Natural History of a Satellite DNA Family: From the Ancestral Genome Component to Species-Specific Sequences, Concerted and Non-Concerted Evolution

. 2019 Mar 09 ; 20 (5) : . [epub] 20190309

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30857296

Grantová podpora
13-02290S Grantová Agentura České Republiky
RVO 67985939 Akademie věd České republiky

Satellite DNA (satDNA) is the most variable fraction of the eukaryotic genome. Related species share a common ancestral satDNA library and changing of any library component in a particular lineage results in interspecific differences. Although the general developmental trend is clear, our knowledge of the origin and dynamics of satDNAs is still fragmentary. Here, we explore whole genome shotgun Illumina reads using the RepeatExplorer (RE) pipeline to infer satDNA family life stories in the genomes of Chenopodium species. The seven diploids studied represent separate lineages and provide an example of a species complex typical for angiosperms. Application of the RE pipeline allowed by similarity searches a determination of the satDNA family with a basic monomer of ~40 bp and to trace its transformation from the reconstructed ancestral to the species-specific sequences. As a result, three types of satDNA family evolutionary development were distinguished: (i) concerted evolution with mutation and recombination events; (ii) concerted evolution with a trend toward increased complexity and length of the satellite monomer; and (iii) non-concerted evolution, with low levels of homogenization and multidirectional trends. The third type is an example of entire repeatome transformation, thus producing a novel set of satDNA families, and genomes showing non-concerted evolution are proposed as a significant source for genomic diversity.

Zobrazit více v PubMed

Bennetzen J.L. The structure and evolution of angiosperm nuclear genomes. Curr. Opin. Plant Biol. 1998;1:103–108. doi: 10.1016/S1369-5266(98)80010-1. PubMed DOI

Maumus F., Quesneville H. Ancestral repeats have shaped epigenome and genome composition for millions of years in Arabidopsis thaliana. Nat. Commun. 2014;5:4104. doi: 10.1038/ncomms5104. PubMed DOI PMC

Elder J.F., Turner B.J. Concerted evolution of repetitive DNA sequences in eukaryotes. Q. Rev. Biol. 1995;70:297–320. doi: 10.1086/419073. PubMed DOI

Garrido-Ramos M.A. Satellite DNA: An Evolving Topic. Genes. 2017;8:230. doi: 10.3390/genes8090230. PubMed DOI PMC

Biscotti M.A., Olmo E., Heslop-Harrison J.S. Repetitive DNA in eukaryotic genomes. Chromosome Res. 2015;23:415–420. doi: 10.1007/s10577-015-9499-z. PubMed DOI

Wei K.H.-C., Lower S.E., Caldas I.V., Sless T.J., Barbash D.A., Clark A.G. Variable rates of simple satellite gains across the Drosophila phylogeny. Mol. Biol. Evol. 2018;35:925–941. doi: 10.1093/molbev/msy005. PubMed DOI PMC

Satović E., Vojvoda Zeljko T., Luchetti A., Mantovani B., Plohl M. Adjacent sequences disclose potential for intra-genomic dispersal of satellite DNA repeats and suggest a complex network with transposable elements. BMC Genom. 2016;17:997. doi: 10.1186/s12864-016-3347-1. PubMed DOI PMC

Charlesworth B., Sniegowski P., Stephan W. The evolutionary dynamics of repetitive DNA in eukaryotes. Nature. 1994;371:215–220. doi: 10.1038/371215a0. PubMed DOI

Raskina O., Barber J.C., Nevo E., Belyayev A. Repetitive DNA and chromosomal rearrangements: Speciation-related events in plant genomes. Cytogenet. Gen. Res. 2008;120:351–357. doi: 10.1159/000121084. PubMed DOI

Emadzade K., Jang T.S., Macas J., Kovařík A., Novák P., Parker J., Weiss-Schneeweiss H. Differential amplification of satellite PaB6 in chromosomally hypervariable Prospero autumnale complex (Hyacinthaceae) Ann. Bot. 2014;114:1597–1608. doi: 10.1093/aob/mcu178. PubMed DOI PMC

Dodsworth S., Chase M.W., Kelly L.J., Leitch I.J., Macas J., Novák P., Piednoël M., Weiss-Schneeweiss H., Leitch A.R. Genomic repeat abundances contain phylogenetic signal. Syst. Biol. 2015;64:112–126. doi: 10.1093/sysbio/syu080. PubMed DOI PMC

Martienssen R.A. Maintenance of heterochromatin by RNA interference of tandem repeats. Nat. Genet. 2003;35:213–214. doi: 10.1038/ng1252. PubMed DOI

