Telomeric DNA sequences in beetle taxa vary with species richness

. 2021 Jun 25 ; 11 (1) : 13319. [epub] 20210625

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34172809
Odkazy

PubMed 34172809
PubMed Central PMC8233369
DOI 10.1038/s41598-021-92705-y
PII: 10.1038/s41598-021-92705-y
Knihovny.cz E-zdroje

Telomeres are protective structures at the ends of eukaryotic chromosomes, and disruption of their nucleoprotein composition usually results in genome instability and cell death. Telomeric DNA sequences have generally been found to be exceptionally conserved in evolution, and the most common pattern of telomeric sequences across eukaryotes is (TxAyGz)n maintained by telomerase. However, telomerase-added DNA repeats in some insect taxa frequently vary, show unusual features, and can even be absent. It has been speculated about factors that might allow frequent changes in telomere composition in Insecta. Coleoptera (beetles) is the largest of all insect orders and based on previously available data, it seemed that the telomeric sequence of beetles varies to a great extent. We performed an extensive mapping of the (TTAGG)n sequence, the ancestral telomeric sequence in Insects, across the main branches of Coleoptera. Our study indicates that the (TTAGG)n sequence has been repeatedly or completely lost in more than half of the tested beetle superfamilies. Although the exact telomeric motif in most of the (TTAGG)n-negative beetles is unknown, we found that the (TTAGG)n sequence has been replaced by two alternative telomeric motifs, the (TCAGG)n and (TTAGGG)n, in at least three superfamilies of Coleoptera. The diversity of the telomeric motifs was positively related to the species richness of taxa, regardless of the age of the taxa. The presence/absence of the (TTAGG)n sequence highly varied within the Curculionoidea, Chrysomeloidea, and Staphylinoidea, which are the three most diverse superfamilies within Metazoa. Our data supports the hypothesis that telomere dysfunctions can initiate rapid genomic changes that lead to reproductive isolation and speciation.

Zobrazit více v PubMed

Blackburn, E.H. Structure and function of telomeres. Nature. 350, 569–573 (1991). PubMed

Cong Y, Wright WE, Shay JW. Human telomerase and its regulation. Microbiol. Mol. Biol. Rev. 2002;66:407–425. doi: 10.1128/MMBR.66.3.407-425.2002. PubMed DOI PMC

Wright, W.E., Piatyszek, M.A., Rainey, W.E., Byrd, W., & Shay, J.W. Telomerase activity in human germline and embryonic tissues and cells. Dev. Genet. 18(2), 173–179 (1996). PubMed

Chan SW, Blackburn EH. New ways not to make ends meet: Telomerase, DNA damage proteins and heterochromatin. Oncogene. 2002;21:553–563. doi: 10.1038/sj.onc.1205082. PubMed DOI

Giannone RJ, McDonald HW, Hurst GB, Shen R-F, Wang Y, Liu Y. The protein network surrounding the human telomere repeat binding factors TRF1, TRF2, and POT1. PLoS ONE. 2010;5:e12407. doi: 10.1371/journal.pone.0012407. PubMed DOI PMC

Fulcher N, Derboven E, Valuchova S, Riha K. If the cap fits, wear it: An overview of telomeric structures over evolution. Cell. Mol. Life Sci. 2014;71:847–865. doi: 10.1007/s00018-013-1469-z. PubMed DOI PMC

Mason JM, Randall TA, Frydrychova RC. Telomerase lost? Chromosoma. 2016;125:65–73. doi: 10.1007/s00412-015-0528-7. PubMed DOI PMC

Traut W, Szczepanowski M, Vítková M, Opitz C, Marec F, Zrzavý J. The telomere repeat motif of basal Metazoa. Chromosome Res. 2007;15:371–382. PubMed

McEachern MJ, Blackburn EH. A conserved sequence motif within the exceptionally diverse telomeric sequences of budding yeasts. Proc. Natl. Acad. Sci. USA. 1994;91:3453–3457. doi: 10.1073/pnas.91.8.3453. PubMed DOI PMC

Peska V, Garcia S. Origin, diversity, and evolution of telomere sequences in plants. Front. Plant Sci. 2020;11:1–9. doi: 10.3389/fpls.2020.00117. PubMed DOI PMC

Korandová M, Krůček T, Vrbová K, Frydrychová RC. Distribution of TTAGG-specific telomerase activity in insects. Chromosome Res. 2014;22:495–503. doi: 10.1007/s10577-014-9436-6. PubMed DOI

