Similar to how the model of centromere drive explains the size and complexity of centromeres in monocentrics (organisms with localized centromeres), our model of holokinetic drive is consistent with the divergent evolution of chromosomal size and number in holocentrics (organisms with nonlocalized centromeres) exhibiting holokinetic meiosis (holokinetics). Holokinetic drive is proposed to facilitate chromosomal fission and/or repetitive DNA removal (or any segmental deletion) when smaller homologous chromosomes are preferentially inherited or chromosomal fusion and/or repetitive DNA proliferation (or any segmental duplication) when larger homologs are preferred. The hypothesis of holokinetic drive is supported primarily by the negative correlation between chromosome number and genome size that is documented in holokinetic lineages. The supporting value of two older cross-experiments on holokinetic structural heterozygotes (the rush Luzula elegans and butterflies of the genus Antheraea) that indicate the presence of size-preferential homolog transmission via female meiosis for holokinetic drive is discussed, along with the further potential consequences of holokinetic drive in comparison with centromere drive.
- MeSH
- Centromere genetics MeSH
- Chromosomes genetics MeSH
- Phylogeny MeSH
- Karyotype MeSH
- Poaceae genetics MeSH
- Meiosis * MeSH
- Evolution, Molecular * MeSH
- Butterflies genetics MeSH
- Chromosome Segregation MeSH
- Animals MeSH
- Check Tag
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Zygosaccharomyces rouxii is a hemiascomycetous yeast known for its high osmotolerance, the basis of which still remains unknown. By exploring the Génolevures I database, four Z. rouxii fragments homologous to Saccharomyces cerevisiae centromeres were identified. Two of them were subjected to further analysis. Their function as centromeres in Z. rouxii was proved, and they were localized to Z. rouxii chromosomes II and VII, respectively. The species-specificity of centromeres was observed; plasmids with a Z. rouxii centromere were not recognized as centromeric in S. cerevisiae, and a S. cerevisiae centromere did not function as a centromere in Z. rouxii. Constructed plasmids bearing Z. rouxii centromeres serve as the first specific centromeric plasmids, and thus contribute to the so-far limited set of genetic tools needed to study the Z. rouxii specific features.
- MeSH
- Centromere genetics MeSH
- DNA, Fungal genetics MeSH
- DNA Primers genetics MeSH
- Species Specificity MeSH
- Financing, Organized MeSH
- Genetic Vectors MeSH
- Plasmids genetics MeSH
- Saccharomyces cerevisiae genetics MeSH
- Base Sequence MeSH
- Transformation, Genetic MeSH
- Zygosaccharomyces genetics MeSH
- Publication type
- Comparative Study MeSH
Species with holocentric chromosomes are often characterized by a rapid karyotype evolution. In contrast to species with monocentric chromosomes where acentric fragments are lost during cell division, breakage of holocentric chromosomes creates fragments with normal centromere activity. To decipher the mechanism that allows holocentric species an accelerated karyotype evolution via chromosome breakage, we analyzed the chromosome complements of irradiated Luzula elegans plants. The resulting chromosomal fragments and rearranged chromosomes revealed holocentromere-typical CENH3 and histone H2AThr120ph signals as well as the same mitotic mobility like unfragmented chromosomes. Newly synthesized telomeres at break points become detectable 3 weeks after irradiation. The presence of active telomerase suggests a telomerase-based mechanism of chromosome healing. A successful transmission of holocentric chromosome fragments across different generations was found for most offspring of irradiated plants. Hence, a combination of holokinetic centromere activity and the fast formation of new telomeres at break points enables holocentric species a rapid karyotype evolution involving chromosome fissions and rearrangements.