Kloc A., Martienssen R. RNAi, heterochromatin and the cell cycle. Trends Genet. 2008;24:511–517. doi: 10.1016/j.tig.2008.08.002. PubMed DOI

Mehrotra S., Goyal V. Repetitive sequences in plant nuclear DNA: Types, distribution, evolution and function. Genom. Proteom. Bioinform. 2014;12:164–171. doi: 10.1016/j.gpb.2014.07.003. PubMed DOI PMC

Garrido-Ramos M.A. SatDNA in plants: More than just rubbish. Cytogenet. Genome Res. 2015;146:153–170. doi: 10.1159/000437008. PubMed DOI

Meštrović N., Mravinac B., Pavlek M., Vojvoda-Zeljko T., Šatović E., Plohl M. Structural and functional liaisons between transposable elements and satellite DNAs. Chromosome Res. 2015;23:583–596. doi: 10.1007/s10577-015-9483-7. PubMed DOI

Plohl M., Meštrović N., Mravinac B. Satellite DNA evolution. Genome Dyn. 2012;7:126–152. PubMed

Salser W., Bowen S., Browne D., el-Adli F., Fedoroff N., Fry K., Heindell H., Paddock G., Poon R., Wallace B., et al. Investigation of the organization of mammalian chromosomes at the DNA sequence level. Fed. Proc. 1976;35:23–35. PubMed

Dover G. Molecular drive. Trends Genet. 2002;18:587–589. doi: 10.1016/S0168-9525(02)02789-0. PubMed DOI

Plohl M., Luchetti A., Mestrovic N., Mantovani B. Satellite DNAs between selfishness and functionality: Structure, genomics and evolution of tandem repeats in centromeric (hetero) chromatin. Gene. 2008;409:72–82. doi: 10.1016/j.gene.2007.11.013. PubMed DOI

Samoluk S.S., Robledo G., Bertioli D., Seijo J.G. Evolutionary dynamics of an at-rich satellite DNA and its contribution to karyotype differentiation in wild diploid Arachis species. Mol. Genet. Genom. 2017;292:283–296. doi: 10.1007/s00438-016-1271-3. PubMed DOI

Ugarkovic D., Plohl M. Variation in satellite DNA profiles-causes and effects. EMBO J. 2002;2:5955–5959. doi: 10.1093/emboj/cdf612. PubMed DOI PMC

Novák P., Neumann P., Macas J. Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data. BMC Bioinform. 2010;11:378. doi: 10.1186/1471-2105-11-378. PubMed DOI PMC

Chu G.-L., Mosyakin S.L., Clemants S.E. Chenopodiaceae. In: Wu Z., Raven P.H., Hong D., editors. Flora of China. Volume 5: Ulmaceae through Basellaceae. Missouri Botanical Garden Press; St. Louis, MI, USA: 2003. pp. 351–414.

Habibi F., Vít P., Rahiminejad M., Mandák B. Towards a better understanding of the C. album aggregate in the Middle East: A karyological, cytometric and morphometric investigation. J. Syst. Evol. 2018;56:231–242. doi: 10.1111/jse.12306. DOI

Mandák B., Krak K., Vít P., Pavlíková Z., Lomonosova M.N., Habibi F., Lei W., Jellen E.N., Douda J. How genome size variation is linked with evolution within Chenopodium sensu lato. Perspect. Plant Ecol. Evol. System. 2016;23:18–32. doi: 10.1016/j.ppees.2016.09.004. DOI

Mandák B., Krak K., Vít P., Lomonosova M.N., Belyayev A., Habibi F., Wang L., Douda J., Storchova H. Hybridization and polyploidization within the Chenopodium album aggregate analyzed by means of cytological and molecular markers. Mol. Phylogenet. Evol. 2018;129:189–201. doi: 10.1016/j.ympev.2018.08.016. PubMed DOI

Gao D., Schmidt T., Jung C. Molecular characterization and chromosomal distribution of species-specific repetitive DNA sequences from Beta corolliflora, a wild relative of sugar beet. Genome. 2000;43:1073–1080. doi: 10.1139/g00-084. PubMed DOI

Kolano B., Gardunia B.W., Michalska M., Bonifacio A., Fairbanks D., Maughan P.J., Coleman C.E., Stevens M.R., Jellen E.N., Maluszynska J. Chromosomal localization of two novel repetitive sequences isolated from the Chenopodium quinoa Willd. Genome. 2011;54:710–717. doi: 10.1139/g11-035. PubMed DOI

Benson G. Tandem repeats finder: A program to analyze DNA sequences. Nucleic Acids Res. 1999;27:573–580. doi: 10.1093/nar/27.2.573. PubMed DOI PMC

