Natural History of a Satellite DNA Family: From the Ancestral Genome Component to Species-Specific Sequences, Concerted and Non-Concerted Evolution
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
13-02290S
Grantová Agentura České Republiky
RVO 67985939
Akademie věd České republiky
PubMed
30857296
PubMed Central
PMC6429384
DOI
10.3390/ijms20051201
PII: ijms20051201
Knihovny.cz E-zdroje
- Klíčová slova
- genome evolution, high order repeats, next-generation sequencing, plants, satellite DNA,
- MeSH
- Chenopodium genetika MeSH
- diploidie MeSH
- DNA rostlinná genetika MeSH
- druhová specificita MeSH
- fylogeneze MeSH
- genom rostlinný MeSH
- komponenty genomu MeSH
- molekulární evoluce MeSH
- satelitní DNA genetika MeSH
- sekvenční analýza DNA MeSH
- vysoce účinné nukleotidové sekvenování MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DNA rostlinná MeSH
- satelitní DNA MeSH
Satellite DNA (satDNA) is the most variable fraction of the eukaryotic genome. Related species share a common ancestral satDNA library and changing of any library component in a particular lineage results in interspecific differences. Although the general developmental trend is clear, our knowledge of the origin and dynamics of satDNAs is still fragmentary. Here, we explore whole genome shotgun Illumina reads using the RepeatExplorer (RE) pipeline to infer satDNA family life stories in the genomes of Chenopodium species. The seven diploids studied represent separate lineages and provide an example of a species complex typical for angiosperms. Application of the RE pipeline allowed by similarity searches a determination of the satDNA family with a basic monomer of ~40 bp and to trace its transformation from the reconstructed ancestral to the species-specific sequences. As a result, three types of satDNA family evolutionary development were distinguished: (i) concerted evolution with mutation and recombination events; (ii) concerted evolution with a trend toward increased complexity and length of the satellite monomer; and (iii) non-concerted evolution, with low levels of homogenization and multidirectional trends. The third type is an example of entire repeatome transformation, thus producing a novel set of satDNA families, and genomes showing non-concerted evolution are proposed as a significant source for genomic diversity.
Department of Agricultural Sciences University of Helsinki P O Box 27 00014 Helsinki Finland
RSE National Center for Biotechnology 13 5 Kurgalzhynskoye road Astana 010000 Kazakhstan
The Czech Academy of Sciences Institute of Botany Zámek 1 252 43 Průhonice Czech Republic
Zobrazit více v PubMed
Bennetzen J.L. The structure and evolution of angiosperm nuclear genomes. Curr. Opin. Plant Biol. 1998;1:103–108. doi: 10.1016/S1369-5266(98)80010-1. PubMed DOI
Maumus F., Quesneville H. Ancestral repeats have shaped epigenome and genome composition for millions of years in Arabidopsis thaliana. Nat. Commun. 2014;5:4104. doi: 10.1038/ncomms5104. PubMed DOI PMC
Elder J.F., Turner B.J. Concerted evolution of repetitive DNA sequences in eukaryotes. Q. Rev. Biol. 1995;70:297–320. doi: 10.1086/419073. PubMed DOI
Garrido-Ramos M.A. Satellite DNA: An Evolving Topic. Genes. 2017;8:230. doi: 10.3390/genes8090230. PubMed DOI PMC
Biscotti M.A., Olmo E., Heslop-Harrison J.S. Repetitive DNA in eukaryotic genomes. Chromosome Res. 2015;23:415–420. doi: 10.1007/s10577-015-9499-z. PubMed DOI
Wei K.H.-C., Lower S.E., Caldas I.V., Sless T.J., Barbash D.A., Clark A.G. Variable rates of simple satellite gains across the Drosophila phylogeny. Mol. Biol. Evol. 2018;35:925–941. doi: 10.1093/molbev/msy005. PubMed DOI PMC
