ends as Adaptive Beginnings: the Potential Role of Dysfunctional Telomeres in Subtelomeric Evolvability. Curr. Genet. 64, 997–1000. 10.1007/s00294-018-0822-z PubMed DOI

Mason J. M., Randall T. A., Capkova Frydrychova R. (2016). Telomerase Lost. Chromosoma 125, 65–73. 10.1007/s00412-015-0528-7 PubMed DOI PMC

McEachern M. J. (2008). “Telomeres: Guardians of Genomic Integrity or Double Agents of Evolution,” in In Origins And Evolution Of Telomeres . Editors Noseck J., Tomaska L. (Georgetown, TX: Landes Bioscience).

Peska V., Fajkus P., Bubeník M., Brázda V., Bohálová N., Dvořáček V., et al. (2021). Extraordinary Diversity of Telomeres, Telomerase RNAs and Their Template Regions in Saccharomycetaceae. Sci. Rep. 11, 12784. 10.1038/s41598-021-92126-x PubMed DOI PMC

Peska V., Garcia S. (2020). Origin, Diversity, and Evolution of Telomere Sequences in Plants. Front. Plant Sci. 11, 1–9. 10.3389/fpls.2020.00117 PubMed DOI PMC

Prušáková D., Peska V., Pekár S., Bubeník M., Čížek L., Bezděk A., et al. (2021). Telomeric DNA Sequences in Beetle Taxa Vary with Species Richness. Sci. Rep. 11 (1), 13319. 10.1038/s41598-021-92705-y PubMed DOI PMC

Rahnama M., Novikova O., Starnes J. H., Zhang S., Chen L., Farman M. L. (2020). Transposon-mediated Telomere Destabilization: a Driver of Genome Evolution in the Blast Fungus. Nucleic Acids Res. 48, 7197–7217. 10.1093/nar/gkaa287 PubMed DOI PMC

Robinson N. P., Burman N., Melville S. E., Barry J. D. (1999). Predominance of Duplicative VSG Gene Conversion in Antigenic Variation in African Trypanosomes. Mol. Cel Biol. 19, 5839–5846. 10.1128/mcb.19.9.5839 PubMed DOI PMC

Shampey J., Szostak J. W., Blackburn E. H. (1984). DNA Sequences of Telomeres Maintained in Yeast. Nature 310, 154–157. PubMed

Starnes J. H., Thornbury D. W., Novikova O. S., Rehmeyer C. J., Farman M. L. (2012). Telomere-targeted Retrotransposons in the rice Blast Fungus Magnaporthe Oryzae: Agents of Telomere Instability. Genetics 191, 389–406. 10.1534/genetics.111.137950 PubMed DOI PMC

Stindl R. (2004). Is Telomere Erosion a Mechanism of Species Extinction. J. Exp. Zool. 302B, 111–120. 10.1002/jez.b.20006 PubMed DOI

Stindl R. (2014). The Telomeric Sync Model of Speciation: Species-wide Telomere Erosion Triggers Cycles of Transposon-Mediated Genomic Rearrangements, Which Underlie the Saltatory Appearance of Nonadaptive Characters. Naturwissenschaften 101, 163–186. 10.1007/s00114-014-1152-8 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace