Nitrogen, phosphorus, and potassium are the three most essential micronutrients which play major roles in plant survivability by being a structural or non-structural component of the cell. Plants acquire these nutrients from soil in the fixed (NO3 ̄, NH4+) and solubilized forms (K+, H2PO4- and HPO42-). In soil, the fixed and solubilized forms of nutrients are unavailable or available in bare minimum amounts; therefore, agrochemicals were introduced. Agrochemicals, mined from the deposits or chemically prepared, have been widely used in the agricultural farms over the decades for the sake of higher production of the crops. The excessive use of agrochemicals has been found to be deleterious for humans, as well as the environment. In the environment, agrochemical usage resulted in soil acidification, disturbance of microbial ecology, and eutrophication of aquatic and terrestrial ecosystems. A solution to such devastating agro-input was found to be substituted by macronutrients-availing microbiomes. Macronutrients-availing microbiomes solubilize and fix the insoluble form of nutrients and convert them into soluble forms without causing any significant harm to the environment. Microbes convert the insoluble form to the soluble form of macronutrients (nitrogen, phosphorus, and potassium) through different mechanisms such as fixation, solubilization, and chelation. The microbiomes having capability of fixing and solubilizing nutrients contain some specific genes which have been reported in diverse microbial species surviving in different niches. In the present review, the biodiversity, mechanism of action, and genomics of different macronutrients-availing microbiomes are presented.
- MeSH
- Bacteria * metabolism genetics classification MeSH
- Biodiversity * MeSH
- Biotechnology * MeSH
- Potassium metabolism MeSH
- Nitrogen metabolism MeSH
- Phosphorus metabolism MeSH
- Microbiota * MeSH
- Soil chemistry MeSH
- Soil Microbiology MeSH
- Crops, Agricultural MeSH
- Agriculture MeSH
- Nutrients * metabolism MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
This study deals with the comprehensive phytochemical composition and antiviral activity against SARS-CoV-2 of acidic (non-decarboxylated) and neutral (decarboxylated) ethanolic extracts from seven high-cannabidiol (CBD) and two high-Δ9-tetrahydrocannabinol (Δ9-THC) Cannabis sativa L. genotypes. Their secondary metabolite profiles, phytocannabinoid, terpenoid, and phenolic, were determined by LC-UV, GC-MS, and LC-MS/MS analyses, respectively. All three secondary metabolite profiles, cannabinoid, terpenoid, and phenolic, varied significantly among cannabinoid extracts of different genotypes. The dose-response analyses of their antiviral activity against SARS-CoV-2 showed that only the single predominant phytocannabinoids (CBD or THC) of the neutral extracts exhibited antiviral activity (all IC50 < 10.0 μM). The correlation matrix between phytoconstituent levels and antiviral activity revealed that the phenolic acids, salicylic acid and its glucoside, chlorogenic acid, and ferulic acid, and two flavonoids, abietin, and luteolin, in different cannabinoid extracts from high-CBD genotypes are implicated in the genotype-distinct antagonistic effects on the predominant phytocannabinoid. On the other hand, these analyses also suggested that the other phytocannabinoids and the flavonoid orientin can enrich the extract's pharmacological profiles. Thus, further preclinical studies on cannabinoid extract formulations with adjusted non-phytocannabinoid compositions are warranted to develop supplementary antiviral treatments.
Bacillus is well known for producing a wide range of compounds that inhibit microbial phytopathogens. From this perspective, we were interested in evaluating the biocontrol potential of 5 plant growth-promoting rhizobacteria Bacillus species (PGPR-Bacillus) on 21 microbial pectinolytic plant pathogens isolated from previous studies. Phytopathogenicity and in vivo biocontrol potential of PGPR curative and preventive treatments were investigated from this angle. Overall, the pathogenicity test on healthy tomato, zucchini, and mandarin showed low rot to no symptoms for all PGPR strain culture treatments. Conversely, zucchini pre-treated with PGPR strains B. circulans and B. cereus for 72 h showed no signs of soft rot and remained healthy when in vitro contaminated with phytopathogens (Neisseria cinerea and Pichia anomala). Additionally, the PGPR-Bacillus strains were shown to be effective in mitigating the symptoms of soft rot in tomatoes, zucchini, and oranges using in vivo curative treatment. It is true that the majority of pectinolytic phytopathogenic strains exhibited antibiotic resistance. In vivo tests revealed that PGPR-Bacillus cell culture was effective against plant pathogens. Thus, PGPR-Bacillus can be considered a potential biocontrol agent for pectinolytic plant pathogens.
- MeSH
- Antibiosis * MeSH
- Bacillus * physiology MeSH
- Pest Control, Biological * methods MeSH
- Biological Control Agents * MeSH
- Citrus microbiology growth & development MeSH
- Plant Diseases * microbiology prevention & control MeSH
- Pectins metabolism MeSH
- Soil Microbiology MeSH
- Solanum lycopersicum microbiology growth & development MeSH
- Plant Development MeSH
- Publication type
- Journal Article MeSH
Yeasts are unicellular fungi that occur in a wide range of ecological niches, where they perform numerous functions. Furthermore, these microorganisms are used in industrial processes, food production, and bioremediation. Understanding the physiological and adaptive characteristics of yeasts is of great importance from ecological, biotechnological, and industrial perspectives. In this context, we evaluated the abilities to assimilate and ferment different carbon sources, to produce extracellular hydrolytic enzymes, and to tolerate salt stress, heavy metal stress, and UV-C radiation of two isolates of Eremothecium coryli, isolated from Momordica indica fruits. The two isolates were molecularly identified based on sequencing of the 18S-ITS1-5.8S-ITS2 region. Our isolates were able to assimilate nine carbon sources (dextrose, galactose, mannose, cellobiose, lactose, maltose, sucrose, melezitose, and pectin) and ferment three (glucose, maltose, and sucrose). The highest values of cellular dry weight were observed in the sugars maltose, sucrose, and melezitose. We observed the presence of hyphae and pseudohyphae in all assimilated carbon sources. The two isolates were also capable of producing amylase, catalase, pectinase, and proteases, with the highest values of enzymatic activity found in amylase. Furthermore, the two isolates were able to grow in media supplemented with copper, iron, manganese, nickel, and zinc and to tolerate saline stress in media supplemented with 5% NaCl. However, we observed a decrease in CFU at higher concentrations of these metals and NaCl. We also observed morphological changes in the presence of metals, which include changes in cell shape and cellular dimorphisms. The isolates were sensitive to UV-C radiation in the shortest exposure time (1 min). Our findings reinforce the importance of endophytic yeasts for biotechnological and industrial applications and also help to understand how these microorganisms respond to environmental variations caused by human activities.
- MeSH
- Endophytes * isolation & purification genetics metabolism physiology classification radiation effects MeSH
- Fermentation MeSH
- Phylogeny MeSH
- Stress, Physiological * MeSH
- Carbohydrate Metabolism * MeSH
- Fruit * microbiology MeSH
- Saccharomycetales * isolation & purification genetics physiology metabolism radiation effects classification MeSH
- Metals, Heavy toxicity MeSH
- Ultraviolet Rays MeSH
- Publication type
- Journal Article MeSH
β-Glucans comprise a group of β-D-glucose polysaccharides (glucans) that occur naturally in the cell walls of bacteria, fungi, and cereals. Its degradation is catalyzed by β-glucanases, enzymes that catalyze the breakdown of β-glucan into cello-oligosaccharides and glucose. These enzymes are classified as endo-glucanases, exo-glucanases, and glucosidases according to their mechanism of action, being the lichenases (β-1,3;1,4-glucanases, EC 3.2.1.73) one of them. Hence, we aimed to enhance lichenase production by Thermothelomyces thermophilus through the application of response surface methodology, using tamarind (Tamarindus indica) and jatoba (Hymenaea courbaril) seeds as carbon sources. The crude extract was immobilized, with a focus on improving lichenase activity, using various ionic supports, including MANAE (monoamine-N-aminoethyl), DEAE (diethylaminoethyl)-cellulose, CM (carboxymethyl)-cellulose, and PEI (polyethyleneimine)-agarose. Regarding lichenase, the optimal conditions yielding the highest activity were determined as 1.5% tamarind seeds, cultivation at 50 °C under static conditions for 72 h. Moreover, transitioning from Erlenmeyer flasks to a bioreactor proved pivotal, resulting in a 2.21-fold increase in activity. Biochemical characterization revealed an optimum temperature of 50 °C and pH of 6.5. However, sustained stability at varying pH and temperature levels was challenging, underscoring the necessity of immobilizing lichenase on ionic supports. Notably, CM-cellulose emerged as the most effective immobilization medium, exhibiting an activity of 1.01 U/g of the derivative (enzyme plus support), marking a substantial enhancement. This study marks the first lichenase immobilization on these chemical supports in existing literature.