Satović E., Vojvoda Zeljko T., Luchetti A., Mantovani B., Plohl M. Adjacent sequences disclose potential for intra-genomic dispersal of satellite DNA repeats and suggest a complex network with transposable elements. BMC Genom. 2016;17:997. doi: 10.1186/s12864-016-3347-1. PubMed DOI PMC
Charlesworth B., Sniegowski P., Stephan W. The evolutionary dynamics of repetitive DNA in eukaryotes. Nature. 1994;371:215–220. doi: 10.1038/371215a0. PubMed DOI
Raskina O., Barber J.C., Nevo E., Belyayev A. Repetitive DNA and chromosomal rearrangements: Speciation-related events in plant genomes. Cytogenet. Gen. Res. 2008;120:351–357. doi: 10.1159/000121084. PubMed DOI
Emadzade K., Jang T.S., Macas J., Kovařík A., Novák P., Parker J., Weiss-Schneeweiss H. Differential amplification of satellite PaB6 in chromosomally hypervariable Prospero autumnale complex (Hyacinthaceae) Ann. Bot. 2014;114:1597–1608. doi: 10.1093/aob/mcu178. PubMed DOI PMC
Dodsworth S., Chase M.W., Kelly L.J., Leitch I.J., Macas J., Novák P., Piednoël M., Weiss-Schneeweiss H., Leitch A.R. Genomic repeat abundances contain phylogenetic signal. Syst. Biol. 2015;64:112–126. doi: 10.1093/sysbio/syu080. PubMed DOI PMC
Martienssen R.A. Maintenance of heterochromatin by RNA interference of tandem repeats. Nat. Genet. 2003;35:213–214. doi: 10.1038/ng1252. PubMed DOI
Kloc A., Martienssen R. RNAi, heterochromatin and the cell cycle. Trends Genet. 2008;24:511–517. doi: 10.1016/j.tig.2008.08.002. PubMed DOI
Mehrotra S., Goyal V. Repetitive sequences in plant nuclear DNA: Types, distribution, evolution and function. Genom. Proteom. Bioinform. 2014;12:164–171. doi: 10.1016/j.gpb.2014.07.003. PubMed DOI PMC
Garrido-Ramos M.A. SatDNA in plants: More than just rubbish. Cytogenet. Genome Res. 2015;146:153–170. doi: 10.1159/000437008. PubMed DOI
Meštrović N., Mravinac B., Pavlek M., Vojvoda-Zeljko T., Šatović E., Plohl M. Structural and functional liaisons between transposable elements and satellite DNAs. Chromosome Res. 2015;23:583–596. doi: 10.1007/s10577-015-9483-7. PubMed DOI
Plohl M., Meštrović N., Mravinac B. Satellite DNA evolution. Genome Dyn. 2012;7:126–152. PubMed
Salser W., Bowen S., Browne D., el-Adli F., Fedoroff N., Fry K., Heindell H., Paddock G., Poon R., Wallace B., et al. Investigation of the organization of mammalian chromosomes at the DNA sequence level. Fed. Proc. 1976;35:23–35. PubMed
Dover G. Molecular drive. Trends Genet. 2002;18:587–589. doi: 10.1016/S0168-9525(02)02789-0. PubMed DOI
Plohl M., Luchetti A., Mestrovic N., Mantovani B. Satellite DNAs between selfishness and functionality: Structure, genomics and evolution of tandem repeats in centromeric (hetero) chromatin. Gene. 2008;409:72–82. doi: 10.1016/j.gene.2007.11.013. PubMed DOI
Samoluk S.S., Robledo G., Bertioli D., Seijo J.G. Evolutionary dynamics of an at-rich satellite DNA and its contribution to karyotype differentiation in wild diploid Arachis species. Mol. Genet. Genom. 2017;292:283–296. doi: 10.1007/s00438-016-1271-3. PubMed DOI
Ugarkovic D., Plohl M. Variation in satellite DNA profiles-causes and effects. EMBO J. 2002;2:5955–5959. doi: 10.1093/emboj/cdf612. PubMed DOI PMC
Novák P., Neumann P., Macas J. Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data. BMC Bioinform. 2010;11:378. doi: 10.1186/1471-2105-11-378. PubMed DOI PMC
Chu G.-L., Mosyakin S.L., Clemants S.E. Chenopodiaceae. In: Wu Z., Raven P.H., Hong D., editors. Flora of China. Volume 5: Ulmaceae through Basellaceae. Missouri Botanical Garden Press; St. Louis, MI, USA: 2003. pp. 351–414.
