Mega-sized pericentromeric blocks of simple telomeric repeats and their variants reveal patterns of chromosome evolution in ancient Cycadales genomes

. 2022 Nov ; 112 (3) : 646-663. [epub] 20221011

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36065632

Simple telomeric repeats composed of six to seven iterating nucleotide units are important sequences typically found at the ends of chromosomes. Here we analyzed their abundance and homogeneity in 42 gymnosperm (29 newly sequenced), 29 angiosperm (one newly sequenced), and eight bryophytes using bioinformatics, conventional cytogenetic and molecular biology approaches to explore their diversity across land plants. We found more than 10 000-fold variation in the amounts of telomeric repeats among the investigated taxa. Repeat abundance was positively correlated with increasing intragenomic sequence heterogeneity and occurrence at non-telomeric positions, but there was no correlation with genome size. The highest abundance/heterogeneity was found in the gymnosperm genus Cycas (Cycadaceae), in which megabase-sized blocks of telomeric repeats (i.e., billions of copies) were identified. Fluorescent in situ hybridization experiments using variant-specific probes revealed canonical Arabidopsis-type telomeric TTTAGGG repeats at chromosome ends, while pericentromeric blocks comprised at least four major telomeric variants with decreasing abundance: TTTAGGG>TTCAGGG >TTTAAGG>TTCAAGG. Such a diversity of repeats was not found in the sister cycad family Zamiaceae or in any other species analyzed. Using immunocytochemistry, we showed that the pericentromeric blocks of telomeric repeats overlapped with histone H3 serine 10 phosphorylation signals. We show that species of Cycas have amplified their telomeric repeats in centromeric and telomeric positions on telocentric chromosomes to extraordinary high levels. The ancestral chromosome number reconstruction suggests their occurrence is unlikely to be the product of ancient Robertsonian chromosome fusions. We speculate as to how the observed chromosome dynamics may be associated with the diversification of cycads.

Zobrazit více v PubMed

Adams, S.P. , Leitch, I.J. , Bennett, M.D. & Leitch, A.R. (2000) Aloe L. ‐ a second plant family without (TTTAGGG)(n) telomeres. Chromosoma, 109, 201–205. PubMed

Aronen, T. & Ryynanen, L. (2012) Variation in telomeric repeats of scots pine (Pinus sylvestris L.). Tree Genetics & Genomes, 8, 267–275.

Bennett, M.D. & Leitch, I.J. (2011) Nuclear DNA amounts in angiosperms: targets, trends and tomorrow. Annals of Botany, 107, 467–590. PubMed PMC

Bennetzen, J.L. & Kellogg, E.A. (1997) Do plants have a one‐way ticket to genomic obesity? Plant Cell, 9, 1509–1514. PubMed PMC

Calonje, M. , Stevenson, D.W. & Osborne, R. (2022) The world list of cycads. (https://www.cycadlist.org/)

Caputo, P. , Cozzolino, S. , Gaudio, L. , Moretti, A. & Stevenson, D.W. (1996) Karyology and phylogeny of some Mesoamerican species of zamia (Zamiaceae). American Journal of Botany, 83, 1513–1520.

Chaw, S.M. , Shih, A.C.C. , Wang, D. , Wu, Y.W. , Liu, S.M. & Chou, T.Y. (2008) The mitochondrial genome of the gymnosperm Cycas taitungensis contains a novel family of short interspersed elements, Bpu sequences, and abundant RNA editing sites. Molecular Biology and Evolution, 25, 603–615. PubMed

Chaw, S.M. , Walters, T.W. , Chang, C.C. , Hu, S.H. & Chen, S.H. (2005) A phylogeny of cycads (Cycadales) inferred from chloroplast matK gene, trnK intron, and nuclear rDNA ITS region. Molecular Phylogenetics and Evolution, 37, 214–234. PubMed

Condamine, F.L. , Nagalingum, N.S. , Marshall, C.R. & Morlon, H. (2015) Origin and diversification of living cycads: a cautionary tale on the impact of the branching process prior in Bayesian molecular dating. BMC Evolutionary Biology, 15, 65. PubMed PMC

de Miguel, M. , Bartholome, J. , Ehrenmann, F. , Murat, F. , Moriguchi, Y. , Uchiyama, K. et al. (2015) Evidence of intense chromosomal shuffling during conifer evolution. Genome Biology and Evolution, 7, 2799–2809. PubMed PMC

Du, Y.‐P. , Bi, Y. , Zhang, M.‐F. , Yang, F.‐P. , Jia, G.‐X. & Zhang, X.‐H. (2017) Genome size diversity in Lilium (Liliaceae) is correlated with karyotype and environmental traits. Frontiers in Plant Science, 8, 1303. PubMed PMC

Ehrendorfer, F. (1976) Evolutionary significance of chromosome differentiation patterns in gymnosperms and primitive angiosperms. In: Beck, B.C.e.a. (Ed.) Origin and early evolution of angiosperms. New York, USA: Columbia University Press, pp. 220–240.