- MeSH
- Enzymes, Immobilized * metabolism chemistry MeSH
- Fungal Proteins * metabolism chemistry MeSH
- Glycoside Hydrolases * metabolism chemistry biosynthesis MeSH
- Hydrogen-Ion Concentration MeSH
- Fruit metabolism MeSH
- Seeds metabolism MeSH
- Sordariales MeSH
- Enzyme Stability MeSH
- Tamarindus metabolism microbiology MeSH
- Publication type
- Journal Article MeSH
Vitamin B12, cobalamin, is indispensable for humans owing to its participation in two biochemical reactions: the conversion of l-methylmalonyl coenzyme A to succinyl coenzyme A, and the formation of methionine by methylation of homocysteine. Eukaryotes, encompassing plants, fungi, animals and humans, do not synthesise vitamin B12, in contrast to prokaryotes. Humans must consume it in their diet. The most important sources include meat, milk and dairy products, fish, shellfish and eggs. Due to this, vegetarians are at risk to develop a vitamin B12 deficiency and it is recommended that they consume fortified food. Vitamin B12 behaves differently to most vitamins of the B complex in several aspects, e.g. it is more stable, has a very specific mechanism of absorption and is stored in large amounts in the organism. This review summarises all its biological aspects (including its structure and natural sources as well as its stability in food, pharmacokinetics and physiological function) as well as causes, symptoms, diagnosis (with a summary of analytical methods for its measurement), prevention and treatment of its deficiency, and its pharmacological use and potential toxicity.
- MeSH
- Diet, Vegetarian MeSH
- Diet MeSH
- Food, Fortified MeSH
- Humans MeSH
- Vitamin B 12 Deficiency * diagnosis prevention & control drug therapy etiology MeSH
- Vitamin B 12 * pharmacokinetics chemistry metabolism therapeutic use physiology adverse effects administration & dosage pharmacology MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
High soil pH and excess CaCO3 are major contributors to calcareous soil limitations on crops' access to essential nutrients, especially phosphorus (P) and micronutrients, which in turn impact pulses yields and growth. The purpose of this study was to determine the effect of bio sulfur granules (BSG) on the growth of black gram and the availability of nutrients in calcareous vertisols deficient in sulfur. BSG was developed by using sulfur-oxidizing bacteria (SOB) and elemental sulfur (ES) through an incubation study. Developed BSG was tested in a pot and field conditions to evaluate their effectiveness on black gram growth and yield. In the incubation study, soil treated with Methylobacterium thiocyanatum VRI7-A4 and ES (40 kg S/ha) significantly decreased pH and increased available S (SO42-) in calcareous soils. After 40 days of incubation, the solubility of P, Fe, and Zn was greatly increased by the addition of ES @ 40 kg S/ ha in combination with M. thiocyanatum VRI7-A4 or Pandoraea thiooxydans ATSB16. Black gram in S-deficient calcareous soil was improved by the application of BSG (ES @ 40 kg S/ ha with M. thiocyanatum VRI7-A7) in terms of root and shoot lengths, nodule number, plant biomass, pod yield, and biological yield as compared to control. The same treatment greatly increased plant nutrient intake as well as the concentrations of P, Fe, and Zn in the soil. The results showed that the addition of BSG granules (ES @ 40 kg S/ha + M. thiocyanatum VRI7-A4) to calcareous vertisol deficient in S enhanced the nutrient solubility through S oxidation. The developed bio sulfur granules may be added to the fertilizer schedule of the pulses growers to get improved crop growth and yield of black gram in calcareous soil.
