Origin and Fates of TERT Gene Copies in Polyploid Plants

. 2021 Feb 11 ; 22 (4) : . [epub] 20210211

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33670111

Grantová podpora
18-07027S Grantová Agentura České Republiky
CZ.02.1.01/0.0/0.0/15_003/0000477 European Regional Development Fund

The gene coding for the telomerase reverse transcriptase (TERT) is essential for the maintenance of telomeres. Previously we described the presence of three TERT paralogs in the allotetraploid plant Nicotiana tabacum, while a single TERT copy was identified in the paleopolyploid model plant Arabidopsis thaliana. Here we examine the presence, origin and functional status of TERT variants in allotetraploid Nicotiana species of diverse evolutionary ages and their parental genome donors, as well as in other diploid and polyploid plant species. A combination of experimental and in silico bottom-up analyses of TERT gene copies in Nicotiana polyploids revealed various patterns of retention or loss of parental TERT variants and divergence in their functions. RT-qPCR results confirmed the expression of all the identified TERT variants. In representative plant and green algal genomes, our synteny analyses show that their TERT genes were located in a conserved locus that became advantageous after the divergence of eudicots, and the gene was later translocated in several plant groups. In various diploid and polyploid species, translocation of TERT became fixed in target loci that show ancient synapomorphy.

Zobrazit více v PubMed

Ohno S. Evolution by Gene Duplication. Springer; New York, NY, USA: 1970.

Soltis D.E., Visger C.J., Marchant D.B., Soltis P.S. Polyploidy: Pitfalls and paths to a paradigm. Am. J. Bot. 2016;103:1146–1166. doi: 10.3732/ajb.1500501. PubMed DOI

Lohaus R., Van de Peer Y. Of dups and dinos: Evolution at the K/Pg boundary. Curr. Opin. Plant Biol. 2016;30:62–69. doi: 10.1016/j.pbi.2016.01.006. PubMed DOI

Barker M.S., Husband B.C., Pires J.C. Spreading Winge and flying high: The evolutionary importance of polyploidy after a century of study. Am. J. Bot. 2016;103:1139–1145. doi: 10.3732/ajb.1600272. PubMed DOI

Jiao Y., Wickett N.J., Ayyampalayam S., Chanderbali A.S., Landherr L., Ralph P.E., Tomsho L.P., Hu Y., Liang H., Soltis P.S., et al. Ancestral polyploidy in seed plants and angiosperms. Nature. 2011;473:97–100. doi: 10.1038/nature09916. PubMed DOI

Jiao Y., Leebens-Mack J., Ayyampalayam S., Bowers J.E., McKain M.R., McNeal J., Rolf M., Ruzicka D.R., Wafula E., Wickett N.J., et al. A genome triplication associated with early diversification of the core eudicots. Genome Biol. 2012;13:R3. doi: 10.1186/gb-2012-13-1-r3. PubMed DOI PMC

Murat F., Armero A., Pont C., Klopp C., Salse J. Reconstructing the genome of the most recent common ancestor of flowering plants. Nat. Genet. 2017;49:490–496. doi: 10.1038/ng.3813. PubMed DOI

Flagel L., Udall J., Nettleton D., Wendel J. Duplicate gene expression in allopolyploid Gossypium reveals two temporally distinct phases of expression evolution. BMC Biol. 2008;6:16. doi: 10.1186/1741-7007-6-16. PubMed DOI PMC

Parisod C., Mhiri C., Lim K.Y., Clarkson J.J., Chase M.W., Leitch A.R., Grandbastien M.A. Differential dynamics of transposable elements during long-term diploidization of Nicotiana section Repandae (Solanaceae) allopolyploid genomes. PLoS ONE. 2012;7:e50352. doi: 10.1371/journal.pone.0050352. PubMed DOI PMC

Birchler J.A., Veitia R.A. The gene balance hypothesis: From classical genetics to modern genomics. Plant Cell. 2007;19:395–402. doi: 10.1105/tpc.106.049338. PubMed DOI PMC

McClintock B. The fusion of broken chromosome ends of sister half-chromatids following chromatid breakage at meiotic anaphases. Mo. Agric. Exp. Stn. Res. Bull. 1938;290:1–48.

Blackburn E.H., Gall J.G. Tandemly Repeated Sequence at Termini of Extrachromosomal Ribosomal-Rna Genes in Tetrahymena. J. Mol. Biol. 1978;120:33–53. doi: 10.1016/0022-2836(78)90294-2. PubMed DOI

Greider C.W., Blackburn E.H. Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell. 1985;43:405–413. doi: 10.1016/0092-8674(85)90170-9. PubMed DOI

Peska V., Garcia S. Origin, Diversity, and Evolution of Telomere Sequences in Plants. Front. Plant Sci. 2020;11:117. doi: 10.3389/fpls.2020.00117. PubMed DOI PMC

Sykorova E., Lim K.Y., Kunicka Z., Chase M.W., Bennett M.D., Fajkus J., Leitch A.R. Telomere variability in the monocotyledonous plant order Asparagales. Proc. R. Soc. Lond. B Biol. Sci. 2003;270:1893–1904. doi: 10.1098/rspb.2003.2446. PubMed DOI PMC

Fajkus P., Peska V., Sitova Z., Fulneckova J., Dvorackova M., Gogela R., Sykorova E., Hapala J., Fajkus J. Allium telomeres unmasked: The unusual telomeric sequence (CTCGGTTATGGG)n is synthesized by telomerase. Plant J. 2016;85:337–347. doi: 10.1111/tpj.13115. PubMed DOI

Sykorova E., Lim K.Y., Chase M.W., Knapp S., Leitch I.J., Leitch A.R., Fajkus J. The absence of Arabidopsis-type telomeres in Cestrum and closely related genera Vestia and Sessea (Solanaceae): First evidence from eudicots. Plant J. 2003;34:283–291. doi: 10.1046/j.1365-313X.2003.01731.x. PubMed DOI

Peska V., Fajkus P., Fojtova M., Dvorackova M., Hapala J., Dvoracek V., Polanska P., Leitch A.R., Sykorova E., Fajkus J. Characterisation of an unusual telomere motif (TTTTTTAGGG)n in the plant Cestrum elegans (Solanaceae), a species with a large genome. Plant J. 2015;82:644–654. doi: 10.1111/tpj.12839. PubMed DOI

Peska V., Sitova Z., Fajkus P., Fajkus J. BAL31-NGS approach for identification of telomeres de novo in large genomes. Methods. 2017;114:16–27. doi: 10.1016/j.ymeth.2016.08.017. PubMed DOI

Fajkus J., Sykorova E., Leitch A.R. Telomeres in evolution and evolution of telomeres. Chromosome Res. 2005;13:469–479. doi: 10.1007/s10577-005-0997-2. PubMed DOI

Fajkus P., Peska V., Zavodnik M., Fojtova M., Fulneckova J., Dobias S., Kilar A., Dvorackova M., Zachova D., Necasova I., et al. Telomerase RNAs in land plants. Nucleic Acids Res. 2019;47:9842–9856. doi: 10.1093/nar/gkz695. PubMed DOI PMC

Peska V., Matl M., Mandakova T., Vitales D., Fajkus P., Fajkus J., Garcia S. Human-like telomeres in Zostera marina reveal a mode of transition from the plant to the human telomeric sequences. J. Exp. Bot. 2020;71:5786–5793. doi: 10.1093/jxb/eraa293. PubMed DOI

Sykorova E., Fajkus J. Structure-Function relationships in telomerase genes. Biol. Cell. 2009;101:375–392. doi: 10.1042/BC20080205. PubMed DOI

Belfort M., Curcio M.J., Lue N.F. Telomerase and retrotransposons: Reverse transcriptases that shaped genomes. Proc. Natl. Acad. Sci. USA. 2011;108:20304–20310. doi: 10.1073/pnas.1100269109. PubMed DOI PMC

Fitzgerald M.S., Riha K., Gao F., Ren S., McKnight T.D., Shippen D.E. Disruption of the telomerase catalytic subunit gene from Arabidopsis inactivates telomerase and leads to a slow loss of telomeric DNA. Proc. Natl. Acad. Sci. USA. 1999;96:14813–14818. doi: 10.1073/pnas.96.26.14813. PubMed DOI PMC

Oguchi K., Liu H., Tamura K., Takahashi H. Molecular cloning and characterization of AtTERT, a telomerase reverse transcriptase homolog in Arabidopsis thaliana. FEBS Lett. 1999;457:465–469. doi: 10.1016/S0014-5793(99)01083-2. PubMed DOI

