Origin, Diversity, and Evolution of Telomere Sequences in Plants
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
32153618
PubMed Central
PMC7046594
DOI
10.3389/fpls.2020.00117
Knihovny.cz E-zdroje
- Klíčová slova
- Allium, Cestrum, Genlisea, circular chromosomes, green algae, linear chromosomes, telomerase, telomeres,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Telomeres are basic structures of eukaryote genomes. They distinguish natural chromosome ends from double-stranded breaks in DNA and protect chromosome ends from degradation or end-to-end fusion with other chromosomes. Telomere sequences are usually tandemly arranged minisatellites, typically following the formula (TxAyGz)n. Although they are well conserved across large groups of organisms, recent findings in plants imply that their diversity has been underestimated. Changes in telomeres are of enormous evolutionary importance as they can affect whole-genome stability. Even a small change in the telomere motif of each repeat unit represents an important interference in the system of sequence-specific telomere binding proteins. Here, we provide an overview of telomere sequences, considering the latest phylogenomic evolutionary framework of plants in the broad sense (Archaeplastida), in which new telomeric sequences have recently been found in diverse and economically important families such as Solanaceae and Amaryllidaceae. In the family Lentibulariaceae and in many groups of green algae, deviations from the typical plant telomeric sequence have also been detected recently. Ancestry and possible homoplasy in telomeric motifs, as well as extant gaps in knowledge are discussed. With the increasing availability of genomic approaches, it is likely that more telomeric diversity will be uncovered in the future. We also discuss basic methods used for telomere identification and we explain the implications of the recent discovery of plant telomerase RNA on further research about the role of telomerase in eukaryogenesis or on the molecular causes and consequences of telomere variability.
Zobrazit více v PubMed
Adams S. P., Hartman T. P., Lim K. Y., Chase M. W., Bennett M. D., Leitch I. J., et al. (2001). Loss and recovery of Arabidopsis-type telomere repeat sequences 5'-(TTTAGGG)(n)-3' in the evolution of a major radiation of flowering plants. Proc. Biol. Sci. 268 (1476), 1541–1546. 10.1098/rspb.2001.1726 PubMed DOI PMC
Beilstein M. A., Brinegar A. E., Shippen D. E. (2012). Evolution of the Arabidopsis telomerase RNA. Front. Genet. 3, 188. 10.3389/fgene.2012.00188 PubMed DOI PMC
Benson G. (1999). Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 27 (2), 573–580. 10.1093/nar/27.2.573 PubMed DOI PMC
Biessmann H., Mason J. M. (2003). Telomerase-independent mechanisms of telomere elongation. Cell Mol. Life Sci. 60 (11), 2325–2333. 10.1007/s00018-003-3247-9 PubMed DOI PMC
Blackburn E. H., Gall J. G. (1978). A tandemly repeated sequence at the termini of the extrachromosomal ribosomal RNA genes in Tetrahymena. J. Mol. Biol. 120 (1), 33–53. 10.1016/0022-2836(78)90294-2 PubMed DOI
Blasco M. A., Funk W., Villeponteau B., Greider C. W. (1995). Functional characterization and developmental regulation of mouse telomerase RNA. Science 269 (5228), 1267–1270. 10.1126/science.7544492 PubMed DOI
Bremer B., Bremer K., Chase M. W., Fay M. F., Reveal J. L., Soltis D. E., et al. (2009). An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot. J. Linn. Soc. 161 (2), 105–121. 10.1111/j.1095-8339.2009.00996.x DOI