- MeSH
- Autoantigens MeSH
- Centromere * MeSH
- Chromosomal Proteins, Non-Histone MeSH
- Chromosomes, Plant genetics MeSH
- Histones MeSH
- Karyotype * MeSH
- Magnoliopsida genetics metabolism MeSH
- Evolution, Molecular * MeSH
- Plant Proteins MeSH
- Telomere * MeSH
- Chromosome Breakage MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Satellite DNA, a class of repetitive sequences forming long arrays of tandemly repeated units, represents substantial portions of many plant genomes yet remains poorly characterized due to various methodological obstacles. Here we show that the genome of the field bean (Vicia faba, 2n = 12), a long-established model for cytogenetic studies in plants, contains a diverse set of satellite repeats, most of which remained concealed until their present investigation. Using next-generation sequencing combined with novel bioinformatics tools, we reconstructed consensus sequences of 23 novel satellite repeats representing 0.008-2.700% of the genome and mapped their distribution on chromosomes. We found that in addition to typical satellites with monomers hundreds of nucleotides long, V. faba contains a large number of satellite repeats with unusually long monomers (687-2033 bp), which are predominantly localized in pericentromeric regions. Using chromatin immunoprecipitation with CenH3 antibody, we revealed an extraordinary diversity of centromeric satellites, consisting of seven repeats with chromosome-specific distribution. We also found that in spite of their different nucleotide sequences, all centromeric repeats are replicated during mid-S phase, while most other satellites are replicated in the first part of late S phase, followed by a single family of FokI repeats representing the latest replicating chromatin.
- MeSH
- Molecular Sequence Annotation MeSH
- Centromere metabolism MeSH
- Chromatin Immunoprecipitation MeSH
- DNA, Plant genetics metabolism MeSH
- Genome, Plant genetics MeSH
- Chromosome Mapping methods MeSH
- Evolution, Molecular MeSH
- DNA Replication Timing genetics MeSH
- DNA, Satellite genetics MeSH
- Sequence Analysis, DNA MeSH
- Vicia faba genetics metabolism MeSH
- Computational Biology MeSH
- High-Throughput Nucleotide Sequencing MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- MeSH
- Cell Nucleus genetics radiation effects ultrastructure MeSH
- Centromere radiation effects MeSH
- Genes radiation effects MeSH
- In Situ Hybridization, Fluorescence MeSH
- Leukopoiesis MeSH
- Humans MeSH
- Chromosomes, Human radiation effects MeSH
- Lymphocytes cytology ultrasonography virology MeSH
- Check Tag
- Humans MeSH
The centromere drive model explaining rapid evolution of eukaryotic centromeres predicts higher frequency of positive selection acting on centromeric histone H3 (CenH3) in clades with asymmetric meiosis compared to the clades with only symmetric meiosis. However, despite the impression one might get from the literature, this key prediction of the centromere drive model has not only never been confirmed, but it has never been tested, because all the previous studies dealt only with the presence or absence instead of the frequency of positive selection. To provide evidence for or against different frequencies of positively selected CenH3 in asymmetrics and symmetrics, we have inferred the selective pressures acting on CenH3 in seventeen eukaryotic clades, including plants, animals, fungi, ciliates and apicomplexa, using codon-substitution models, and compared the inferred frequencies between asymmetrics and symmetrics in a quantitative manner. We have found that CenH3 has been evolving adaptively much more frequently in clades with asymmetric meiosis compared with clades displaying only symmetric meiosis which confirms the prediction of centromere drive model. Our findings indicate that the evolution of asymmetric meiosis required CenH3 to evolve adaptively more often to counterbalance the negative consequences of centromere drive.