Harrington L., Zhou W., McPhail T., Oulton R., Yeung D.S., Mar V., Bass M.B., Robinson M.O. Human telomerase contains evolutionarily conserved catalytic and structural subunits. Genes Dev. 1997;11:3109–3115. doi: 10.1101/gad.11.23.3109. PubMed DOI PMC

Lingner J., Hughes T.R., Shevchenko A., Mann M., Lundblad V., Cech T.R. Reverse transcriptase motifs in the catalytic subunit of telomerase. Science. 1997;276:561–567. doi: 10.1126/science.276.5312.561. PubMed DOI

Nakamura T.M., Morin G.B., Chapman K.B., Weinrich S.L., Andrews W.H., Lingner J., Harley C.B., Cech T.R. Telomerase catalytic subunit homologs from fission yeast and human. Science. 1997;277:955–959. doi: 10.1126/science.277.5328.955. PubMed DOI

Sykorova E., Fulneckova J., Mokros P., Fajkus J., Fojtova M., Peska V. Three TERT genes in Nicotiana tabacum. Chromosome Res. 2012;20:381–394. doi: 10.1007/s10577-012-9282-3. PubMed DOI

Clarkson J.J., Dodsworth S., Chase M.W. Time-Calibrated phylogenetic trees establish a lag between polyploidisation and diversification in Nicotiana (Solanaceae) Plant Syst. Evol. 2017;303:1001–1012. doi: 10.1007/s00606-017-1416-9. PubMed DOI PMC

Leitch I.J., Hanson L., Lim K.Y., Kovarik A., Chase M.W., Clarkson J.J., Leitch A.R. The ups and downs of genome size evolution in polyploid species of Nicotiana (Solanaceae) Ann. Bot. 2008;101:805–814. doi: 10.1093/aob/mcm326. PubMed DOI PMC

Clarkson J.J., Lim K.Y., Kovarik A., Chase M.W., Knapp S., Leitch A.R. Long-Term genome diploidization in allopolyploid Nicotiana section Repandae (Solanaceae) New Phytol. 2005;168:241–252. doi: 10.1111/j.1469-8137.2005.01480.x. PubMed DOI

Knapp S., Lughadha E.N., Paton A. Taxonomic inflation, species concepts and global species lists. Trends Ecol. Evol. 2005;20:7–8. doi: 10.1016/j.tree.2004.11.001. PubMed DOI

Kelly L.J., Leitch A.R., Clarkson J.J., Knapp S., Chase M.W. Reconstructing the complex evolutionary origin of wild allopolyploid tobaccos (Nicotiana section suaveolentes) Evolution. 2013;67:80–94. doi: 10.1111/j.1558-5646.2012.01748.x. PubMed DOI

Jureckova J.F., Sykorova E., Hafidh S., Honys D., Fajkus J., Fojtova M. Tissue-Specific expression of telomerase reverse transcriptase gene variants in Nicotiana tabacum. Planta. 2017;245:549–561. doi: 10.1007/s00425-016-2624-1. PubMed DOI

Pfaffl M.W. Quantification strategies in real-time PCR. In: Bustin S.A., editor. A-Z of Quantitative PCR. International University Line; La Jolla, CA, USA: 2004. pp. 87–112.

Clarkson J.J., Knapp S., Garcia V.F., Olmstead R.G., Leitch A.R., Chase M.W. Phylogenetic relationships in Nicotiana (Solanaceae) inferred from multiple plastid DNA regions. Mol. Phylogenet. Evol. 2004;33:75–90. doi: 10.1016/j.ympev.2004.05.002. PubMed DOI

Bombarely A., Rosli H.G., Vrebalov J., Moffett P., Mueller L.A., Martin G.B. A draft genome sequence of Nicotiana benthamiana to enhance molecular plant-microbe biology research. Mol. Plant Microbe Interact. 2012;25:1523–1530. doi: 10.1094/MPMI-06-12-0148-TA. PubMed DOI

Lim K.Y., Matyasek R., Kovarik A., Leitch A.R. Genome evolution in allotetraploid Nicotiana. Biol. J. Linn. Soc. 2004;82:599–606. doi: 10.1111/j.1095-8312.2004.00344.x. DOI

Renny-Byfield S., Chester M., Kovarik A., Le Comber S.C., Grandbastien M.A., Deloger M., Nichols R.A., Macas J., Novak P., Chase M.W., et al. Next generation sequencing reveals genome downsizing in allotetraploid Nicotiana tabacum, predominantly through the elimination of paternally derived repetitive DNAs. Mol. Biol. Evol. 2011;28:2843–2854. doi: 10.1093/molbev/msr112. PubMed DOI