Byng J. W., Chase M. W., Christenhusz M. J. M., Fay M. F., Judd W. S., Mabberley D. J., et al. (2016). An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot. J. Linn. Soc. 181 (1), 1–20. 10.1111/boj.12385 DOI
Cervenak F., Jurikova K., Devillers H., Kaffe B., Khatib A., Bonnell E., et al. (2019). Identification of telomerase RNAs in species of the Yarrowia clade provides insights into the co-evolution of telomerase, telomeric repeats and telomere-binding proteins. Sci. Rep. 9 (1), 13365. 10.1038/s41598-019-49628-6 PubMed DOI PMC
Cifuentes-Rojas C., Kannan K., Tseng L., Shippen D. E. (2011). Two RNA subunits and POT1a are components Arabidopsis telomerase. Proc. Natl. Acad. Sci. U. S. A. 108 (1), 73–78. 10.1073/pnas.1013021107 PubMed DOI PMC
Cox A. V., Bennett S. T., Parokonny A. S., Kenton A., Callimassia M. A., Bennett M. D. (1993). Comparison of plant telomere locations using a Pcr-generated synthetic probe. Ann. Bot. 72 (3), 239–247. 10.1006/anbo.1993.1104 DOI
Danilevskaya O. N., Lowenhaupt K., Pardue M. L. (1998). Conserved subfamilies of the Drosophila HeT-A telomere-specific retrotransposon. Genetics 148 (1), 233–242. https://www.genetics.org/content/148/1/233.short PubMed PMC
Derelle E., Ferraz C., Rombauts S., Rouze P., Worden A. Z., Robbens S., et al. (2006). Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features. Proc. Natl. Acad. Sci. U. States America 103 (31), 11647–11652. 10.1073/pnas.0604795103 PubMed DOI PMC
Dew-Budd K., Cheung J., Palos K., Forsythe E. S., Beilstein M. A. (2019). Evolutionary and biochemical analyses reveal conservation of the Brassicaceae telomerase ribonucleoprotein complex. BioRxiv 760785. 10.1101/760785 PubMed DOI PMC
Emery H. S., Weiner A. M. (1981). An irregular satellite sequence is found at the termini of the linear extrachromosomal rDNA in Dictyostelium discoideum. Cell 26 (3 Pt 1), 411–419. 10.1016/0092-8674(81)90210-5 PubMed DOI
Fajkus J., Sýkorová E., Leitch A. R. (2005). Telomeres in evolution and evolution of telomeres. Chromosome Res. 13 (5), 469–479. 10.1007/s10577-005-0997-2 PubMed DOI
Fajkus P., Peska V., Sitova Z., Fulneckova J., Dvorackova M., Gogela R., et al. (2016). Allium telomeres unmasked: the unusual telomeric sequence (CTCGGTTATGGG)n is synthesized by telomerase. Plant J. 85 (3), 337–347. 10.1111/tpj.13115 PubMed DOI
Fajkus P., Peska V., Zavodnik M., Fojtova M., Fulneckova J., Dobias S., et al. (2019). Telomerase RNAs in land plants. Nucleic Acids Res. 47 (18), 9842–9856. 10.1093/nar/gkz695 PubMed DOI PMC
Feng J., Funk W. D., Wang S. S., Weinrich S. L., Avilion A. A., Chiu C. P., et al. (1995). The RNA component of human telomerase. Science 269 (5228), 1236–1241. 10.1126/science.7544491 PubMed DOI
Ferdows M. S., Barbour A. G. (1989). Megabase-sized linear DNA in the bacterium Borrelia burgdorferi, the Lyme disease agent. Proc. Natl. Acad. Sci. U. S. A. 86 (15), 5969–5973. 10.1073/pnas.86.15.5969 PubMed DOI PMC
Fojtova M., Sykorova E., Najdekrova L., Polanska P., Zachova D., Vagnerova R., et al. (2015). Telomere dynamics in the lower plant Physcomitrella patens. Plant Mol. Biol. 87 (6), 591–601. 10.1007/s11103-015-0299-9 PubMed DOI
Forstemann K., Zaug A. J., Cech T. R., Lingner J. (2003). Yeast telomerase is specialized for C/A-rich RNA templates. Nucleic Acids Res. 31 (6), 1646–1655. 10.1093/nar/gkg261 PubMed DOI PMC
Frydrychova R., Grossmann P., Trubac P., Vitkova M., Marec F. (2004). Phylogenetic distribution of TTAGG telomeric repeats in insects. Genome 47 (1), 163–178. 10.1139/g03-100 PubMed DOI
Fuchs J., Brandes A., Schubert I. (1995). Telomere sequence localization and karyotype evolution in higher-plants. Plant Syst. Evol. 196 (3-4), 227–241. 10.1007/Bf00982962 DOI