Frydrychová R, Grossmann P, Trubac P, Vítková M, Marec F. Phylogenetic distribution of TTAGG telomeric repeats in insects. Genome. 2004;47:163–178. doi: 10.1139/g03-100. PubMed DOI

Mason JM, Biessmann H. The unusual telomeres of Drosophila. Trends Genet. 1995;11:58–62. doi: 10.1016/S0168-9525(00)88998-2. PubMed DOI

Pardue M-L, DeBaryshe PG. Retrotransposons provide an evolutionarily robust non-telomerase mechanism to maintain telomeres. Annu. Rev. Genet. 2003;37:485–511. doi: 10.1146/annurev.genet.38.072902.093115. PubMed DOI

Nielsen L, Edström JE. Complex telomere-associated repeat units in members of the genus Chironomus evolve from sequences similar to simple telomeric repeats. Mol. Cell. Biol. 1993;13:1583–1589. PubMed PMC

Kuznetsova V, Grozeva S, Gokhman V. Telomere structure in insects: A review. J. Zool. Syst. Evol. Res. 2020;58:127–158. doi: 10.1111/jzs.12332. DOI

Mravinac B, Meštrović N, Cavrak VV, Plohl M. TCAGG, an alternative telomeric sequence in insects. Chromosoma. 2011;120:367–376. doi: 10.1007/s00412-011-0317-x. PubMed DOI

Stork NE. How many species of insects and other terrestrial arthropods are there on Earth? Annu. Rev. 2018;63:31–45. PubMed

Okazaki, S., Tsuchida, K., Mackawa H., Fugiwara H. Identification of a pentanucleotide telomere sequence (TTAGG)n in the silkworm Bombyx mori and in other insects. Mol Cell Biol. 13, 1424–1432 (1993). PubMed PMC

Frydrychova R, Marec F. Repeated losses of TTAGG telomere repeats in evolution of beetles (Coleoptera) Genetica. 2002;115:179–187. doi: 10.1023/A:1020175912128. PubMed DOI

Mckenna, D.D., Shin, S., Ahrens, D., Balke, M., Beza-beza, C., & Clarke, D.J. The evolution and genomic basis of beetle diversity. PNAS116, 24729–24737 (2019). PubMed PMC

Jordal BH, Smith SM, Cognato AI. Classification of weevils as a data-driven science: Leaving opinion behind. Zookeys. 2014;18:1–18. doi: 10.3897/zookeys.439.8391. PubMed DOI PMC

Core Team, R . A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; 2018.

Beutel RG. Phylogenetic analysis of Adephaga (Coleoptera) based on characters of the larval head. Syst. Entomol. 1993;18:127–147. doi: 10.1111/j.1365-3113.1993.tb00658.x. DOI

Maddison DR, Baker MD, Ober KA. Phylogeny of carabid beetles as inferred from 18S ribosomal DNA (Coleoptera: Carabidae) Syst. Entomol. 1999;24:103–138. doi: 10.1046/j.1365-3113.1999.00088.x. DOI

Hunt T, Bergsten J, Levkanicova Z, Papadopoulou A, John OS, Wild R, Hammond PM, Ahrens D, Balke M, Caterino MS, et al. A comprehensive phylogeny of beetles reveals the evolutionary origins of a superradiation. Science (80-). 2007;318:1913–1916. doi: 10.1126/science.1146954. PubMed DOI

Friedrich F, Beutel RG. The pterothoracic skeletomuscular system of Scirtoidea (Coleoptera: Polyphaga) and its implications for the high-level phylogeny of beetles. JZS. 2006;44:290–315.

Hunt T, Bergsten J, Levkanicova Z, Papadopoulou A, John OS, Wild R, Hammond PM, Ahrens D, Balke M, Caterino MS, et al. Beetles reveals the evolutionary origins of a superradiation. Science. 2007;438:1913–1917. doi: 10.1126/science.1146954. PubMed DOI

Newton, A.F. Agyrtidae, Leiodidae. in Handbook of Zoology (ed.  Beutel R. G., Leschen R. A. B.) 356–376 (De Gruyter 2016).