Emadzade, K. , Jang, T.S. , Macas, J. , Kovarik, A. , Novak, P. , Parker, J. et al. (2014) Differential amplification of satellite PaB6 in chromosomally hypervariable Prospero autumnale complex (Hyacinthaceae). Annals of Botany, 114, 1597–1608. PubMed PMC

Fajkus, J. , Kovarik, A. , Kralovics, R. & Bezdek, M. (1995) Organization of telomeric and subtelomeric chromatin in the higher plant Nicotiana tabacum . Molecular and General Genetics, 247, 633–638. PubMed

Fajkus, P. , Peska, V. , Sitova, Z. , Fulneckova, J. , Dvorackova, M. , Gogela, R. et al. (2016) Allium telomeres unmasked: the unusual telomeric sequence (CTCGGTTATGGG)(n) is synthesized by telomerase. Plant Journal, 85, 337–347. PubMed

Fojtova, M. & Fajkus, J. (2020) Chromatin, epigenetics and plant physiology. International Journal of Molecular Sciences, 21(8), 2763. PubMed PMC

Fojtova, M. , Fajkus, P. , Polanska, P. & Fajkus, J. (2015) Terminal restriction fragments (TRF) method to analyze telomere lengths. Bio‐Protocol, 5, e1671.

Fonseca, A. & Pedrosa‐Harand, A. (2013) Karyotype stability in the genus Phaseolus evidenced by the comparative mapping of the wild species Phaseolus microcarpus . Genome, 56, 335–343. PubMed

Fuchs, J. , Brandes, A. & Schubert, I. (1995) Telomere sequence localization and karyotype evolution in higher plants. Plant Systematics and Evolution, 196, 227–241.

Gao, D. , Nascimento, E. , Leal‐Bertioli, S.C.M. , Abernathy, B. , Jackson, S.A. , Araujo, A.C.G. et al. (2022) TAR30, a homolog of the canonical plant TTTAGGG telomeric repeat, is enriched in the proximal chromosome regions of peanut (Arachis hypogaea L.). Chromosome Research, 30, 77–90. PubMed

Glick, L. & Mayrose, I. (2014) ChromEvol: assessing the pattern of chromosome number evolution and the inference of polyploidy along a phylogeny. Molecular Biology and Evolution, 31, 1914–1922. PubMed

Gorelick, R. (2009) Evolution of cacti is largely driven by genetic drift, not selection. Bradleya, 27, 37–48.

Gorelick, R. , Fraser, D. , Zonneveld, B.J.M. & Little, D.P. (2014) Cycads (Cycadales) chromosome numbers are not correlated with genome size. International Journal of Plant Science, 175, 986–997.

Gorelick, R. & Olson, K. (2011) Is lack of cycad (Cycadales) diversity a result of a lack of polyploidy? Botanical Journal of the Linnean Society, 165, 156–167.

Grabowska‐Joachimiak, A. , Kula, A. , Gernand‐Kliefoth, D. & Joachimiak, A.J. (2015) Karyotype structure and chromosome fragility in the grass Phleum echinatum host. Protoplasma, 252, 301–306. PubMed PMC

Guerra, M. (2008) Chromosome numbers in plant cytotaxonomy: concepts and implications. Cytogenetic and Genome Research, 120, 339–350. PubMed

He, L. , Liu, J. , Torres, G.A. , Zhang, H. , Jiang, J. & Xie, C. (2013) Interstitial telomeric repeats are enriched in the centromeres of chromosomes in Solanum species. Chromosome Research, 21, 5–13. PubMed

Heslop‐Harrison, J.S. & Schwarzacher, T. (2011) Organisation of the plant genome in chromosomes. Plant Journal, 66, 18–33. PubMed

Hizume, M. , Ishida, F. & Kondo, K. (1992) Differential staining and in situ hybridization of nucleolar organizers and centromeres in Cycas revoluta chromosomes. Japanese Journal of Genetics, 67, 381–387.

