Telomere sequence variability in genotypes from natural plant populations: unusual block-organized double-monomer terminal telomeric arrays
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu kazuistiky, časopisecké články
Grantová podpora
20-20286S
Grantová Agentura České Republiky
PubMed
37752451
PubMed Central
PMC10521516
DOI
10.1186/s12864-023-09657-y
PII: 10.1186/s12864-023-09657-y
Knihovny.cz E-zdroje
- Klíčová slova
- Evolution, Oxford nanopore sequencing, Plant, Population, Species, Telomere,
- MeSH
- Arabidopsis * genetika MeSH
- Eukaryota MeSH
- genotyp MeSH
- hybridizace in situ fluorescenční MeSH
- lidé MeSH
- telomery genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- kazuistiky MeSH
BACKGROUND: Telomeres are the nucleoprotein complexes that physically cap the ends of eukaryotic chromosomes. Most plants possess Arabidopsis-type telomere sequences (TSs). In addition to terminal TSs, more diverse interstitial TSs exists in plants. Although telomeres have been sufficiently studied, the actual diversity of TSs in land plants is underestimated. RESULTS: We investigate genotypes from seven natural populations with contrasting environments of four Chenopodium species to reveal the variability in TSs by analyzing Oxford Nanopore reads. Fluorescent in situ hybridization was used to localize telomeric repeats on chromosomes. We identified a number of derivative monomers that arise in part of both terminal and interstitial telomeric arrays of a single genotype. The former presents a case of block-organized double-monomer telomers, where blocks of Arabidopsis-type TTTAGGG motifs were interspersed with blocks of derivative TTTAAAA motifs. The latter is an integral part of the satellitome with transformations specific to the inactive genome fraction. CONCLUSIONS: We suggested two alternative models for the possible formation of derivative monomers from telomeric heptamer motifs of Arabidopsis-type. It was assumed that derivatization of TSs is a ubiquitous process in the plant genome but occurrence and frequencies of derivatives may be genotype-specific. We also propose that the formation of non-canonical arrays of TSs, especially at chromosomal termini, may be a source for genomic variability in nature.
Institute of Biotechnology HiLIFE University of Helsinki P O Box 65 Helsinki FI 00014 Finland
Institute of Botany Czech Academy of Sciences Zámek 1 CZ 252 43 Průhonice Czech Republic
National Laboratory Astana Nazarbayev University 53 Kabanbay Batyr Ave Nur Sultan 010000 Kazakhstan
Zobrazit více v PubMed
McKnight TD, Shippen DE. Plant telomere biology. Plant Cell. 2004;16(4):794–803. doi: 10.1105/tpc.160470. PubMed DOI PMC
Nelson ADL, Beilstein MA, Shippen DE. Plant Telomeres and Telomerase. In: Molecular Biology. Edited by Howell S, vol. 2. New York, NY: Springer; 2014: 25–49.
Peska V, Garcia S, Origin Diversity, and evolution of Telomere sequences in plants. Front Plant Sci. 2020;11:117. doi: 10.3389/fpls.2020.00117. PubMed DOI PMC
Chase M, Soltis DE, Soltis P, Rudall PJ, Fay M, Hahn WE, Wilson KJ, Morrison D, Sullivan S, Joseph J et al. Higher-level systematics of the monocotyledons: an assessment of current knowledge and a new classification. In: MONOCOTS: SYSTEMATICS AND EVOLUTION Edited by Wilson KL, Morrison DA. Melbourne, Australia: CSIRO; 2000: 3–16.
Angiosperm Phylogeny Group An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot J Linn Soc. 2009;161(2):105–21. doi: 10.1111/j.1095-8339.2009.00996.x. DOI
Fuchs J, Brandes A, Schubert I. Telomere sequence localization and karyotype evolution in higher plants. Plant Syst Evol. 1995;196(3–4):227–41. doi: 10.1007/BF00982962. DOI
Weiss H, Scherthan H. Aloe spp.--plants with vertebrate-like telomeric sequences. Chromosome Res. 2002;10(2):155–64. doi: 10.1023/a:1014905319557. PubMed DOI
Závodník M, Fajkus P, Franek M, Kopecký D, Garcia S, Dodsworth S, Orejuela A, Kilar A, Ptáček J, Mátl M, Hýsková A, Fajkus J, Peška V. Telomerase RNA gene paralogs in plants - the usual pathway to unusual telomeres. New Phytol. 2023 doi: 10.1111/nph.19110. PubMed DOI
Da Silva CRM, GonzÁLez-Elizondo MS, Vanzela ALL. Reduction of chromosome number in Eleocharis subarticulata (Cyperaceae) by multiple translocations. Bot J Linn Soc. 2005;149(4):457–64. doi: 10.1111/j.1095-8339.2005.00449.x. DOI
Raskina O, Barber JC, Nevo E, Belyayev A. Repetitive DNA and chromosomal rearrangements: speciation-related events in plant genomes. Cytogenet Genome Res. 2008;120(3–4):351–7. doi: 10.1159/000121084. PubMed DOI
Souza G, Vanzela AL, Crosa O, Guerra M. Interstitial telomeric sites and robertsonian translocations in species of Ipheion and Nothoscordum (Amaryllidaceae) Genetica. 2016;144(2):157–66. doi: 10.1007/s10709-016-9886-1. PubMed DOI
Uchida W, Matsunaga S, Sugiyama R, Kawano S. Interstitial telomere-like repeats in the Arabidopsis thaliana genome. Genes Genet Syst. 2002;77(1):63–7. doi: 10.1266/ggs.77.63. PubMed DOI
Maravilla AJ, Rosato M, Alvarez I, Nieto Feliner G, Rossello JA. Interstitial Arabidopsis-Type Telomeric repeats in Asteraceae. Plants (Basel). 2021;10(12). 10.3390/plants10122794. PubMed PMC
Hastie ND, Allshire RC. Human telomeres: fusion and interstitial sites. Trends Genet. 1989;5:326–31. doi: 10.1016/0168-9525(89)90137-6. PubMed DOI
Lin KW, Yan J. Endings in the middle: current knowledge of interstitial telomeric sequences. Mutat Res. 2008;658(1–2):95–110. doi: 10.1016/j.mrrev.2007.08.006. PubMed DOI
Mandak B, Krak K, Vit P, Lomonosova MN, Belyayev A, Habibi F, Wang L, Douda J, Storchova H. Hybridization and polyploidization within the Chenopodium album aggregate analysed by means of cytological and molecular markers. Mol Phylogenet Evol. 2018;129:189–201. doi: 10.1016/j.ympev.2018.08.016. PubMed DOI
Krasnoborov IM, Malyshev LI. Flora of Siberia 5. Plymouth: Scientific Publishers, Inc; 2003. Salicaceae-Amaranthaceae.