- MeSH
- Centromere genetics MeSH
- Histones genetics MeSH
- Fungi genetics MeSH
- Codon genetics MeSH
- Humans MeSH
- Meiosis genetics MeSH
- Evolution, Molecular * MeSH
- Centromere Protein A genetics MeSH
- Plant Proteins genetics MeSH
- Sequence Alignment MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- MeSH
- Centromere MeSH
- Mice MeSH
- Radiation Effects MeSH
- Mutagenicity Tests methods MeSH
- Vinblastine toxicity MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
In most eukaryotes, centromere is determined by the presence of the centromere-specific histone variant CenH3. Two types of chromosome morphology are generally recognized with respect to centromere organization. Monocentric chromosomes possess a single CenH3-containing domain in primary constriction, whereas holocentric chromosomes lack the primary constriction and display dispersed distribution of CenH3. Recently, metapolycentric chromosomes have been reported in Pisum sativum, representing an intermediate type of centromere organization characterized by multiple CenH3-containing domains distributed across large parts of chromosomes that still form a single constriction. In this work, we show that this type of centromere is also found in other Pisum and closely related Lathyrus species, whereas Vicia and Lens genera, which belong to the same legume tribe Fabeae, possess only monocentric chromosomes. We observed extensive variability in the size of primary constriction and the arrangement of CenH3 domains both between and within individual Pisum and Lathyrus species, with no obvious correlation to genome or chromosome size. Search for CenH3 gene sequences revealed two paralogous variants, CenH3-1 and CenH3-2, which originated from a duplication event in the common ancestor of Fabeae species. The CenH3-1 gene was subsequently lost or silenced in the lineage leading to Vicia and Lens, whereas both genes are retained in Pisum and Lathyrus. Both of these genes appear to have evolved under purifying selection and produce functional CenH3 proteins which are fully colocalized. The findings described here provide the first evidence for a highly dynamic centromere structure within a group of closely related species, challenging previous concepts of centromere evolution.
- MeSH
- Centromere genetics MeSH
- Chromatin metabolism MeSH
- Chromosomes, Plant genetics MeSH
- Gene Duplication * MeSH
- Fabaceae cytology genetics MeSH
- Phylogeny MeSH
- Genetic Variation MeSH
- Metaphase genetics MeSH
- Evolution, Molecular MeSH
- Molecular Sequence Data MeSH
- Genes, Plant * MeSH
- Plant Proteins chemistry MeSH
- Amino Acid Sequence MeSH
- Base Sequence MeSH
- Selection, Genetic MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Centromeres are essential for proper chromosome segregation to the daughter cells during mitosis and meiosis. Chromosomes of most eukaryotes studied so far have regional centromeres that form primary constrictions on metaphase chromosomes. These monocentric chromosomes vary from point centromeres to so-called "meta-polycentromeres", with multiple centromere domains in an extended primary constriction, as identified in Pisum and Lathyrus species. However, in various animal and plant lineages centromeres are distributed along almost the entire chromosome length. Therefore, they are called holocentromeres. In holocentric plants, centromere-specific proteins, at which spindle fibers usually attach, are arranged contiguously (line-like), in clusters along the chromosomes or in bands. Here, we summarize findings of ultrastructural investigations using immunolabeling with centromere-specific antibodies and super-resolution microscopy to demonstrate the structural diversity of plant centromeres. A classification of the different centromere types has been suggested based on the distribution of spindle attachment sites. Based on these findings we discuss the possible evolution and advantages of holocentricity, and potential strategies to segregate holocentric chromosomes correctly.
- MeSH
- Cell Cycle MeSH
- Centromere metabolism MeSH
- Chromosomes, Plant metabolism MeSH
- Microscopy * MeSH
- Evolution, Molecular MeSH
- Plants metabolism MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
Satellite repeats are major sequence constituents of centromeres in many plant and animal species. Within a species, a single family of satellite sequences typically occupies centromeres of all chromosomes and is absent from other parts of the genome. Due to their common origin, sequence similarities exist among the centromere-specific satellites in related species. Here, we report a remarkably different pattern of centromere evolution in the plant tribe Fabeae, which includes genera Pisum, Lathyrus, Vicia, and Lens. By immunoprecipitation of centromeric chromatin with CENH3 antibodies, we identified and characterized a large and diverse set of 64 families of centromeric satellites in 14 species. These families differed in their nucleotide sequence, monomer length (33-2,979 bp), and abundance in individual species. Most families were species-specific, and most species possessed multiple (2-12) satellites in their centromeres. Some of the repeats that were shared by several species exhibited promiscuous patterns of centromere association, being located within CENH3 chromatin in some species, but apart from the centromeres in others. Moreover, FISH experiments revealed that the same family could assume centromeric and noncentromeric positions even within a single species. Taken together, these findings suggest that Fabeae centromeres are not shaped by the coevolution of a single centromeric satellite with its interacting CENH3 proteins, as proposed by the centromere drive model. This conclusion is also supported by the absence of pervasive adaptive evolution of CENH3 sequences retrieved from Fabeae species.