Hizume, M. , Kurose, N. , Shibata, F. & Kondo, K. (1998) Molecular cytogenetic studies on sex chromosome and proximal heterochromatin containing telomere‐like sequence in Cycas revoluta . Chromosome Science, 2, 63–72.

Houben, A. , Demidov, D. , Caperta, A.D. , Karimi, R. , Agueci, F. & Vlasenko, L. (2007) Phosphorylation of histone H3 in plants ‐ a dynamic affair. Biochimica Et Biophysica Acta‐Gene Structure and Expression, 1769, 308–315. PubMed

Kirov, I. , Divashuk, M. , Van Laere, K. , Soloviev, A. & Khrustaleva, L. (2014) An easy "SteamDrop" method for high quality plant chromosome preparation. Molecular Cytogenetics, 7, 21. PubMed PMC

Kokubugata, G. & Forster, P.I. (2006) Molecular‐cytotaxonomy of Cycas (Cycadales) using 5S ribosomal DNA markers. National Science Museum Monographs, 34, 163–170.

Kokubugata, G. & Kondo, K. (1996) Differential fluorescent‐banding patterns in chromosomes of four species of Cycas (Cycadaceae). Botanical Journal of the Linnean Society, 120, 51–55.

Kokubugata, G. , Kondo, K. , Wilson, G.W. , Randall, L.M. , van der Schans, A. & Morris, D.K. (2000) Comparison of karyotype and rDNA‐distribution in somatic chromosomes of Bowenia species (Stangeriaceae, Cycadales). Australian Systematic Botany, 13, 15–20.

Kovarik, A. , Pires, J.C. , Leitch, A.R. , Lim, K.Y. , Sherwood, A.M. , Matyasek, R. et al. (2005) Rapid concerted evolution of nuclear ribosomal DNA in two Tragopogon allopolyploids of recent and recurrent origin. Genetics, 169, 931–944. PubMed PMC

Leitch, A.R. & Leitch, I.J. (2012) Ecological and genetic factors linked to contrasting genome dynamics in seed plants. New Phytologist, 194, 629–646. PubMed

Levin, D.A. & Wilson, A.C. (1976) Rates of evolution in seed plants ‐ net increase in diversity of chromosome numbers and species numbers through time. Proceedings of the National Academy of Sciences of the United States of America, 73, 2086–2090. PubMed PMC

Li, Z. , Baniaga, A.E. , Sessa, E.B. , Scascitelli, M. , Graham, S.W. , Rieseberg, L.H. et al. (2015) Early genome duplications in conifers and other seed plants. Science Advances, 1(10), e1501084. PubMed PMC

Liu, Y. , Wang, S. , Li, L. , Yang, T. , Dong, S. , Wei, T. et al. (2022) The Cycas genome and the early evolution of seed plants. Nature Plants, 8, 389–401. PubMed PMC

Lysak, M.A. , Mandakova, T. & Schranz, M.E. (2016) Comparative paleogenomics of crucifers: ancestral genomic blocks revisited. Current Opinion in Plant Biology, 30, 108–115. PubMed

Majerova, E. , Mandakova, T. , Vu, G.T.H. , Fajkus, J. , Lysak, M.A. & Fojtova, M. (2014) Chromatin features of plant telomeric sequences at terminal vs. internal positions. Frontiers in Plant Science, 5, 593. PubMed PMC

Mandakova, T. , Schranz, M.E. , Sharbel, T.F. , de Jong, H. & Lysak, M.A. (2015) Karyotype evolution in apomictic Boechera and the origin of the aberrant chromosomes. Plant Journal, 82, 785–793. PubMed

Marais, G. (2003) Biased gene conversion: implications for genome and sex evolution. Trends in Genetics, 19, 330–338. PubMed

Maravilla, A.J. , Rosato, M. & Rossello, J.A. (2021) Interstitial telomeric‐like repeats (ITR) in seed plants as assessed by molecular cytogenetic techniques: a review. Plants‐Basel, 10(11), 2541. PubMed PMC

Marchant, C.J. (1968) Chromosome patterns and nuclear phenomena in cycad families Stangeriaceae and Zamiaceae. Chromosoma, 24, 100–134.