Habibi F., Vít P., Rahiminejad M., Mandák B. Towards a better understanding of the C. album aggregate in the Middle East: A karyological, cytometric and morphometric investigation. J. Syst. Evol. 2018;56:231–242. doi: 10.1111/jse.12306. DOI
Mandák B., Krak K., Vít P., Pavlíková Z., Lomonosova M.N., Habibi F., Lei W., Jellen E.N., Douda J. How genome size variation is linked with evolution within Chenopodium sensu lato. Perspect. Plant Ecol. Evol. System. 2016;23:18–32. doi: 10.1016/j.ppees.2016.09.004. DOI
Mandák B., Krak K., Vít P., Lomonosova M.N., Belyayev A., Habibi F., Wang L., Douda J., Storchova H. Hybridization and polyploidization within the Chenopodium album aggregate analyzed by means of cytological and molecular markers. Mol. Phylogenet. Evol. 2018;129:189–201. doi: 10.1016/j.ympev.2018.08.016. PubMed DOI
Gao D., Schmidt T., Jung C. Molecular characterization and chromosomal distribution of species-specific repetitive DNA sequences from Beta corolliflora, a wild relative of sugar beet. Genome. 2000;43:1073–1080. doi: 10.1139/g00-084. PubMed DOI
Kolano B., Gardunia B.W., Michalska M., Bonifacio A., Fairbanks D., Maughan P.J., Coleman C.E., Stevens M.R., Jellen E.N., Maluszynska J. Chromosomal localization of two novel repetitive sequences isolated from the Chenopodium quinoa Willd. Genome. 2011;54:710–717. doi: 10.1139/g11-035. PubMed DOI
Benson G. Tandem repeats finder: A program to analyze DNA sequences. Nucleic Acids Res. 1999;27:573–580. doi: 10.1093/nar/27.2.573. PubMed DOI PMC
Gogarten J.P., Kibak H., Dittrich P., Taiz L., Bowman E.J., Bowman B.J., Manolson M.F., Poole R.J., Date T., Oshima T., et al. Evolution of the Vacuolar H+-Atpase: Implications for the Origin of Eukaryotes. Proc. Natl. Acad. Sci. USA. 1989;86:6661–6665. doi: 10.1073/pnas.86.17.6661. PubMed DOI PMC
Iwabe N., Kuma K., Hasegawa M., Osawa S., Miyata T. Evolutionary Relationship of Archaebacteria, Eubacteria, and Eukaryotes Inferred from Phylogenetic Trees of Duplicated Genes. Proc. Natl. Acad. Sci. USA. 1989;86:9355–9359. doi: 10.1073/pnas.86.23.9355. PubMed DOI PMC
Kadereit G., Hohmann S., Kadereit J.W. A synopsis of Chenopodiaceae subfam. Betoideae and notes on the taxonomy of Beta. Willdenowia. 2006;36:9–19. doi: 10.3372/wi.36.36101. DOI
Koukalova B., Moraes A.P., Renny-Byfield S., Matyasek R., Leitch A., Kovarik A. Fall and rise of satellite repeats in allopolyploids of Nicotiana over c. 5 million years. New Phytol. 2009;186:148–160. doi: 10.1111/j.1469-8137.2009.03101.x. PubMed DOI
Plohl M., Petrović V., Luchetti A., Ricci A., Satović E., Passamonti M., Mantovani B. Long-term conservation vs. high sequence divergence: The case of an extraordinarily old satellite DNA in bivalve mollusks. Heredity. 2009;104:543–551. doi: 10.1038/hdy.2009.141. PubMed DOI
Willard H.F., Waye J.S. Hierarchical order in chromosome-specific human alpha satellite DNA. Trends Genet. 1987;3:192–198. doi: 10.1016/0168-9525(87)90232-0. DOI
Gallagher D.S., Modi W.S., Ivanov S. Concerted Evolution and Higher-Order Repeat Structure of the 1.709 (Satellite IV) Family in Bovids. J. Mol. Evol. 2004;58:460–465. doi: 10.1007/s00239-003-2567-6. PubMed DOI
Adega F., Chaves R., Guedes-Pinto H., Heslop-Harrison J.S. Physical organization of the 1.709 satellite IV DNA family in Bovini and Tragelaphini tribes of the Bovidae: Sequence and chromosomal evolution. Cytogenet. Genome Res. 2006;114:140–146. doi: 10.1159/000093330. PubMed DOI
Macas J., Navrátilová A., Koblížková A. Sequence homogenization and chromosomal localization of VicTR-B satellites differ between closely related Vicia species. Chromosoma. 2006;115:437–447. doi: 10.1007/s00412-006-0070-8. PubMed DOI
Jarvis D.E., Ho Y.S., Lightfoot D.J., Schmöckel S.M., Li B., Borm T.J., Ohyanagi H., Mineta K., Michell C.T., Saber N., et al. The genome of Chenopodium quinoa. Nature. 2017;542:307–312. doi: 10.1038/nature21370. PubMed DOI
Belyayev A., Paštová L., Fehrer J., Josefiová J., Chrtek J., Mráz P. Mapping of Hieracium (Asteraceae) chromosomes with genus-specific satDNA elements derived from next-generation sequencing data. Plant Syst. Evol. 2018;304:387–396. doi: 10.1007/s00606-017-1483-y. DOI
Henikoff S., Ahmad K., Malik H.S. The centromere paradox: Stable inheritance with rapidly evolving DNA. Science. 2001;293:1098–1102. doi: 10.1126/science.1062939. PubMed DOI
Belyayev A., Josefiová J., Jandová M., Krak K., Mandák B. Transposable elements dynamics in the evolution of Chenopodium album aggregate. in preparation.