Fulneckova J., Hasikova T., Fajkus J., Lukesova A., Elias M., Sykorova E. (2012). Dynamic evolution of telomeric sequences in the green algal order Chlamydomonadales. Genome Biol. Evol. 4 (3), 248–264. 10.1093/gbe/evs007 PubMed DOI PMC
Fulneckova J., Sevcikova T., Fajkus J., Lukesova A., Lukes M., Vlcek C., et al. (2013). A broad phylogenetic survey unveils the diversity and evolution of telomeres in eukaryotes. Genome Biol. Evol. 5 (3), 468–483. 10.1093/gbe/evt019 PubMed DOI PMC
Fulneckova J., Sevcikova T., Lukesova A., Sykorova E. (2016). Transitions between the Arabidopsis-type and the human-type telomere sequence in green algae (clade Caudivolvoxa, Chlamydomonadales). Chromosoma 125 (3), 437–451. 10.1007/s00412-015-0557-2 PubMed DOI
Garcia S., Garnatje T., Kovarik A. (2012). Plant rDNA database: ribosomal DNA loci information goes online. Chromosoma 121 (4), 389–394. 10.1007/s00412-012-0368-7 PubMed DOI
Gladyshev E. A., Arkhipova I. R. (2007). Telomere-associated endonuclease-deficient Penelope-like retroelements in diverse eukaryotes. Proc. Natl. Acad. Sci. U. S. A. 104 (22), 9352–9357. 10.1073/pnas.0702741104 PubMed DOI PMC
Greider C. W., Blackburn E. H. (1985). Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell 43 (2 Pt 1), 405–413. 10.1016/0092-8674(85)90170-9 PubMed DOI
Greider C. W., Blackburn E. H. (1989). A telomeric sequence in the RNA of Tetrahymena telomerase required for telomere repeat synthesis. Nature 337 (6205), 331–337. 10.1038/337331a0 PubMed DOI
Higashiyama T., Noutoshi Y., Akiba M., Yamada T. (1995). Telomere and LINE-like elements at the termini of the Chlorella chromosome I. Nucleic Acids Symp. Ser. (34), 71–72. https://europepmc.org/article/med/8841557 PubMed
Hofr C., Sultesova P., Zimmermann M., Mozgova I., Prochazkova Schrumpfova P., Wimmerova M., et al. (2009). Single-Myb-histone proteins from Arabidopsis thaliana: a quantitative study of telomere-binding specificity and kinetics. Biochem. J. 419 (1), 221–228. 10.1042/BJ20082195 PubMed DOI
Hu Y., Shi G., Zhang L. C., Li F., Jiang Y. L., Jiang S., et al. (2016). Switch telomerase to ALT mechanism by inducing telomeric DNA damages and dysfunction of ATRX and DAXX. Sci. Rep. 6. 10.1038/Srep32280 PubMed DOI PMC
Kim N. W., Piatyszek M. A., Prowse K. R., Harley C. B., West M. D., Ho P. L., et al. (1994). Specific association of human telomerase activity with immortal cells and cancer. Science 266 (5193), 2011–2015. 10.1126/science.7605428 PubMed DOI
Koo D. H., Molin W. T., Saski C. A., Jiang J., Putta K., Jugulam M., et al. (2018). Extrachromosomal circular DNA-based amplification and transmission of herbicide resistance in crop weed Amaranthus palmeri. Proc. Natl. Acad. Sci. U. S. A. 115 (13), 3332–3337. 10.1073/pnas.1719354115 PubMed DOI PMC
Koonin E. V. (2006). The origin of introns and their role in eukaryogenesis: a compromise solution to the introns-early versus introns-late debate? Biol. Direct. 1, 22. 10.1186/1745-6150-1-22 PubMed DOI PMC
Majerska J., Schrumpfova P. P., Dokladal L., Schorova S., Stejskal K., Oboril M., et al. (2017). Tandem affinity purification of AtTERT reveals putative interaction partners of plant telomerase in vivo . Protoplasma 254 (4), 1547–1562. 10.1007/s00709-016-1042-3 PubMed DOI
Mason J. M., Randall T. A., Capkova Frydrychova R. (2016). Telomerase lost? Chromosoma 125 (1), 65–73. 10.1007/s00412-015-0528-7 PubMed DOI PMC
Meyne J., Ratliff R. L., Moyzis R. K. (1989). Conservation of the human telomere sequence (TTAGGG)n among vertebrates. Proc. Natl. Acad. Sci. U. S. A. 86 (18), 7049–7053. 10.1073/pnas.86.18.7049 PubMed DOI PMC
