The first insight into Acanthocephalus (Palaeacanthocephala) satellitome: species-specific satellites as potential cytogenetic markers
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
APP0452
Anna Markova
VEGA 2/0093/23
Martina Orosova
PubMed
39849044
PubMed Central
PMC11758010
DOI
10.1038/s41598-025-85728-2
PII: 10.1038/s41598-025-85728-2
Knihovny.cz E-zdroje
- Klíčová slova
- Acanthocephala, Fluorescence in situ hybridization, Repeat, RepeatExplorer2, Satellite DNA,
- MeSH
- Acanthocephala * genetika klasifikace MeSH
- chromozomy genetika MeSH
- cytogenetické vyšetření metody MeSH
- druhová specificita * MeSH
- genetické markery MeSH
- hybridizace in situ fluorescenční * MeSH
- karyotyp MeSH
- karyotypizace metody MeSH
- satelitní DNA * genetika MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- genetické markery MeSH
- satelitní DNA * MeSH
Acanthocephalan parasites are often overlooked in many areas of research, and satellitome and cytogenetic analyzes are no exception. The species of the genus Acanthocephalus are known for their very small chromosomes with ambiguous morphology, which makes karyotyping difficult. In this study, we performed the first satellitome analysis of three Acanthocephalus species to identify species- and chromosome-specific satellites that could serve as cytogenetic markers. RepeatExplorer2 revealed a remarkably high number of species-specific repeats, with a predominance of satellite DNAs, alongside variations in repetitive content between sexes. Five satellites in A. anguillae, two in A. lucii and six in A. ranae were successfully mapped to chromosomes using FISH. Each satellite showed a clustered hybridization signal at specific chromosomal locations, which allowed us to create a schematic representation of the distribution of satellites for each species. These newly identified satellites proved to be useful chromosomal markers for the accurate identification of homologous chromosome pairs. No FISH-positive signals were observed on the supernumerary chromosomes of A. anguillae and A. lucii, supporting the hypothesis that these chromosomes have recent origin.
Zobrazit více v PubMed
Biscotti, M. A., Olmo, E. & Heslop-Harrison, J. S. Repetitive DNA in eukaryotic genomes. Chromosome Res.23, 415–420. 10.1007/s10577-015-9499-z (2015). PubMed
Wei, K. H. C. et al. Variable rates of simple satellite gains across the Drosophila phylogeny. Mol. Biol. Evol.35, 925–941. 10.1093/molbev/msy005 (2018). PubMed PMC
Plohl, M., Meštrović, N. & Mravinac, B. Satellite DNA evolution. Genome Dyn.7, 126–152. 10.1159/000337122 (2012). PubMed
Dodsworth, S. et al. Genomic repeat abundances contain phylogenetic signal. Syst. Biol.64, 112–126. 10.1093/sysbio/syu080 (2015). PubMed PMC
Belyayev, A. et al. Natural history of a satellite DNA family: from the ancestral genome component to species-specific sequences, concerted and non-concerted evolution. Int. J. Mol. Med.20, 1201. 10.3390/ijms20051201 (2019). PubMed PMC
Mauer, K. et al. The genome, transcriptome, and proteome of the fish parasite Pomphorhynchus laevis (Acanthocephala). PLoS ONE.15, e0232973. 10.1371/journal.pone.0232973 (2020). PubMed PMC
Pita, S. et al. Comparative repeatome analysis on Triatoma infestans Andean and Non-Andean lineages, main vector of Chagas disease. PLoS ONE.12, e0181635. 10.1371/journal.pone.0181635 (2017). PubMed PMC
Muravenko, O. V. et al. Integration of repeatomic and cytogenetic data on satellite DNA for the genome analysis in the genus Salvia (Lamiaceae). Plants.11, 2244. 10.3390/plants11172244 (2022). PubMed PMC
Cuadrado, Á. et al. Contribution of the satellitome to the exceptionally large genome of dinoflagellates: The case of the harmful alga Alexandrium minutum. Harmful algae.130, 102543. 10.1016/j.hal.2023.102543 (2023). PubMed
Mora, P. et al. Making the genome huge: The case of Triatoma delpontei, a Triatominae species with more than 50% of its genome full of satellite DNA. Genes.14, 371. 10.3390/genes14020371 (2023). PubMed PMC
Samatadze, T. E. et al. Genome studies in four species of Calendula L. (Asteraceae) using satellite DNAs as chromosome markers. Plants.12, 4056. 10.3390/plants12234056 (2023). PubMed PMC
Voleníková, A. et al. Fast satellite DNA evolution in Nothobranchius annual killifishes. Chromosome Res.31, 33. 10.1007/s10577-023-09742-8 (2023). PubMed PMC
Cabral-de-Mello, D. C. et al. The spread of satellite DNAs in euchromatin and insights into the multiple sex chromosome evolution in Hemiptera revealed by repeatome analysis of the bug Oxycarenus hyalinipennis. Insect Mol. Biol.32, 725–737. 10.1111/imb.12868 (2023). PubMed
Rico-Porras, J. et al. Heterochromatin is not the only place for satDNAs: The high diversity of satDNAs in the euchromatin of the beetle Chrysolina americana (Coleoptera, Chrysomelidae). Genes.15, 395. 10.3390/genes15040395 (2024). PubMed PMC
Novák, P., Neumann, P. & Macas, J. Global analysis of repetitive DNA from unassembled sequence reads using RepeatExplorer2. Nat. Protoc.15, 3745–3776. 10.1038/s41596-020-0400-y (2020). PubMed
Bombarová, M., Marec, F., Nguyen, P. & Špakulová, M. Divergent location of ribosomal genes in chromosomes of fish thorny-headed worms, Pomphorhynchus laevis and Pomphorhynchus tereticollis (Acanthocephala). Genetica.131, 141–149. 10.1007/s10709-006-9124-3 (2007). PubMed
Orosová, M., Marková, A., Zrzavá, M., Marec, F. & Oros, M. Chromosome analysis and the occurrence of B chromosomes in fish parasite Acanthocephalus anguillae (Palaeacanthocephala: Echinorhynchida). Parasite.30, 44. 10.1051/parasite/2023045 (2023). PubMed PMC
Marková, A., Orosová, M., Marec, F., Barčák, D. & Oros, M. Karyological study of Acanthocephalus lucii (Echinorhynchida): The occurrence of B chromosomes in populations from PCB-polluted waters. Diversity.16, 140. 10.3390/d16030140 (2024).