Baird DM, Jeffreys AJ, Royle NJ. Mechanisms underlying telomere repeat turnover, revealed by hypervariable variant repeat distribution patterns in the human Xp/Yp telomere. EMBO J. 1995;14(21):5433–43. doi: 10.1002/j.1460-2075.1995.tb00227.x. PubMed DOI PMC
Tran TD, Cao HX, Jovtchev G, Neumann P, Novak P, Fojtova M, Vu GT, Macas J, Fajkus J, Schubert I, et al. Centromere and telomere sequence alterations reflect the rapid genome evolution within the carnivorous plant genus Genlisea. Plant J. 2015;84(6):1087–99. doi: 10.1111/tpj.13058. PubMed DOI
Tan KT, Slevin MK, Meyerson M, Li H. Identifying and correcting repeat-calling errors in nanopore sequencing of telomeres. Genome Biol. 2022;23(1):180. doi: 10.1186/s13059-022-02751-6. PubMed DOI PMC
de Lange T. T-loops and the origin of telomeres. Nat Rev Mol Cell Biol. 2004;5(4):323–9. doi: 10.1038/nrm1359. PubMed DOI
Tomaska L, Nosek J, Kar A, Willcox S, Griffith JD. A New View of the T-Loop Junction: implications for self-primed Telomere Extension, expansion of Disease-Related nucleotide repeat blocks, and Telomere Evolution. Front Genet. 2019;10:792. doi: 10.3389/fgene.2019.00792. PubMed DOI PMC
Rose AM, Goncalves T, Cunniffe S, Geiller HEB, Kent T, Shepherd S, Ratnaweera M, O’Sullivan RJ, Gibbons RJ, Clynes D. Induction of the alternative lengthening of telomeres pathway by trapping of proteins on DNA. Nucleic Acids Res. 2023 doi: 10.1093/nar/gkad150. PubMed DOI PMC
Plohl M, Mestrovic N, Mravinac B. Satellite DNA evolution. Genome Dyn. 2012;7:126–52. doi: 10.1159/000337122. PubMed DOI
Belyayev A, Josefiova J, Jandova M, Kalendar R, Krak K, Mandak B. Natural history of a Satellite DNA Family: from the ancestral genome component to Species-Specific sequences, concerted and non-concerted evolution. Int J Mol Sci. 2019;20(5). 10.3390/ijms20051201. PubMed PMC
Gao D, Nascimento E, Leal-Bertioli SCM, Abernathy B, Jackson SA, Araujo ACG, Bertioli DJ. TAR30, a homolog of the canonical plant TTTAGGG telomeric repeat, is enriched in the proximal chromosome regions of peanut (Arachis hypogaea L) Chromosome Res. 2022 doi: 10.1007/s10577-022-09684-7. PubMed DOI
Elder JF, Jr, Turner BJ. Concerted evolution of repetitive DNA sequences in eukaryotes. Q Rev Biol. 1995;70(3):297–320. doi: 10.1086/419073. PubMed DOI
Belyayev A, Jandova M, Josefiova J, Kalendar R, Mahelka V, Mandak B, Krak K. The major satellite DNA families of the diploid Chenopodium album aggregate species: arguments for and against the library hypothesis. PLoS ONE. 2020;15(10):e0241206. doi: 10.1371/journal.pone.0241206. PubMed DOI PMC
Sahlin K, Medvedev P. Error correction enables use of Oxford Nanopore technology for reference-free transcriptome analysis. Nat Commun. 2021;12(1):2. doi: 10.1038/s41467-020-20340-8. PubMed DOI PMC
Delahaye C, Nicolas J. Sequencing DNA with nanopores: troubles and biases. PLoS ONE. 2021;16(10):e0257521. doi: 10.1371/journal.pone.0257521. PubMed DOI PMC
Noe L, Kucherov G. YASS: enhancing the sensitivity of DNA similarity search. Nucleic Acids Res. 2005 doi: 10.1093/nar/gki478. PubMed DOI PMC
Benson G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 1999;27(2):573–80. doi: 10.1093/nar/27.2.573. PubMed DOI PMC
Schwarzacher T, Heslop-Harrison JS. Practical in situ hybridization. Oxford: BIOS Scientific Publishers; 2000.
Ijdo JW, Wells RA, Baldini A, Reeders ST. Improved telomere detection using a telomere repeat probe (TTAGGG)n generated by PCR. Nucleic Acids Res. 1991;19(17):4780. doi: 10.1093/nar/19.17.4780. PubMed DOI PMC