Mravinac B., Mestrovic N., Cavrak V. V., Plohl M. (2011). TCAGG, an alternative telomeric sequence in insects. Chromosoma 120 (4), 367–376. 10.1007/s00412-011-0317-x PubMed DOI
Muller F., Wicky C., Spicher A., Tobler H. (1991). New telomere formation after developmentally regulated chromosomal breakage during the process of chromatin diminution in Ascaris lumbricoides. Cell 67 (4), 815–822. 10.1016/0092-8674(91)90076-b PubMed DOI
Nosek J., Dinouel N., Kovac L., Fukuhara H. (1995). Linear mitochondrial DNAs from yeasts: telomeres with large tandem repetitions. Mol. Gen. Genet. 247 (1), 61–72. 10.1007/bf00425822 PubMed DOI
Nosek J., Kosa P., Tomaska L. (2006). On the origin of telomeres: a glimpse at the pre-telomerase world. Bioessays 28 (2), 182–190. 10.1002/bies.20355 PubMed DOI
Novak P., Neumann P., Macas J. (2010). Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data. BMC Bioinf. 11, 378. 10.1186/1471-2105-11-378 PubMed DOI PMC
Nozaki H., Takano H., Misumi O., Terasawa K., Matsuzaki M., Maruyama S., et al. (2007). A 100%-complete sequence reveals unusually simple genomic features in the hot-spring red alga Cyanidioschyzon merolae. BMC Biol. 5, 28. 10.1186/1741-7007-5-28 PubMed DOI PMC
Olovnikov A. M. (1973). Theory of marginotomy - incomplete copying of template margin in enzymic-synthesis of polynucleotides and biological significance of phenomenon. J. Theor. Biol. 41 (1), 181–190. 10.1016/0022-5193(73)90198-7 PubMed DOI
One Thousand Plant Transcriptomes Initiative (2019). One thousand plant transcriptomes and the phylogenomics of green plants. Nature 574 (7780), 679–685. 10.1038/s41586-019-1693-2 PubMed DOI PMC
Pardue M. L., Danilevskaya O. N., Traverse K. L., Lowenhaupt K. (1997). Evolutionary links between telomeres and transposable elements. Genetica 100 (1–3), 73–84. 10.1007/978-94-011-4898-6_7 PubMed DOI
Peska V., Sykorova E., Fajkus J. (2008). Two faces of solanaceae telomeres: a comparison between Nicotiana and Cestrum telomeres and telomere-binding proteins. Cytogenetic. Genome Res. 122 (3-4), 380–387. 10.1159/000167826 PubMed DOI
Peska V., Fajkus P., Fojtova M., Dvorackova M., Hapala J., Dvoracek V., et al. (2015). Characterisation of an unusual telomere motif (TTTTTTAGGG)(n) in the plant Cestrum elegans (Solanaceae), a species with a large genome. Plant J. 82 (4), 644–654. 10.1111/tpj.12839 PubMed DOI
Peska V., Sitova Z., Fajkus P., Fajkus J. (2017). BAL31-NGS approach for identification of telomeres de novo in large genomes. Methods 114, 16–27. 10.1016/j.ymeth.2016.08.017 PubMed DOI
Peska V., Mandakova T., Ihradska V., Fajkus J. (2019). Comparative dissection of three giant genomes: allium cepa, allium sativum, and allium ursinum. Int. J. Mol. Sci. 20 (3). 10.3390/ijms20030733 PubMed DOI PMC
Petracek M. E., Lefebvre P. A., Silflow C. D., Berman J. (1990). Chlamydomonas telomere sequences are A+T-rich but contain three consecutive G-C base pairs. Proc. Natl. Acad. Sci. U. S. A. 87 (21), 8222–8226. 10.1073/pnas.87.21.8222 PubMed DOI PMC
Pfeiffer V., Lingner J. (2012). TERRA promotes telomere shortening through exonuclease 1-mediated resection of chromosome ends. PLoS Genet. 8 (6). 10.1371/journal.pgen.1002747 PubMed DOI PMC
Pich U., Schubert I. (1998). Terminal heterochromatin and alternative telomeric sequences in Allium cepa. Chromosome Res. 6 (4), 315–321. 10.1023/a:1009227009121 PubMed DOI
Podlevsky J. D., Chen J. J. (2016). Evolutionary perspectives of telomerase RNA structure and function. RNA Biol. 13 (8), 720–732. 10.1080/15476286.2016.1205768 PubMed DOI PMC
