Secret Recipe Revealed: Chemical Evaluation of Raw Colouring Mixtures from Early 19th Century Moravia
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/17_048/0007378
ERDF/ESF
IGA_PrF_2022_023
Palacký university in Olomouc
PubMed
36014443
PubMed Central
PMC9415618
DOI
10.3390/molecules27165205
PII: molecules27165205
Knihovny.cz E-zdroje
- Klíčová slova
- Faience, direct mass spectrometry, elemental analysis, inorganic pigments, mass spectrometry, organic additives,
- MeSH
- barvicí látky analýza MeSH
- hmotnostní spektrometrie s elektrosprejovou ionizací * metody MeSH
- nátěrové hmoty * analýza MeSH
- plynová chromatografie s hmotnostně spektrometrickou detekcí metody MeSH
- prášky, zásypy, pudry MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- barvicí látky MeSH
- prášky, zásypy, pudry MeSH
An archaeological excavation in Prostějov (Czech Republic) revealed a workshop of a local potter with colourless, pink, and blue powders presumably used to produce faience/surface decoration. A comprehensive analytical study, which combined elemental and molecular analysis techniques, was performed to shed light on the chemical composition of these unique findings. Scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM EDX), inductively coupled-plasma mass spectrometry (ICP MS), flow injection analysis (FIA) with electrospray ionisation mass spectrometry (ESI MS), laser desorption ionisation mass spectrometry (LDI MS), and Raman spectroscopy were applied to reveal the elemental composition of the powders and identify the colouring agents in the pink and blue powders. The colouring agents in the pink powder were probably iron and the agent in the blue powder is Prussian blue. On top of that, it was also possible to determine the organic additives in these powders through pyrolysis gas chromatography with mass spectrometric detection (Py GC/MS), atmospheric solids analysis probe ion mobility mass spectrometry (ASAP IM MS), and LDI MS. The organic constituents were identified as plant resin, beeswax, and fats. These results point to the preparation of faience/pigment mixtures as oil paint.
Zobrazit více v PubMed
Bajnóczi B., Nagy G., Tóth M., Ringer I., Ridovics A. Archaeometric characterization of 17th century tin-glazed Anabaptist (Hutterite) faience artefacts from North-East-Hungary. J. Archaeol. Sci. 2014;45:1–14. doi: 10.1016/j.jas.2014.01.030. DOI
Ma H., Henderson J., Evans J. The exploration of Sr isotopic analysis applied to Chinese glazes: Part two. Archaeometry. 2016;58:68–80. doi: 10.1111/arcm.12224. DOI
Tite M.S., Shortland A.J., Schibille N., Degryse P. New data on the soda flux used in the production of Iznik glazes and Byzantine glasses. Archaeometry. 2016;58:57–67. doi: 10.1111/arcm.12156. DOI
Bouquillon A., Castaing J., Barbe F., Paine S.R., Christman B., Crépin-Leblond T., Heuer A.H. Lead-glazed rustiques figulines (rustic ceramics) of Bernard Palissy (1510–90) and his followers. Archaeometry. 2017;59:69–83. doi: 10.1111/arcm.12247. DOI
Bouquillon A., Castaing J., Barbe F., Crepin-Leblond T., Tilliard T., Paine S.R., Christman B., Heuer A.H. French decorative ceramics mass-produced during and after the 17th century: Chemical analyses of the glazes. Archaeometry. 2018;60:946–965. doi: 10.1111/arcm.12349. DOI
Shen J.Y., Henderson J., Evans J., Chenery S., Zhao F.Y. A study of the glazing techniques and provenances of Tang Sancai glazes using elemental and lead isotope analyses. Archaeometry. 2019;61:358–373. doi: 10.1111/arcm.12436. DOI
Shen J.Y., Ma H., Henderson J., Evans J., Chenery S., Wang F., Wen R. Chemical and strontium isotope analysis of Yaozhou celadon glaze. Archaeometry. 2019;61:1039–1052. doi: 10.1111/arcm.12482. DOI
Ma H., Wood N., Doherty C., Zheng J., Zhou G., Duan H. New insights into the calcium flux used in ancient Longquan and Yue kilns based on strontium isotopic compositions. Archaeometry. 2019;61:342–357. doi: 10.1111/arcm.12420. DOI