Novák, P. et al. TAREAN: a computational tool for identification and characterization of satellite DNA from unassembled short reads. Nucleic Acids Res.45, e111. 10.1093/nar/gkx257 (2017). PubMed PMC
Bolsheva, N. L. et al. Characterization of repeated DNA sequences in genomes of blue-flowered flax. BMC Evol. Biol.19, 49. 10.1186/s12862-019-1375-6 (2019). PubMed PMC
Amosova, A. V. et al. Repeatome analyses and satellite DNA chromosome patterns in Deschampsia sukatschewii, D. cespitosa, and D. antarctica (Poaceae). Genes.13, 762. 10.3390/genes13050762 (2022). PubMed PMC
Ruiz-Ruano, F. J., Navarro-Domínguez, B., Camacho, J. P. M. & Garrido-Ramos, M. A. Characterization of the satellitome in lower vascular plants: The case of the endangered fern Vandenboschia speciosa. Ann. Bot.123, 587–599. 10.1093/aob/mcy192 (2018). PubMed PMC
Lorite, P., Carrillo, J. A., Tinaut, A. & Palomeque, T. Evolutionary dynamics of satellite DNA in species of the genus Formica (Hymenoptera, Formicidae). Gene.332, 159–168. 10.1016/j.gene.2004.02.049 (2004). PubMed
John, B. The chromosomes of zooparasites I. Acanthocephalus ranae (Acanthocephala: Echinorhynchidae). Chromosoma.8, 730–738 (1957). PubMed
Pamponét, V. C. C. et al. Low coverage sequencing for repetitive DNA analysis in Passiflora edulis Sims: Citogenomic characterization of transposable elements and satellite DNA. BMC Genom.20, 262. 10.1186/s12864-019-5576-6 (2019). PubMed PMC
Luo, X., Chen, S. & Zhang, Y. PlantRep: A database of plant repetitive elements. Plant Cell Rep.41, 1163–1166. 10.1007/s00299-021-02817-y (2022). PubMed PMC
Argentin, J., Bolser, D., Kersey, P. J. & Flicek, P. Comparative analysis of repeat content in plant genomes, large and small. Front. Plant. Sci.14, 1103035. 10.3389/fpls.2023.1103035 (2023). PubMed PMC
Kamenetzky, L., Maldonado, L. L. & Cucher, M. A. Cestodes in the genomic era. Parasitol. Res.121, 1077–1089. 10.1007/s00436-021-07346-x (2021). PubMed
Soloyeva, A. et al. Transposons-based clonal diversity in trematode involves parts of CR1 (LINE) in eu- and heterochromatin. Genes.12, 1129. 10.3390/genes12081129 (2021). PubMed PMC
Shah, A., Hoffman, J. I. & Schielzeth, H. Comparative analysis of genomic repeat content in Gomphocerine grasshoppers reveals expansion of satellite DNA and helitrons in species with unusually large genomes. Genome Biol. Evol.12, 1180–1193. 10.1093/gbe/evaa119 (2020). PubMed PMC
Meštrović, N., Plohl, M., Mravinac, B. & Ugarković, D. Evolution of satellite DNAs from the genus Palorus-Experimental evidence for the “library” hypothesis. Mol. Biol. Evol.15, 1062–1068. 10.1093/oxfordjournals.molbev.a026005 (1998). PubMed
Meštrović, N., Castagnone-Sereno, P. & Plohl, M. Interplay of selective pressure and stochastic events directs evolution of the MEL172 satellite DNA library in root-knot nematodes. Mol. Biol. Evol.23, 2316–2325. 10.1093/molbev/msl119 (2006). PubMed
Ruiz-Ruano, F. J., López-León, M. D., Cabrero, J. & Camacho, J. P. M. High-throughput analysis of the satellitome illuminates satellite DNA Evolution. Sci. Rep.6, 28333. 10.1038/srep28333 (2016). PubMed PMC
Plohl, M., Luchetti, A., Meštrović, N. & Mantovani, B. Satellite DNAs between selfishness and functionality: Structure, genomics and evolution of tandem repeats in centromeric (hetero)chromatin. Gene.409, 72–82. 10.1016/j.gene.2007.11.013 (2008). PubMed
Palomeque, T. & Lorite, P. Satellite DNA in insects: A review. Heredity.100, 564–573. 10.1038/hdy.2008.24 (2008). PubMed
Dover, G. Molecular drive. Trends Genet.18, 587–589. 10.1016/s0168-9525(02)02789-0 (2002). PubMed
Garrido-Ramos, M. A. Satellite DNA: An evolving topic. Genes.8, 230. 10.3390/genes8090230 (2017). PubMed PMC
Hsu, T. C., Pathak, S., Basen, B. M. & Stahl, G. J. Induced Robertsonian fusions and tandem translocations in mammalian cell cultures. Cytogenet. Cell. Genet.21, 86–98 (1978). PubMed
Singer, D. & Downhower, L. Highly repeated DNA of the baboon: organization of sequences homologous to highly repeated DNA of the African green monkey. J. Mol. Biol.134, 835–842 (1979). PubMed
Hasterok, R. & Maluszynska, J. Cytogenetic markers of Brassica napus L. chromosomes. J. Appl. Genet.41, 1–9 (2000).