Robertson JA, Slipinski A, Moulton M, Shockley FW, Giorgi A, Lord NP, McKenna DD, Tomaszewska W, Forrester J, Miller KB, et al. Phylogeny and classification of Cucujoidea and the recognition of a new superfamily Coccinelloidea (Coleoptera: Cucujiformia) Syst. Entomol. 2015;40:745–778. doi: 10.1111/syen.12138. DOI

McKenna DD, Wild AL, Kanda K, Bellamy CL, Beutel RG, Caterino MS, Farnum CW, Hawks DC. The beetle tree of life reveals that Coleoptera survived end-Permian mass extinction to diversify during the. Syst. Entomol. 2015;40:835–880. doi: 10.1111/syen.12132. DOI

Haddad S, McKenna D. Phylogeny and evolution of the superfamily Chrysomeloidea (Coleoptera: Cucujiformia) Syst. Entomol. 2016;41:697–716. doi: 10.1111/syen.12179. DOI

Sahara K, Marec F, Traut W. TTAGG telomeric repeats in chromosomes of some insects and other arthropods. Chromosom. Res. 1999;7:449–460. doi: 10.1023/A:1009297729547. PubMed DOI

Klobutcher LA, Swanton MT. All gene-sized DNA molecules in four species of hypotrichs have the same terminal sequence and an unusual 3′ terminus. PNAS. 1981;78:3015–3019. doi: 10.1073/pnas.78.5.3015. PubMed DOI PMC

Blackburn EH, Gall JG. A tandemly repeated sequence at the termini of the extrachromosomal ribosomal RNA genes in Tetrahymena. J. Mol. Biol. 1978;120:33–53. doi: 10.1016/0022-2836(78)90294-2. PubMed DOI

Moyzis RK, Buckingham JM, Cram LS, Dani M, Deaven L, Jones MD, Meyne J, Ratliff RL, Wu JR. A highly conserved repetitive DNA sequence, (TTAGGG)n, present at the telomeres of human chromosomes. Proc. Natl. Acad. Sci. USA. 1988;85:6622–6626. doi: 10.1073/pnas.85.18.6622. PubMed DOI PMC

Richards EJ. Isolation of a higher eukaryotic from Arabidopsis thaliana. Cell. 1988;53:127–136. doi: 10.1016/0092-8674(88)90494-1. PubMed DOI

Dekeirsschieter J, Verheggen F, Lognay G, Haubruge E. Large carrion beetles (Coleoptera, Silphidae) in Western Europe: A review. Zookeys. 2011;15:435–447.

Scholl JP, Wiens JJ, Wiens JJ. Diversification rates and species richness across the Tree of Life. Proc. R. Soc. B. 2016;283:20161334. doi: 10.1098/rspb.2016.1334. PubMed DOI PMC

Wiens, J.J. The causes of species richness patterns across space, time, and clades and the role of ‘ecological limits’. Q. Rev. Quarte86(2), 75–96 (2011). PubMed

Rabosky DL, Slater GJ, Alfaro ME. Clade age and species richness are decoupled across the eukaryotic tree of life. PLoS Biol. 2012;10(8):e1001381. doi: 10.1371/journal.pbio.1001381. PubMed DOI PMC

McPeek M, Brown JM. Clade age and not diversification rate explains species richness among animal taxa. Am. Naturlist. 2007;169:E97–106. doi: 10.1086/512135. PubMed DOI

Bousquet Y. Catalogue of Geadephaga (Coleoptera, Adephaga) of America, north of Mexico. Zookeys. 2012;1722:1–1722. doi: 10.3897/zookeys.245.3416. PubMed DOI PMC

López-lópez A, Vogler AP. The mitogenome phylogeny of Adephaga (Coleoptera) Mol. Phylogenet. Evol. 2017;114:166–174. doi: 10.1016/j.ympev.2017.06.009. PubMed DOI

Korte A, Ribera I, Beutel RG, Bernhard D. Interrelationships of Staphyliniform groups inferred from 18S and 28S rDNA sequences, with special emphasis on Hydrophiloidea (Coleoptera, Staphyliniformia) J. Zool. Syst. Evol. Res. 2004;42:281–288. doi: 10.1111/j.1439-0469.2004.00282.x. DOI

Kukalová-Peck J, Lawrence J. Evolution of the hind wing in Coleoptera. Can. Entomol. 1993;125:181–258. doi: 10.4039/Ent125181-2. DOI

Caterino MS, Hunt T, Vogler AP. On the constitution and phylogeny of Staphyliniformia (Insecta: Coleoptera) Mol. Phylogenet. Evol. 2005;34:655–672. doi: 10.1016/j.ympev.2004.11.012. PubMed DOI

Zhang S, Che L, Li Y, Liang D, Pang H, Zhang P. Evolutionary history of Coleoptera revealed by extensive sampling of genes and species. Nat. Commun. 2018;9:9–25. doi: 10.1038/s41467-017-01881-x. PubMed DOI PMC

Smith A, Andrew BT, David C, John M. An overview of the classification and evolution of the major scarab beetle clades (Coleoptera: Scarabaeoidea) based on preliminary molecular analyses. Coleopt. Soc. Monogr. Number. 2006;5:35–46.