Kejnovský E., Michalovova M., Steflova P., Kejnovska I., Manzano S., Hobza R., Kubat Z., Kovarik J., Jamilena M., Vyskot B. Expansion of microsatellites on evolutionary young Y chromosome. PLoS ONE. 2013;8:e45519. doi: 10.1371/journal.pone.0045519. PubMed DOI PMC
Li X.-M., Lee B.S., Mammadov A.C., Koo B.C., Mott I.W., Wang R.R.-C. CAPS markers specific to Eb, Ee, and R genomes in the tribe Triticeae. Genome. 2007;50:400–411. doi: 10.1139/G07-025. PubMed DOI
Luchetti A., Marini M., Mantovani B. Non-concerted evolution of the RET76 satellite DNA family in Reticulitermes taxa (Insecta, Isoptera) Genetica. 2006;128:123–132. PubMed
Groom Q.J. Piecing together the biogeographic history of Chenopodium vulvaria L. using botanical literature and collections. Peer J. 2015;3:e723. doi: 10.7717/peerj.723. PubMed DOI PMC
Mayr E. Populations Species and Evolution: An Abridgment of Animal Species and Evolution. Belknap Press; Cambridge, UK: 1970.
Grant V. Plant Speciation. 2nd ed. Columbia University Press; New York, NY, USA: 1981.
Husband B.C. Chromosomal variation in plant evolution. Am. J. Bot. 2004;91:621–625. doi: 10.3732/ajb.91.4.621. DOI
Belyayev A. Bursts of transposable elements as an evolutionary driving force. J. Evol. Biol. 2014;27:2573–2584. doi: 10.1111/jeb.12513. PubMed DOI
Vít P., Krak K., Trávníček P., Douda J., Lomonosova M.N., Mandák B. Genome size stability across Eurasian Chenopodium species (Amaranthaceae) Bot. J. Linn. Soc. 2016;182:637–649. doi: 10.1111/boj.12474. DOI
Novák P., Neumann P., Pech J., Steinhaisl J., Macas J. RepeatExplorer: A Galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads. Bioinformatics. 2013;29:792–793. doi: 10.1093/bioinformatics/btt054. PubMed DOI
Noe L., Kucherov G. YASS: Enhancing the sensitivity of DNA similarity search. Nucleic Acids Res. 2005;33:W540–W543. doi: 10.1093/nar/gki478. PubMed DOI PMC
Vinga S., Almeida J. Alignment-free sequence comparison-a review. Bioinformatics. 2003;19:513–523. doi: 10.1093/bioinformatics/btg005. PubMed DOI
Edgar R.C. MUSCLE: A multiple sequence alignment method with reduced time and space complexity. BMC Bioinform. 2003;5:113 PubMed PMC
Kalendar R., Tselykh T., Khassenov B., Ramanculov E.M. Introduction on using the FastPCR software and the related Java web tools for PCR, in silico PCR, and oligonucleotide assembly and analysis. Met. Mol. Biol. 2017;1620:33–64. doi: 10.1007/978-1-4939-7060-5_2. PubMed DOI
Kumar S., Stecher G., Li M., Knyaz C., Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018;35:1547–1549. doi: 10.1093/molbev/msy096. PubMed DOI PMC
Pijnacker L.P., Ferwerda M.A. Giemsa C-banding of potato chromosomes. Can. J. Genet. Cytol. 1984;26:415–419. doi: 10.1139/g84-067. DOI
Belyayev A., Raskina O., Nevo E. Chromosomal distribution of reverse transcriptase containing retroelements in two Triticeae species. Chromosome Res. 2001;9:129–136. doi: 10.1023/A:1009231019833. PubMed DOI
Feinberg A.P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem. 1983;132:6–13. doi: 10.1016/0003-2697(83)90418-9. PubMed DOI
Reeves A. MicroMeasure: A new computer program for the collection and analysis of cytogenetic data. Genome. 2001;44:439–443. doi: 10.1139/g01-037. PubMed DOI
A pangenome reveals LTR repeat dynamics as a major driver of genome evolution in Chenopodium
Development of 18 microsatellite markers for Salvia pratensis