Gogarten J.P., Kibak H., Dittrich P., Taiz L., Bowman E.J., Bowman B.J., Manolson M.F., Poole R.J., Date T., Oshima T., et al. Evolution of the Vacuolar H+-Atpase: Implications for the Origin of Eukaryotes. Proc. Natl. Acad. Sci. USA. 1989;86:6661–6665. doi: 10.1073/pnas.86.17.6661. PubMed DOI PMC

Iwabe N., Kuma K., Hasegawa M., Osawa S., Miyata T. Evolutionary Relationship of Archaebacteria, Eubacteria, and Eukaryotes Inferred from Phylogenetic Trees of Duplicated Genes. Proc. Natl. Acad. Sci. USA. 1989;86:9355–9359. doi: 10.1073/pnas.86.23.9355. PubMed DOI PMC

Kadereit G., Hohmann S., Kadereit J.W. A synopsis of Chenopodiaceae subfam. Betoideae and notes on the taxonomy of Beta. Willdenowia. 2006;36:9–19. doi: 10.3372/wi.36.36101. DOI

Koukalova B., Moraes A.P., Renny-Byfield S., Matyasek R., Leitch A., Kovarik A. Fall and rise of satellite repeats in allopolyploids of Nicotiana over c. 5 million years. New Phytol. 2009;186:148–160. doi: 10.1111/j.1469-8137.2009.03101.x. PubMed DOI

Plohl M., Petrović V., Luchetti A., Ricci A., Satović E., Passamonti M., Mantovani B. Long-term conservation vs. high sequence divergence: The case of an extraordinarily old satellite DNA in bivalve mollusks. Heredity. 2009;104:543–551. doi: 10.1038/hdy.2009.141. PubMed DOI

Willard H.F., Waye J.S. Hierarchical order in chromosome-specific human alpha satellite DNA. Trends Genet. 1987;3:192–198. doi: 10.1016/0168-9525(87)90232-0. DOI

Gallagher D.S., Modi W.S., Ivanov S. Concerted Evolution and Higher-Order Repeat Structure of the 1.709 (Satellite IV) Family in Bovids. J. Mol. Evol. 2004;58:460–465. doi: 10.1007/s00239-003-2567-6. PubMed DOI

Adega F., Chaves R., Guedes-Pinto H., Heslop-Harrison J.S. Physical organization of the 1.709 satellite IV DNA family in Bovini and Tragelaphini tribes of the Bovidae: Sequence and chromosomal evolution. Cytogenet. Genome Res. 2006;114:140–146. doi: 10.1159/000093330. PubMed DOI

Macas J., Navrátilová A., Koblížková A. Sequence homogenization and chromosomal localization of VicTR-B satellites differ between closely related Vicia species. Chromosoma. 2006;115:437–447. doi: 10.1007/s00412-006-0070-8. PubMed DOI

Jarvis D.E., Ho Y.S., Lightfoot D.J., Schmöckel S.M., Li B., Borm T.J., Ohyanagi H., Mineta K., Michell C.T., Saber N., et al. The genome of Chenopodium quinoa. Nature. 2017;542:307–312. doi: 10.1038/nature21370. PubMed DOI

Belyayev A., Paštová L., Fehrer J., Josefiová J., Chrtek J., Mráz P. Mapping of Hieracium (Asteraceae) chromosomes with genus-specific satDNA elements derived from next-generation sequencing data. Plant Syst. Evol. 2018;304:387–396. doi: 10.1007/s00606-017-1483-y. DOI

Henikoff S., Ahmad K., Malik H.S. The centromere paradox: Stable inheritance with rapidly evolving DNA. Science. 2001;293:1098–1102. doi: 10.1126/science.1062939. PubMed DOI

Belyayev A., Josefiová J., Jandová M., Krak K., Mandák B. Transposable elements dynamics in the evolution of Chenopodium album aggregate. in preparation.

Kejnovský E., Michalovova M., Steflova P., Kejnovska I., Manzano S., Hobza R., Kubat Z., Kovarik J., Jamilena M., Vyskot B. Expansion of microsatellites on evolutionary young Y chromosome. PLoS ONE. 2013;8:e45519. doi: 10.1371/journal.pone.0045519. PubMed DOI PMC

Li X.-M., Lee B.S., Mammadov A.C., Koo B.C., Mott I.W., Wang R.R.-C. CAPS markers specific to Eb, Ee, and R genomes in the tribe Triticeae. Genome. 2007;50:400–411. doi: 10.1139/G07-025. PubMed DOI

Luchetti A., Marini M., Mantovani B. Non-concerted evolution of the RET76 satellite DNA family in Reticulitermes taxa (Insecta, Isoptera) Genetica. 2006;128:123–132. PubMed

Groom Q.J. Piecing together the biogeographic history of Chenopodium vulvaria L. using botanical literature and collections. Peer J. 2015;3:e723. doi: 10.7717/peerj.723. PubMed DOI PMC

Mayr E. Populations Species and Evolution: An Abridgment of Animal Species and Evolution. Belknap Press; Cambridge, UK: 1970.