McKenna DD, Farrell BD, Caterino MS, Al E. Phylogeny and evolution of Staphyliniformia and Scarabaeiformia: Forest litter as a stepping stone for diversification of nonphytophagous beetles. Systematic. 2015;40:35–60.

Zhang Z. Animal biodiversity: An introduction to higher-level classification and taxonomic richness. Zootaxa. 2011;3148:7–12. doi: 10.11646/zootaxa.3148.1.3. PubMed DOI

Christenhusz MJM, Byng JW. The number of known plants species in the world and its annual increase. Phytotaxa. 2016;261:201–217. doi: 10.11646/phytotaxa.261.3.1. DOI

Peška V, Fajkus P, Fojtová M, Dvořáčková M, Hapala J, Dvořáček V, Polanská P, Leitch AR, Sýkorová E, Fajkus J. Characterisation of an unusual telomere motif (TTTTTTAGGG)n in the plant Cestrum elegans (Solanaceae), a species with a large genome. Plant J. 2015;82:644–654. doi: 10.1111/tpj.12839. PubMed DOI

Fajkus P, Peška V, Sitová Z, Fulnečková J, Dvořáčková M, Gogela R, Sýkorová E, Hapala J, Fajkus J. Allium telomeres unmasked: The unusual telomeric sequence (CTCGGTTATGGG )n is synthesized by telomerase. Plant J. 2016;85:337–347. doi: 10.1111/tpj.13115. PubMed DOI

Tran TD, Cao HX, Jovtchev G, Neumann P, Novak P. Centromere and telomere sequence alterations reflect the rapid genome evolution within the carnivorous plant genus Genlisea. Plant J. 2015;84:1087–1099. doi: 10.1111/tpj.13058. PubMed DOI

Peska V, Mátl M, Mandáková T, Vitales D, Fajkus P, Fajkus J, Garcia S. Human-like telomeres in Zostera marina reveal a mode of transition from the plant to the human telomeric sequences. Botany. 2020;71:5786–5793. PubMed

Weiss H, Scherthan H. Aloe spp. plants with vertebrate-like telomeric sequences. Chromosom. Res. 2002;10:155–164. doi: 10.1023/A:1014905319557. PubMed DOI

Leitch, A.R., & Fajkus, J. Asparagales telomerases which synthesize the human type of telomeres. Plant. Mol. Biol. 60(5), 633–646 (2006). PubMed

Sýkorová E, Leitch AR, Fajkus J. Asparagales telomerases which synthesize the human type of telomeres. Plant Mol. Biol. 2006;60:633–646. doi: 10.1007/s11103-005-5091-9. PubMed DOI

Chen S, Kim D, Chase MW, Kim J. Networks in a large-scale phylogenetic analysis: Reconstructing evolutionary history of Asparagales (Lilianae) based on four plastid genes. PLoS Genet. 2013;8:1–18. PubMed PMC

Chase, M., Stevenson, D., Wilkin, P., & Rudall, P. Monocots systematis: A combined analysis. in Monocotyledons: Systematics and Evolution (ed. by Rudall P. J., Cribb P. J., Cutler D. F. & Humphries C. J.) 685–730 (Royal Botanic Gardens, 1995).

Wellinger RJ. When the caps fall off: Responses to telomere uncapping in yeast. FEBS Lett. 2010;584:3734–3740. doi: 10.1016/j.febslet.2010.06.031. PubMed DOI

Stindl R. Is telomere erosion a mechanism of species extinction? J. Exp. Zool. Part B Mol. Dev. Evol. 2004;302:111–120. doi: 10.1002/jez.b.20006. PubMed DOI

Steinberg-Neifach O, Lue NF. Telomere DNA recognition in Saccharomycotina yeast: Potential lessons for the co-evolution of ssDNA and dsDNA-binding proteins and their target sites. Front. Genet. 2015;6:1–10. doi: 10.3389/fgene.2015.00162. PubMed DOI PMC

Fujiwara, H., Osanai, M., Matsumoto, T., & Kojima, K.K. Telomere-specific non-LTR retrotransposons and telomere maintenance in the silkworm, Bombyx mori. Chromosome Res. 13(5), 455–467 (2005). PubMed

Teng SC, Zakian VA. Telomere-telomere recombination is an efficient bypass pathway for telomere maintenance in Saccharomyces cerevisiae. Mol. Cell. Biol. 1999;19:8083–8093. doi: 10.1128/MCB.19.12.8083. PubMed DOI PMC