Yoshido, A., Bando, H., Yasukochi, Y. & Sahara, K. The Bombyx mori karyotype and the assignment of linkage groups. Genetics.170, 675–685. 10.1534/genetics.104.040352 (2005). PubMed PMC
Lisitsyna, O. Acanthocephala in Fauna of Ukraine (Kiev, 2019).
Camacho, J. P. M. B Chromosomes in The evolution of the genome (ed. Gregory, T. R.) 223–286 (Elsevier Academic Press, 2005).
Hanlon, S. L., Miller, D. E., Eche, S. & Hawley, R. S. Origin, composition, and structure of the supernumerary B chromosome of Drosophila melanogaster. Genetics.210, 1197–1212. 10.1534/genetics.118.301478 (2018). PubMed PMC
Marques, A., Klemme, S. & Houben, A. Evolution of plant B chromosome enriched sequences. Genes.9, 515. 10.3390/genes9100515 (2018). PubMed PMC
Ruiz-Ruano, F. J., Cabrero, J., López-León, M. D., Sánchez, A. & Camacho, J. P. M. Quantitative sequence characterization for repetitive DNA content in the supernumerary chromosome of the migratory locust. Chromosoma.127, 45–57. 10.1007/s00412-017-0644-7 (2018). PubMed
Stornioli, J. H. F. et al. The B chromosomes of Prochilodus lineatus (Teleostei, Characiformes) are highly enriched in satellite DNAs. Cells.10, 1527. 10.3390/cells10061527 (2021). PubMed PMC
Ranucci, L., Fernandes, C. A., Borin-Carvalho, L. A., Martins-Santos, I. C. & de Portela-Castro, A. L. B. Occurrence of euchromatic B chromosomes in natural populations of Moenkhausia bonita and M. forestii (Pisces: Characidae). Neotrop. Ichthyol. 19, e210056. 10.1590/1982-0224-2021-0056 (2021).
Milani, D., Ruiz-Ruano, F. J. & Camacho, J. P. M. Out of patterns, the euchromatic B chromosome of the grasshopper Abracris flavolineata is not enriched in high-copy repeats. Heredity.127, 475–483. 10.1038/s41437-021-00470-5 (2021). PubMed PMC
Percie du Sert, N. et al. The ARRIVE guidelines 2.0: updated guidelines for reporting animal research. PLoS Biol. 14, e3000410. 10.1371/journal.pbio.3000410 (2022). PubMed PMC
Šalgovičová, D. & Zmetáková, Z. Polychlorinated biphenyls is in muscle tissue of freshwater fish in east Slovakia. J. Food Nutr. Res.45, 171–178 (2006).
Orosová, M. & Špakulová, M. Tapeworm chromosomes: Their value in systematics with instructions for cytogenetic study. Folia Parasit. 65, 1. 10.14411/fp.2018.001 (2018). PubMed
Winnepenninckx, B., Backeljau, T. & De Wachter, R. Extraction of high molecular weight DNA from molluscs. Trends Genet.9, 407. 10.1016/0168-9525(93)90102-n (1993). PubMed
Andrews, S. FastQC: A quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc (2010).
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics.30, 2114–2120. 10.1093/bioinformatics/btu170 (2014). PubMed PMC
Wickham, H. Elegant graphics for data analysis in Ggplot2. (Springer Cham, 2016).
Cabral-de-Mello, D. C. & Marec, F. Universal fluorescence in situ hybridization (FISH) protocol for mapping repetitive DNAs in insects and other arthropods. Mol. Genet. Genom.296, 513–526. 10.1007/s00438-021-01765-2 (2021). PubMed