Zhou X.Q., Cui J.F., Ren X.Y., Wang Q.Q., Du W., Du Z.W., Liu X.Y. The earliest high-fired glazed ceramic in China: Evidence from a glazed ceramic sample from the Lajia site, Qinghai province. Archaeometry. 2019;61:588–599. doi: 10.1111/arcm.12447. DOI
Ting C., Lichtenberger A., Raja R. The technology and production of glazed ceramics from Middle Islamic Jerash, Jordan. Archaeometry. 2019;61:1296–1312. doi: 10.1111/arcm.12489. DOI
Mangone A., De Benedetto G., Fico D., Giannossa L., Laviano R., Sabbatini L., van der Werf I., Traini A. A multianalytical study of archaeological faience from the Vesuvian area as a valid tool to investigate provenance and technological features. New J. Chem. 2011;35:2860–2868. doi: 10.1039/c1nj20626e. DOI
Neff H. Analysis of Mesoamerican Plumbate Pottery Surfaces by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS) J. Archaeol. Sci. 2003;30:21–35. doi: 10.1006/jasc.2001.0801. DOI
Tanasi D., Brunelli D., Cannavò V., Levi S. Archaeometric characterization of prehistoric pottery from Baħrija, Malta. J. Archaeol. Sci. Rep. 2019;27:101938. doi: 10.1016/j.jasrep.2019.101938. DOI
Medeghini L., Fayek M., Mignardi S., Coletti F., Contino A., De Vito C. A provenance study of Roman lead-glazed ceramics using lead isotopes and secondary ion mass spectrometry (SIMS) Microchem. J. 2020;154:104519. doi: 10.1016/j.microc.2019.104519. DOI
Kuzmanovic M., Stancalie A., Milovanovic D., Staicu A., Damjanovic-Vasilic L., Rankovic D., Savovic J. Analysis of lead-based archaeological pottery glazes by laser induced breakdown spectroscopy. Opt. Laser Technol. 2021;134:106599. doi: 10.1016/j.optlastec.2020.106599. DOI
Spataro M., Mommsen H., Villing A. Making pottery in the Nile Delta: Ceramic provenance and technology at Naukratis, 6th–3rd centuries BC. Archaeol. Anthrop. Sci. 2019;11:1059–1087. doi: 10.1007/s12520-017-0584-4. DOI
Wang Y., Yu S., Tong M., Wang W., Yang X. Deciphering the formation mechanism of ancient Jun wares copper red and blue glazes. J. Cult. Herit. 2021;48:29–35. doi: 10.1016/j.culher.2021.01.008. DOI
Toffolo M., Klein E., Elbaum R., Aja A., Master D., Boaretto E. An early Iron Age assemblage of faience beads from Ashkelon, Israel: Chemical composition and manufacturing process. J. Archaeol. Sci. 2013;40:3626–3635. doi: 10.1016/j.jas.2013.05.010. DOI
Marco de Lucas M.C., Moncada F., Rosen J. Micro-Raman study of red decorations in French faiences of the 18th and 19th centuries. J. Raman Spectrosc. 2016;37:1154–1159. doi: 10.1002/jrs.1596. DOI
Zaremba M., Trzciński J., Rogulska M., Kaproń G., Welc F., Południkiewicz A. A Multiproxy Approach to the Reconstruction of an Ancient Manufacturing Technology: A Case Study of a Faience Ptolemaic Bowl from Tell Atrib (Nile Delta) Minerals. 2020;10:785. doi: 10.3390/min10090785. DOI
Černohorský K. Moravská Lidová Keramika. 1st ed. J. Otto; Prague, Czech Republic: 1941. p. 284.
Gregerová M., Hložek M., Kuljovská Z. Mikropetrografické a petrochemické rozbory novověké glazované keramiky z lokality Strachotín. Geol. Výzk. Mor. Slez. 2006;2007:95–100.
Fojtík P. Prostějov (okr. Prostějov), fig. 47–50. Přehl. Výzk. 2017;58:243–244.
Dodd A. Dictionary of Ceramics. 3rd ed. The University Press; Cambridge, UK: 1994. p. 371.
Ebunu A.I., Olanrewaju Y.A., Ogolo O., Adetunji A.R., Onwualu A.P. Barite as an industrial mineral in Nigeria: Uccurrence, utilization, challenges and future prospects. Heliyon. 2021;7:e07365. doi: 10.1016/j.heliyon.2021.e07365. PubMed DOI PMC
Eastaugh N., Walsh V., Chaplin T., Siddall R. The Pigment Compendium: A Dictionary and Optical Microscopy of Historical Pigments. 1st ed. Elsevier; Amsterdam, The Netherlands: 2004. p. 499.
Vodičková N. Diploma Thesis. University of West Bohemia; Plzeň, Czech Republic: 2017. Taxonomic and Individual Differentiation of Burned and Unburned Bones Using X-ray Fluorescence (XRF) p. 83.