Mikhailovsky S, Belenkaya T, Georgiev P. Broken chromosomal ends can be elongated by conversion in Drosophila melanogaster. Chromosoma. 1999;108:114–120. doi: 10.1007/s004120050358. PubMed DOI

Tacconi EMC, Tarsounas M. How homologous recombination maintains telomere integrity. Chromosoma. 2015;124:119–130. doi: 10.1007/s00412-014-0497-2. PubMed DOI

Mourier T, Nielsen LP, Hansen AJ, Willerslev E. Transposable elements in cancer as a by-product of stress-induced evolvability. Front. Genet. 2014;5:1–8. doi: 10.3389/fgene.2014.00156. PubMed DOI PMC

Korandová M, Krůček T, Szakosová K, Kodrík D, Kühnlein RP, Tomášková J, Čapková Frydrychová R. Chronic low-dose pro-oxidant treatment stimulates transcriptional activity of telomeric retroelements and increases telomere length in Drosophila. J. Insect Physiol. 2018;104:1–8. doi: 10.1016/j.jinsphys.2017.11.002. PubMed DOI

Scholes DT, Kenny AE, Gamache ER, Mou Z, Curcio MJ. Activation of a LTR-retrotransposon by telomere erosion. Proc. Natl. Acad. Sci. USA. 2003;100:15736–15741. doi: 10.1073/pnas.2136609100. PubMed DOI PMC

McClintock B. The significance of responses of the genome to challenge. Science. 1984;226:792–801. doi: 10.1126/science.15739260. PubMed DOI

Lonnig W-E, Saedler H. Chromosome rearrangements and transposable elements. Annu. Rev. Genet. 2002;36:389–410. doi: 10.1146/annurev.genet.36.040202.092802. PubMed DOI

Nielsen L, Edstrom JE. Complex telomere-associated repeat units in members of the genus Chironomus evolve from sequences similar to simple telomeric repeats. Mol. Cell. Biol. 1993;13:1583–1589. PubMed PMC

Roth CW, Kobeski F, Walter MF, Biessmann H. Chromosome end elongation by recombination in the mosquito Anopheles gambiae. Mol. Cell. Biol. 1997;17:5176–5183. doi: 10.1128/MCB.17.9.5176. PubMed DOI PMC

Capkova Frydrychova R, Biessmann H, Mason JM. Regulation of telomere length in Drosophila. Cytogenet. Genome Res. 2009;122:356–364. doi: 10.1159/000167823. PubMed DOI PMC

Mason JM, Reddy HM, Capkova Frydrychova R. Telomere maintenance in organisms without telomerase. In: Seligman H, editor. DNA Replication-Current Advances. InTech; 2011. pp. 323–346.

Saint-Leandre B, Nguyen SC, Levine MT. Diversification and collapse of a telomere elongation mechanism. Genome Res. 2019;29:920–931. doi: 10.1101/gr.245001.118. PubMed DOI PMC

Compton A, Liang J, Chen C, Lukyanchikova V, Qi Y, Potters M, Settlage R, Miller D, Mao C, Llaca V, et al. The beginning of the end: A chromosomal assembly of the new world malaria mosquito ends with a novel telomere. G3. 2020;10:3811–3819. doi: 10.1534/g3.120.401654. PubMed DOI PMC

Korandová M, Frydrychová RČ. Activity of telomerase and telomeric length in Apis mellifera. Chromosoma. 2016;125:405–411. doi: 10.1007/s00412-015-0547-4. PubMed DOI

Koubová J, Jehlík T, Kodrik D, Sábová M, Sima P, Sehadova H, Závodská R, Capkova Frydrychova R. Telomerase activity is upregulated in the fat bodies of pre-diapause bumblebee queens (Bombus terrestris) Insect Biochem. Mol. Biol. 2019;115:103241. doi: 10.1016/j.ibmb.2019.103241. PubMed DOI

Peška V, Sitová Z, Fajkus P, Fajkus J. BAL31-NGS approach for identification of telomeres de novo in large genomes. Methods. 2017;114:16–27. doi: 10.1016/j.ymeth.2016.08.017. PubMed DOI

Paradis E. Analysis of Phylogenetics and Evolution with R. Springer; 2006.

Pekár S, Brabec M. Marginal models via GLS: A convenient yet neglected tool for analysis of correlated data in behavioural sciences. Ethology. 2016;122:621–631. doi: 10.1111/eth.12514. DOI

Grafen A. The phylogenetic regression. Phil. Trans. R. Soc. Lond. Ser. B Biol. Sci. 1989;326:119–157. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...