Apple replant disease (ARD) is a significant factor restricting the healthy development of the apple industry. Biological control is an important and sustainable method for mitigating ARD. In this study, a strain of Paenibacillus polymyxa GRY-11 was isolated and screened from the rhizosphere soil of healthy apple trees in old apple orchards in Shandong Province, China, and the effects of strain GRY-11 on soil microbial community and ARD were studied. The result showed that P. polymyxa GRY-11 could effectively inhibit the growth of the main pathogenic fungi that caused ARD, and the inhibition rates of the strain against Fusarium moniliforme, Fusarium proliferatum, Fusarium solani, and Fusarium oxysporum were 80.00%, 71.60%, 75.00%, and 70.00%, respectively. In addition, the fermentation supernatant played an active role in suppressing the growth of pathogenic fungi. The results of the pot experiment showed that the bacterial fertilizer of the GRY-11 promoted the growth of Malus hupehensis seedlings, improved the activity of protective enzymes in plant roots, enhanced the soil enzyme content, and optimized the soil microbial environment. In general, the GRY-11 can be used as an effective microbial preparation to alleviate ARD. Our study offers novel perspectives for the prevention of ARD.
- MeSH
- Antibiosis MeSH
- Pest Control, Biological * MeSH
- Biological Control Agents * MeSH
- Fusarium growth & development MeSH
- Fungi growth & development MeSH
- Plant Roots microbiology MeSH
- Malus * microbiology growth & development MeSH
- Plant Diseases * microbiology prevention & control MeSH
- Paenibacillus polymyxa * isolation & purification physiology genetics classification MeSH
- Soil Microbiology MeSH
- Rhizosphere MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- China MeSH
With the advent rise is in urbanization and industrialization, heavy metals (HMs) such as lead (Pb) and cadmium (Cd) contamination have increased considerably. It is among the most recalcitrant pollutants majorly affecting the biotic and abiotic components of the ecosystem like human well-being, animals, soil health, crop productivity, and diversity of prokaryotes (bacteria) and eukaryotes (plants, fungi, and algae). At higher concentrations, these metals are toxic for their growth and pose a significant environmental threat, necessitating innovative and sustainable remediation strategies. Bacteria exhibit diverse mechanisms to cope with HM exposure, including biosorption, chelation, and efflux mechanism, while fungi contribute through mycorrhizal associations and hyphal networks. Algae, especially microalgae, demonstrate effective biosorption and bioaccumulation capacities. Plants, as phytoremediators, hyperaccumulate metals, providing a nature-based approach for soil reclamation. Integration of these biological agents in combination presents opportunities for enhanced remediation efficiency. This comprehensive review aims to provide insights into joint action of prokaryotic and eukaryotic interactions in the management of HM stress in the environment.
- MeSH
- Bacteria * metabolism drug effects MeSH
- Biodegradation, Environmental * MeSH
- Eukaryota metabolism drug effects MeSH
- Fungi metabolism MeSH
- Cadmium * metabolism toxicity MeSH
- Soil Pollutants * metabolism MeSH
- Lead * metabolism toxicity MeSH
- Plants microbiology metabolism MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
The soil microbiota exhibits an important function in the ecosystem, and its response to climate change is of paramount importance for sustainable agroecosystems. The macronutrients, micronutrients, and additional constituents vital for the growth of plants are cycled biogeochemically under the regulation of the soil microbiome. Identifying and forecasting the effect of climate change on soil microbiomes and ecosystem services is the need of the hour to address one of the biggest global challenges of the present time. The impact of climate change on the structure and function of the soil microbiota is a major concern, explained by one or more sustainability factors around resilience, reluctance, and rework. However, the past research has revealed that microbial interventions have the potential to regenerate soils and improve crop resilience to climate change factors. The methods used therein include using soil microbes' innate capacity for carbon sequestration, rhizomediation, bio-fertilization, enzyme-mediated breakdown, phyto-stimulation, biocontrol of plant pathogens, antibiosis, inducing the antioxidative defense pathways, induced systemic resistance response (ISR), and releasing volatile organic compounds (VOCs) in the host plant. Microbial phytohormones have a major role in altering root shape in response to exposure to drought, salt, severe temperatures, and heavy metal toxicity and also have an impact on the metabolism of endogenous growth regulators in plant tissue. However, shelf life due to the short lifespan and storage time of microbial formulations is still a major challenge, and efforts should be made to evaluate their effectiveness in crop growth based on climate change. This review focuses on the influence of climate change on soil physico-chemical status, climate change adaptation by the soil microbiome, and its future implications.