Meyer, P. (2011) DNA methylation systems and targets in plants. FEBS Letters, 585, 2008–2015. PubMed

Mlinarec, J. , Chester, M. , Siljak‐Yakovlev, S. , Papes, D. , Leitch, A.R. & Besendorfer, V. (2009) Molecular structure and chromosome distribution of three repetitive DNA families in Anemone hortensis L. (Ranunculaceae). Chromosome Research, 17, 331–346. PubMed

Mlinarec, J. , Skuhala, A. , Jurkovic, A. , Malenica, N. , McCann, J. , Weiss‐Schneeweiss, H. et al. (2019) The repetitive DNA composition in the natural pesticide producer Tanacetum cinerariifolium: Interindividual variation of subtelomeric tandem repeats. Frontiers in Plant Science, 10, 613. PubMed PMC

Moretti, A. (1990) Karyotypic data on north and central‐American Zamiaceae (Cycadales) and their phylogenetic implications. American Journal of Botany, 77, 1016–1029.

Nagalingum, N.S. , Marshall, C.R. , Quental, T.B. , Rai, H.S. , Little, D.P. & Mathews, S. (2011) Recent synchronous radiation of a living fossil. Science, 334, 796–799. PubMed

Norstog, K. & Nicholls, T.J. (1997) The biology of cycads Ithace. USA: Cornell Unviversity Press.

Novak, P. , Guignard, M.S. , Neumann, P. , Kelly, L.J. , Mlinarec, J. , Koblizkova, A. et al. (2020) Repeat‐sequence turnover shifts fundamentally in species with large genomes. Nature Plants, 6, 1325–1329. PubMed

Ohri, D. & Khoshoo, T.N. (1986) Genome Size in Gymnosperms. Plant Systematics and Evolution, 153, 119–132.

Olson, K. & Gorelick, R. (2011) Chromosomal fission accounts for small‐scale radiations in zamia (Zamiaceae; Cycadales). Botanical Journal of the Linnean Society, 165, 168–185.

Pellicer, J. & Leitch, I.J. (2020) The plant DNA C‐values database (release 7.1): an updated online repository of plant genome size data for comparative studies. New Phytologist, 226, 301–305. PubMed

Peska, V. , Fajkus, P. , Fojtova, M. , Dvorackova, M. , Hapala, J. , Dvoracek, V. et al. (2015) Characterisation of an unusual telomere motif (TTTTTTAGGG)(n) in the plant Cestrum elegans (Solanaceae), a species with a large genome. Plant Journal, 82, 644–654. PubMed

Peska, V. & Garcia, S. (2020) Origin, diversity, and evolution of telomere sequences in plants. Frontiers in Plant Science, 11, 9. PubMed PMC

Rastogi, S. & Ohri, D. (2020) Karyotype evolution in cycads. Nucleus‐India, 63, 131–141.

Renner, S.S. (2011) Living fossil younger than thought. Science, 334, 766–767. PubMed

Renny‐Byfield, S. , Kovarik, A. , Chester, M. , Nichols, R.A. , Macas, J. , Novak, P. et al. (2012) Independent, rapid and targeted loss of highly repetitive DNA in natural and synthetic allopolyploids of Nicotiana tabacum . PLoS One, 7(5), e36963. PubMed PMC

Revell, L.J. (2012) Phytools: an R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution, 3, 217–223.

Rice, A. , Glick, L. , Abadi, S. , Einhorn, M. , Kopelman, N.M. , Salman‐Minkov, A. et al. (2015) The chromosome counts database (CCDB) – a community resource of plant chromosome numbers. New Phytologist, 206, 19–26. PubMed

Rosato, M. , Alvarez, I. , Feliner, G.N. & Rossello, J.A. (2018) Inter‐ and intraspecific hypervariability in interstitial telomeric‐like repeats (TTTAGGG)(n )in Anacyclus (Asteraceae). Annals of Botany, 122, 387–395. PubMed PMC

Ruiz‐Herrera, A. , Nergadze, S.G. , Santagostino, M. & Giulotto, E. (2008) Telomeric repeats far from the ends: mechanisms of origin and role in evolution. Cytogenetic and Genome Research, 122, 219–228. PubMed

Schubert, I. & Rieger, R. (1990) Alteration by centric fission of the diploid chromosome number in Vicia faba L. Genetica, 81, 67–69.