Rasmussen K.L., Milner G.R., Delbey T., Ivalu Jensen L.K., Witte F., Rehren T., Kjaer U., Grinder-Hansen P. Release of lead from Renaissance lead-glazed ceramics from southern Denmark and northern Germany: Implications from acetic acid etching experiments. Herit. Sci. 2022;10:63. doi: 10.1186/s40494-022-00703-8. DOI
Cartechini L., Miliani C., Nodari L., Rosi F., Tomasin P. The chemistry of making color in art. J. Cult. Herit. 2021;50:188–210. doi: 10.1016/j.culher.2021.05.002. DOI
Gliozzo E. Pigments—Mercury-based red (cinnabar-vermilion) and white (calomel) and their degradation products. Archaeol. Anthrop. Sci. 2021;13:210. doi: 10.1007/s12520-021-01402-4. DOI
Colomban P. Rocks as blue, green and black pigments/dyes of glazed pottery and enamelled glass artefacts: A review. Eur. J. Mineral. 2013;25:863–879. doi: 10.1127/0935-1221/2013/0025-2305. DOI
Freestone I.C. Composition and microstructure of early opaque red glasses, early vitreous materials. Br. Mus. Occas. Pap. 1987;56:173–191.
Gedzevičiūtė V., Welter N., Schüssler U., Weiss C. Chemical composition and colouring agents of Roman masaic and millefiori glass, studied by electron microprobe analysis and Raman microspectroscopy. Archaeol. Anthropol. Sci. 2009;1:15–29. doi: 10.1007/s12520-009-0005-4. DOI
Reitner J., Thiel V. Encyclopedy of Geobiology. 1st ed. Springer; Berlin/Heidelberg, Germany: 2011. pp. 25–28.
Keeling C., Bohlmann J. Diterpene resin acids in conifers. Phytochemistry. 2006;67:2415–2423. doi: 10.1016/j.phytochem.2006.08.019. PubMed DOI
Colombini M., Modugno F. Organic Mass Spectrometry in Art and Archaeology. 1st ed. Wiley; Oxford, UK: 2009. pp. 97–100.
Slánský B. Technika malby I. Díl, Malířský a konservační materiál. 1st ed. Státní Nakladatelství Krásné Literatury, Hudby a Umění; Prague, Czech Republic: 1953. p. 141.
Gu Z., Kenoyer J., Yang Y. Investigation of ancient Harappan faience through LA-ICP-AES and SR-μ CT. J. Instrum. 2016;11:C04001. doi: 10.1088/1748-0221/11/04/C04001. DOI
Moretti G., Gervais C. Raman spectroscopy of the photosensitive pigment Prussian blue. J. Raman Spectrosc. 2018;49:1198–1204. doi: 10.1002/jrs.5366. DOI
McEwen C., McKay R., Larsen B. Analysis of Solids, Liquids, and Biological Tissues Using Solids Probe Introduction at Atmospheric Pressure on Commercial LC/MS Instruments. Anal. Chem. 2005;77:7826–7831. doi: 10.1021/ac051470k. PubMed DOI
Pauk V., Havlíček V., Papoušková B., Sulovský P., Lemr K. Simultaneous identification of historical pigments Prussian blue and indigo in paintings by electrospray mass spectrometry. J. Mass Spec. 2013;48:927–930. doi: 10.1002/jms.3228. PubMed DOI
Fojt B., Hladíková J., Kalenda F. Zlaté Hory ve Slezsku: Největší rudní revír v Jeseníkách, Část 2.: C. Geologie D. Mineralogie E. Geochemie stabilních izotopů. Acta Mus. Morav. Sci. Geol. 2001;86:3–58.
Sejkora J., Kouřimský J. Atlas Minerálů České a Slovenské Republiky. 1st ed. Academia; Prague, Czech Republic: 2005. p. 376.
Starý J., Kavina P., Vaněček M., Sitenský I. Surovinové Zdroje České Republiky: Nerostné Suroviny. Ministerstvo Životního Prostředí & Česká Geologická Služba–Geofond; Prague, Czech Republic: 2005. p. 213.
Kunický Z., Vurm K. 700 Let Hutnictví Stříbra a Olova na Příbramsku (1311–2011), 225 Let Stříbrné Hutě—Kovohutí Příbram (1786–2011): 700 Years Anniversary of Příbram’s Metallurgy (1311–2011), 225 Years Anniversary of Silver Smelting Works—Kovohutě Příbram (1786–2011) Kovohutě Příbram; Příbram, Czech Republic: 2011. p. 212.