Chase M.W., Knapp S., Cox A.V., Clarkson J.J., Butsko Y., Joseph J., Savolainen V., Parokonny A.S. Molecular systematics, GISH and the origin of hybrid taxa in Nicotiana (Solanaceae) Ann. Bot. 2003;92:107–127. doi: 10.1093/aob/mcg087. PubMed DOI PMC

Kohany O., Gentles A.J., Hankus L., Jurka J. Annotation, submission and screening of repetitive elements in Repbase: RepbaseSubmitter and Censor. BMC Bioinform. 2006;7:474. doi: 10.1186/1471-2105-7-474. PubMed DOI PMC

Gordenin D.A., Lobachev K.S., Degtyareva N.P., Malkova A.L., Perkins E., Resnick M.A. Inverted DNA repeats: A source of eukaryotic genomic instability. Mol. Cell. Biol. 1993;13:5315–5322. doi: 10.1128/MCB.13.9.5315. PubMed DOI PMC

Tang H., Bomhoff M.D., Briones E., Zhang L., Schnable J.C., Lyons E. SynFind: Compiling Syntenic Regions across Any Set of Genomes on Demand. Genome Biol. Evol. 2015;7:3286–3298. doi: 10.1093/gbe/evv219. PubMed DOI PMC

He Z.C., Li J.Q., Cai Q., Wang Q. The cytology of Actinidia, Saurauia and Clematoclethra (Actinidiaceae) Bot. J. Linn. Soc. 2005;147:369–374. doi: 10.1111/j.1095-8339.2005.00372.x. DOI

Shi T., Huang H.W., Barker M.S. Ancient genome duplications during the evolution of kiwifruit (Actinidia) and related Ericales. Ann. Bot. 2010;106:497–504. doi: 10.1093/aob/mcq129. PubMed DOI PMC

Schmutz J., Cannon S.B., Schlueter J., Ma J., Mitros T., Nelson W., Hyten D.L., Song Q., Thelen J.J., Cheng J., et al. Genome sequence of the palaeopolyploid soybean. Nature. 2010;463:178–183. doi: 10.1038/nature08670. PubMed DOI

Zhang T., Hu Y., Jiang W., Fang L., Guan X., Chen J., Zhang J., Saski C.A., Scheffler B.E., Stelly D.M., et al. Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nat. Biotechnol. 2015;33:531–537. doi: 10.1038/nbt.3207. PubMed DOI

Xie M., Podlevsky J.D., Qi X., Bley C.J., Chen J.J. A novel motif in telomerase reverse transcriptase regulates telomere repeat addition rate and processivity. Nucleic Acids Res. 2010;38:1982–1996. doi: 10.1093/nar/gkp1198. PubMed DOI PMC

Madlung A., Tyagi A.P., Watson B., Jiang H., Kagochi T., Doerge R.W., Martienssen R., Comai L. Genomic changes in synthetic Arabidopsis polyploids. Plant J. 2005;41:221–230. doi: 10.1111/j.1365-313X.2004.02297.x. PubMed DOI

Byng J.W., Chase M.W., Christenhusz M.J.M., Fay M.F., Judd W.S., Mabberley D.J., Sennikov A.N., Soltis D.E., Soltis P.S., Stevens P.F., et al. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot. J. Linn. Soc. 2016;181:1–20. doi: 10.1111/boj.12385. DOI

Huang S., Ding J., Deng D., Tang W., Sun H., Liu D., Zhang L., Niu X., Zhang X., Meng M., et al. Draft genome of the kiwifruit Actinidia chinensis. Nat. Commun. 2013;4:2640. doi: 10.1038/ncomms3640. PubMed DOI PMC

Dellaporta S.L., Wood J., Hicks J.B. A plant DNA minipreparation: Version II. Plant Mol. Biol. Report. 1983;1:19–21. doi: 10.1007/BF02712670. DOI

Fajkus J., Dvorackova M., Sykorova E. Analysis of telomeres and telomerase. Methods Mol. Biol. 2008;463:267–296. doi: 10.1007/978-1-59745-406-3_17. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Extraordinary diversity of telomeres, telomerase RNAs and their template regions in Saccharomycetaceae

. 2021 Jun 17 ; 11 (1) : 12784. [epub] 20210617

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...