Polotnianka R. M., Li J., Lustig A. J. (1998). The yeast Ku heterodimer is essential for protection of the telomere against nucleolytic and recombinational activities. Curr. Biol. 8 (14), 831–834. 10.1016/S0960-9822(98)70325-2 PubMed DOI
Puizina J., Weiss-Schneeweiss H., Pedrosa-Harand A., Kamenjarin J., Trinajstic I., Riha K., Schweizer D. (2003). Karyotype analysis in Hyacinthella dalmatica (Hyacinthaceae) reveals vertebrate-type telomere repeats at the chromosome ends. Genome 46 (6), 1070–6. 10.1139/g03-078 PubMed DOI
Qi X. D., Li Y., Honda S., Hoffmann S., Marz M., Mosig A., et al. (2013). The common ancestral core of vertebrate and fungal telomerase RNAs. Nucleic Acids Res. 41 (1), 450–462. 10.1093/nar/gks980 PubMed DOI PMC
Richards E. J., Ausubel F. M. (1988). Isolation of a higher eukaryotic telomere from Arabidopsis thaliana. Cell 53 (1), 127–136. 10.1016/0092-8674(88)90494-1 PubMed DOI
Rubin G. M. (1978). Isolation of a telomeric DNA sequence from Drosophila melanogaster. Cold Spring Harb. Symp. Quant. Biol. 42 Pt 2, 1041–1046. 10.1101/sqb.1978.042.01.104 PubMed DOI
Ruckova E., Friml J., Schrumpfova P. P., Fajkus J. (2008). Role of alternative telomere lengthening unmasked in telomerase knock-out mutant plants. Plant Mol. Biol. 66 (6), 637–646. 10.1007/s11103-008-9295-7 PubMed DOI
Sekhri K. (2014). Telomeres and telomerase: understanding basic structure and potential new therapeutic strategies targeting it in the treatment of cancer. Postgrad. Med. J. 60 (3), 303. 10.4103/0022-3859.138797 PubMed DOI
Seyfried T. N., Huysentruyt L. C. (2013). On the origin of cancer metastasis. Crit. Rev. Oncog. 18 (1-2), 43–73. 10.1615/critrevoncog.v18.i1-2.40 PubMed DOI PMC
Shibata F., Hizume M. (2011). Survey of arabidopsis- and human-type telomere repeats in plants using fluorescence in situ Hybridisation. Cytologia 76 (3), 353–360. 10.1508/cytologia.76.353 DOI
Somanathan I., Baysdorfer C. (2018). A bioinformatics approach to identify telomere sequences. Biotechniques 65 (1), 20–25. 10.2144/btn-2018-0057 PubMed DOI
Spiegel J., Adhikari S., Balasubramanian S. (2020). The structure and function of DNA G-quadruplexes. Trends Chem. 2 (2), 123–136. 10.1016/j.trechm.2019.07.002 PubMed DOI PMC
Sykorova E., Lim K. Y., Fajkus J., Leitch A. R. (2003. a). The signature of the Cestrum genome suggests an evolutionary response to the loss of (TTTAGGG)n telomeres. Chromosoma 112 (4), 164–172. 10.1007/s00412-003-0256-2 PubMed DOI
Sykorova E., Lim K. Y., Chase M. W., Knapp S., Leitch I. J., Leitch A. R., et al. (2003. b). The absence of Arabidopsis-type telomeres in Cestrum and closely related genera Vestia and Sessea (Solanaceae): first evidence from eudicots. Plant J. 34 (3), 283–291. 10.1046/j.1365-313x.2003.01731.x PubMed DOI
Sykorova E., Lim K. Y., Kunicka Z., Chase M. W., Bennett M. D., Fajkus J., et al. (2003. c). Telomere variability in the monocotyledonous plant order Asparagales. Proc. Biol. Sci. 270 (1527), 1893–1904. 10.1098/rspb.2003.2446 PubMed DOI PMC
Tran P. L., De Cian A., Gros J., Moriyama R., Mergny J. L. (2013). Tetramolecular quadruplex stability and assembly. Top. Curr. Chem. 330, 243–273. 10.1007/128_2012_334 PubMed DOI
Tran T. D., Cao H. X., Jovtchev G., Neumann P., Novak P., Fojtova M., et al. (2015). Centromere and telomere sequence alterations reflect the rapid genome evolution within the carnivorous plant genus Genlisea. Plant J. 84 (6), 1087–1099. 10.1111/tpj.13058 PubMed DOI
Traut W., Szczepanowski M., Vitkova M., Opitz C., Marec F., Zrzavy J. (2007). The telomere repeat motif of basal Metazoa. Chromosome Res. 15 (3), 371–382. 10.1007/s10577-007-1132-3 PubMed DOI