Schwarzacher, T. & Heslop‐Harrison, P. (2000) Practical in situ Hybridization. Milton Park, England: BIOS Scientific Publishers.

Shakirov, E.V. & Shippen, D.E. (2004) Length regulation and dynamics of individual telomere tracts in wild‐type Arabidopsis . Plant Cell, 16, 1959–1967. PubMed PMC

Shibata, F. & Hizume, M. (2011) Survey of Arabidopsis‐ and human‐type telomere repeats in plants using fluorescence in situ hybridisation. Cytologia, 76, 353–360.

Sierro, N. , Battey, J.N.D. , Ouadi, S. , Bakaher, N. , Bovet, L. , Willig, A. et al. (2014) The tobacco genome sequence and its comparison with those of tomato and potato. Nature Communications, 8(5), 3833. PubMed PMC

Slijepcevic, P. (1998) Telomeres and mechanisms of Robertsonian fusion. Chromosoma, 107, 136–140. PubMed

Song, J.R. , Logeswaran, D. , Castillo‐Gonzalez, C. , Li, Y. , Bose, S. , Aklilu, B.B. et al. (2019) The conserved structure of plant telomerase RNA provides the missing link for an evolutionary pathway from ciliates to humans. Proceedings of the National Academy of Sciences of the United States of America, 116, 24542–24550. PubMed PMC

Sousa, A. & Renner, S.S. (2015) Interstitial telomere‐like repeats in the monocot family Araceae. Botanical Journal of the Linnean Society, 177, 15–26.

Souza, G. , Vanzela, A.L. , Crosa, O. & Guerra, M. (2016) Interstitial telomeric sites and Robertsonian translocations in species of Ipheion and Nothoscordum (Amaryllidaceae). Genetica, 144, 157–166. PubMed

Tagashira, N. & Kondo, K. (2001) Chromosome phylogeny of zamia and Ceratozamia by means of Robertsonian changes detected by fluorescence in situ hybridization (FISH) technique of rDNA. Plant Systematics and Evolution, 227, 145–155.

Talbert, P.B. & Henikoff, S. (2010) Centromeres convert but Don't cross. PLoS Biology, 8(3), e1000326. PubMed PMC

van Steensel, B. , Smogorzewska, A. & de Lange, T. (1998) TRF2 protects human telomeres from end‐to‐end fusions. Cell, 92, 401–413. PubMed

Vaquero‐Sedas, M.I. & Vega‐Palas, M.A. (2019) Assessing the epigenetic status of human telomeres. Cell, 8, 10. PubMed PMC

Vovides, A. , Farrera, M.A. , Gonzales‐Astorgal, J. , Gonzalez, D. , Gregory, T. , Chemnick, J. et al. (2003) An outline of our current knowledge on Mexican cycads (Zamiaceae, Cycadales). Current Topics in Plant Biology, 4, 159–164.

Wang, W.C. , Ma, L. , Becher, H. , Garcia, S. , Kovarikova, A. , Leitch, I.J. et al. (2016) Astonishing 35S rDNA diversity in the gymnosperm species Cycas revoluta Thunb. Chromosoma, 125, 683–699. PubMed PMC

Weiss‐Schneeweiss, H. , Riha, K. , Jang, C.G. , Puizina, J. , Scherthan, H. & Schweizer, D. (2004) Chromosome termini of the monocot plant Othocallis siberica are maintained by telomerase, which specifically synthesises vertebrate‐type telomere sequences. Plant Journal, 37, 484–493. PubMed

Wessa, P. (2017) Pearson Correlation (v1.0.13) in Free Statistics Software (v1.2.1) pp. Office for Research Development and Education.

Wu, R.A. , Upton, H.E. , Vogan, J.M. & Collins, K. (2017) Telomerase mechanism of telomere synthesis. In: Kornberg, R.D. (ed.), Annual Review of Biochemistry, Vol 86. Palo Alto: Annual Reviews, pp. 439–460. PubMed PMC

Zonneveld, B.J.M. (2012) Genome sizes for all genera of Cycadales. Plant Biology, 14, 253–256. PubMed

Zonneveld, B.J.M. & Lindstrom, A.J. (2016) Genome sizes for 71 species of zamia (Cycadales: Zamiaceae) correspond with three different biogeographic regions. Nordic Journal of Botany, 34, 744–751.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...