Grant V. Plant Speciation. 2nd ed. Columbia University Press; New York, NY, USA: 1981.

Husband B.C. Chromosomal variation in plant evolution. Am. J. Bot. 2004;91:621–625. doi: 10.3732/ajb.91.4.621. DOI

Belyayev A. Bursts of transposable elements as an evolutionary driving force. J. Evol. Biol. 2014;27:2573–2584. doi: 10.1111/jeb.12513. PubMed DOI

Vít P., Krak K., Trávníček P., Douda J., Lomonosova M.N., Mandák B. Genome size stability across Eurasian Chenopodium species (Amaranthaceae) Bot. J. Linn. Soc. 2016;182:637–649. doi: 10.1111/boj.12474. DOI

Novák P., Neumann P., Pech J., Steinhaisl J., Macas J. RepeatExplorer: A Galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads. Bioinformatics. 2013;29:792–793. doi: 10.1093/bioinformatics/btt054. PubMed DOI

Noe L., Kucherov G. YASS: Enhancing the sensitivity of DNA similarity search. Nucleic Acids Res. 2005;33:W540–W543. doi: 10.1093/nar/gki478. PubMed DOI PMC

Vinga S., Almeida J. Alignment-free sequence comparison-a review. Bioinformatics. 2003;19:513–523. doi: 10.1093/bioinformatics/btg005. PubMed DOI

Edgar R.C. MUSCLE: A multiple sequence alignment method with reduced time and space complexity. BMC Bioinform. 2003;5:113 PubMed PMC

Kalendar R., Tselykh T., Khassenov B., Ramanculov E.M. Introduction on using the FastPCR software and the related Java web tools for PCR, in silico PCR, and oligonucleotide assembly and analysis. Met. Mol. Biol. 2017;1620:33–64. doi: 10.1007/978-1-4939-7060-5_2. PubMed DOI

Kumar S., Stecher G., Li M., Knyaz C., Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018;35:1547–1549. doi: 10.1093/molbev/msy096. PubMed DOI PMC

Pijnacker L.P., Ferwerda M.A. Giemsa C-banding of potato chromosomes. Can. J. Genet. Cytol. 1984;26:415–419. doi: 10.1139/g84-067. DOI

Belyayev A., Raskina O., Nevo E. Chromosomal distribution of reverse transcriptase containing retroelements in two Triticeae species. Chromosome Res. 2001;9:129–136. doi: 10.1023/A:1009231019833. PubMed DOI

Feinberg A.P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem. 1983;132:6–13. doi: 10.1016/0003-2697(83)90418-9. PubMed DOI

Reeves A. MicroMeasure: A new computer program for the collection and analysis of cytogenetic data. Genome. 2001;44:439–443. doi: 10.1139/g01-037. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

A pangenome reveals LTR repeat dynamics as a major driver of genome evolution in Chenopodium

. 2025 Mar ; 18 (1) : e70010.

The first insight into Acanthocephalus (Palaeacanthocephala) satellitome: species-specific satellites as potential cytogenetic markers

. 2025 Jan 23 ; 15 (1) : 2945. [epub] 20250123

Telomere sequence variability in genotypes from natural plant populations: unusual block-organized double-monomer terminal telomeric arrays

. 2023 Sep 26 ; 24 (1) : 572. [epub] 20230926

Uniparental expression of ribosomal RNA in ×Festulolium grasses: a link between the genome and nucleolar dominance

. 2023 ; 14 () : 1276252. [epub] 20230918

The structural diversity of CACTA transposons in genomes of Chenopodium (Amaranthaceae, Caryophyllales) species: specific traits and comparison with the similar elements of angiosperms

. 2022 Apr 04 ; 13 (1) : 8. [epub] 20220404

The major satellite DNA families of the diploid Chenopodium album aggregate species: Arguments for and against the "library hypothesis"

. 2020 ; 15 (10) : e0241206. [epub] 20201027

Transposons and satellite DNA: on the origin of the major satellite DNA family in the Chenopodium genome

. 2020 ; 11 () : 20. [epub] 20200626

Development of 18 microsatellite markers for Salvia pratensis

. 2020 Jan ; 8 (1) : e11316. [epub] 20200122

Development, characterization, and cross-amplification of 17 microsatellite markers for Filipendula vulgaris

. 2019 Dec ; 7 (12) : e11307. [epub] 20191208

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...