Uzlikova M., Fulneckova J., Weisz F., Sykorova E., Nohynkova E., Tumova P. (2017). Characterization of telomeres and telomerase from the single-celled eukaryote Giardia intestinalis. Mol. Biochem. Parasitol. 211, 31–38. 10.1016/j.molbiopara.2016.09.003 PubMed DOI
vanSteensel B., deLange T. (1997). Control of telomere length by the human telomeric protein TRF1. Nature 385 (6618), 740–743. 10.1038/385740a0 PubMed DOI
Vilenchik M. M., Knudson A. G. (2003). Endogenous DNA double-strand breaks: production, fidelity of repair, and induction of cancer. Proc. Natl. Acad. Sci. U. S. A. 100 (22), 12871–12876. 10.1073/pnas.2135498100 PubMed DOI PMC
Villasante A., Abad J. P., Mendez-Lago M. (2007). Centromeres were derived from telomeres during the evolution of the eukaryotic chromosome. Proc. Natl. Acad. Sci. U. S. A. 104 (25), 10542–10547. 10.1073/pnas.0703808104 PubMed DOI PMC
Visacka K., Hofr C., Willcox S., Necasova I., Pavlouskova J., Sepsiova R., et al. (2012). Synergism of the two Myb domains of Tay1 protein results in high affinity binding to telomeres. J. Biol. Chem. 287 (38), 32206–32215. 10.1074/jbc.M112.385591 PubMed DOI PMC
Vitales D., D'Ambrosio U., Galvez F., Kovarik A., Garcia S. (2017). Third release of the plant rDNA database with updated content and information on telomere composition and sequenced plant genomes. Plant Syst. Evol. 303 (8), 1115–1121. 10.1007/s00606-017-1440-9 DOI
Vitkova M., Kral J., Traut W., Zrzavy J., Marec F. (2005). The evolutionary origin of insect telomeric repeats, (TTAGG)n. Chromosome Res. 13 (2), 145–156. 10.1007/s10577-005-7721-0 PubMed DOI
Volff J. N., Altenbuchner J. (2000). A new beginning with new ends: linearisation of circular chromosomes during bacterial evolution. FEMS Microbiol. Lett. 186 (2), 143–150. 10.1111/j.1574-6968.2000.tb09095.x PubMed DOI
Wang Y., Susac L., Feigon J. (2019). Structural biology of telomerase. Cold Spring Harb. Perspect. Biol. 11, a032383. 10.1101/cshperspect.a032383 PubMed DOI PMC
Watson J. M., Shippen D. E. (2007). Telomere rapid deletion regulates telomere length in Arabidopsis thaliana. Mol. Cell. Biol. 27 (5), 1706–1715. 10.1128/Mcb.02059-06 PubMed DOI PMC
Watson J. D. (1972). Origin of Concatemeric T7 DNA. Nature-New Biol. 239 (94), 197–201. 10.1038/newbio239197a0 PubMed DOI
Weiss H., Scherthan H. (2002). Aloe spp.–plants with vertebrate-like telomeric sequences. Chromosome Res. 10 (2), 155–164. 10.1023/a:1014905319557 PubMed DOI
Wellinger R. J., Ethier K., Labrecque P., Zakian V. A. (1996). Evidence for a new step in telomere maintenance. Cell 85 (3), 423–433. 10.1016/S0092-8674(00)81120-4 PubMed DOI
Wu J., Okada T., Fukushima T., Tsudzuki T., Sugiura M., Yukawa Y. (2012). A novel hypoxic stress-responsive long non-coding RNA transcribed by RNA polymerase III in Arabidopsis. RNA Biol. 9 (3), 302–313. 10.4161/rna.19101 PubMed DOI
Zhang J. M., Yadav T., Ouyang J., Lan L., Zou L. (2019). Alternative lengthening of telomeres through two distinct break-induced replication pathways. Cell Rep. 26 (4), 955–95+. 10.1016/j.celrep.2018.12.102 PubMed DOI PMC
TeloBase: a community-curated database of telomere sequences across the tree of life
Identification of the Sequence and the Length of Telomere DNA
Telomerase RNA in Hymenoptera (Insecta) switched to plant/ciliate-like biogenesis
Editorial: Telomere Flexibility and Versatility: A Role of Telomeres in Adaptive Potential
Evolution of plant telomerase RNAs: farther to the past, deeper to the roots
Telomeric DNA sequences in beetle taxa vary with species richness
Origin and Fates of TERT Gene Copies in Polyploid Plants
Composition and Function of Telomerase-A Polymerase Associated with the Origin of Eukaryotes