Contrasting pattern of subtelomeric satellites in the Cannabaceae family

. 2025 ; 16 () : 1631369. [epub] 20250819

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40909903

INTRODUCTION: Satellite DNA (satDNA) is a rapidly evolving component of plant genomes, typically found in (peri)centromeric, (sub)telomeric, and other heterochromatic regions. Due to their variability and species- or population-specific distribution, satDNA serves as valuable cytogenetic markers for studying chromosomal rearrangements and karyotype evolution among closely related species. Previous studies have identified species-specific subtelomeric repeats CS-1 in Cannabis sativa, HSR1 in Humulus lupulus, and HJSR in Humulus japonicus. These satellites have been used to differentiate sex chromosomes from autosomes, however, their evolutionary origins, sequence variation and conservation pattern across related species remain largely unexplored. METHODS: In this study, we analyze sequence similarity among these satellites and assess their interspecific chromosomal localization using fluorescence in situ hybridization (FISH). RESULTS: Our results reveal that the HSR1 and HJSR satellites are shared across all studied species, suggesting their common origin from a shared pool of satDNA in their common ancestor. In contrast, the CS-1 satellite exhibits higher sequence divergence. DISCUSSION: Although all three satellites are predominantly localized in subtelomeric regions, we identified species-specific exceptions. These findings provide new insight into the evolutionary dynamics of satDNA within the Cannabaceae family and offer further support for the divergence of Humulus species.

Zobrazit více v PubMed

Akagi T., Segawa T., Uchida R., Tanaka H., Shirasawa K., Yamagishi N., et al. (2025). Evolution and functioning of an X–A balance sex-determining system in hops. Nat. Plants. 11 (7), 1339–1352. doi:  10.1038/s41477-025-02017-6, PMID: PubMed DOI

Alexandrov O. S., Divashuk M. G., Yakovin N. A., Karlov G. I. (2012). Sex chromosome differentiation in Humulus japonicus Siebold & Zuccarini 1846 (Cannabaceae) revealed by fluorescence in PubMed DOI PMC

Belyayev A., Jandová M., Josefiová J., Kalendar R., Mahelka V., Mandák B., et al. (2020). The major satellite DNA families of the diploid Chenopodium album aggregate species: Arguments for and against the “library hypothesis. PloS One 15, e0241206. doi:  10.1371/journal.pone.0241206, PMID: PubMed DOI PMC

Belyayev A., Josefiová J., Jandová M., Kalendar R., Krak K., Mandák B. (2019). Natural history of a satellite DNA family: from the ancestral genome component to species-specific sequences, concerted and non-concerted evolution. IJMS 20, 1201. doi:  10.3390/ijms20051201, PMID: PubMed DOI PMC

Bolger A. M., Lohse M., Usadel B. (2014). Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120. doi:  10.1093/bioinformatics/btu170, PMID: PubMed DOI PMC

Camacho J. P. M., Cabrero J., López-León M. D., Martín-Peciña M., Perfectti F., Garrido-Ramos M. A., et al. (2022). Satellitome comparison of two oedipodine grasshoppers highlights the contingent nature of satellite DNA evolution. BMC Biol. 20, 36. doi:  10.1186/s12915-021-01216-9, PMID: PubMed DOI PMC

Crooks G. E., Hon G., Chandonia J.-M., Brenner S. E. (2004). WebLogo: A sequence logo generator: figure 1. Genome Res. 14, 1188–1190. doi:  10.1101/gr.849004, PMID: PubMed DOI PMC

Cuñado N., Navajas-Pérez R., de la Herrán R., Ruiz Rejón C., Ruiz Rejón M., Santos J. L., et al. (2007). The evolution of sex chromosomes in the genus Rumex (Polygonaceae): Identification of a new species with heteromorphic sex chromosomes. Chromosome Res. 15, 825–833. doi:  10.1007/s10577-007-1166-6, PMID: PubMed DOI

Divashuk M. G., Alexandrov O. S., Kroupin P. Y., Karlov G. I. (2011). Molecular cytogenetic mapping of Humulus lupulus sex chromosomes. Cytogenet. Genome Res. 134, 213–219. doi:  10.1159/000328831, PMID: PubMed DOI

Divashuk M. G., Alexandrov O. S., Razumova O. V., Kirov I. V., Karlov G. I. (2014). Molecular cytogenetic characterization of the dioecious Cannabis sativa with an XY chromosome sex determination system. PloS One 9 (1), e85118. doi:  10.1371/journal.pone.0085118, PMID: PubMed DOI PMC

Durfy S. J., Willard H. F. (1990). Concerted evolution of primate alpha satellite DNA. J. Mol. Biol. 216, 555–566. doi:  10.1016/0022-2836(90)90383-W, PMID: PubMed DOI

Easterling K. A., Pitra N. J., Morcol T. B., Aquino J. R., Lopes L. G., Bussey K. C., et al. (2020). Identification of tandem repeat families from long-read sequences of Humulus lupulus. PloS One 15 (6), e0233971. doi:  10.1371/journal.pone.0233971, PMID: PubMed DOI PMC

Feschotte C., Jiang N., Wessler S. R. (2002). Plant transposable elements: where genetics meets genomics. Nat. Rev. Genet. 3, 329–341. doi:  10.1038/nrg793, PMID: PubMed DOI

Fry K., Poon R., Whitcome P., Idriss J., Salser W., Mazrimas J., et al. (1973). Nucleotide sequence of HS-β Satellite DNA from kangaroo rat PubMed DOI PMC

Gao S., Wang B., Xie S., Xu X., Zhang J., Pei L., et al. (2020). A high-quality reference genome of wild Cannabis sativa. Hortic. Res. 7. doi:  10.1038/s41438-020-0295-3, PMID: PubMed DOI PMC

Garrido-Ramos M. A. (2015). Satellite DNA in plants: more than just rubbish. Cytogenet. Genome Res. 146, 153–170. doi:  10.1159/000437008, PMID: PubMed DOI

Goes C. A. G., Dos Santos R. Z., Aguiar W. R. C., Alves D. C. V., Silva D. M. Z. D. A., Foresti F., et al. (2022). Revealing the satellite DNA history in psalidodon and astyanax characid fish by comparative satellitomics. Front. Genet. 13. doi:  10.3389/fgene.2022.884072, PMID: PubMed DOI PMC

Grabowska-Joachimiak A., Sliwinska E., Pigula M., Skomra U., Joachimiak A. J. (2006). Genome size in Humulus lupulus L. and H. japonicus Siebold & Zucc. (Cannabaceae). Acta Societatis Botanicorum Poloniae, 75(3), 207–214. doi:  10.17221/4367-PSE DOI

Hobza R., Bačovský V., Čegan R., Horáková L., Hubinský M., Janíček T., et al. (2024). Sexy ways: approaches to studying plant sex chromosomes. J. Exp. Bot. 75 (17), 5204–5219. doi:  10.1093/jxb/erae173, PMID: PubMed DOI PMC

Horáková L., Jedlička P., Čegan R., Navrátilová P., Tanaka H., Toyoda A., et al. (2025). Dynamic patterns of repeats and retrotransposons in the centromeres of PubMed DOI PMC

Jagannathan M., Warsinger-Pepe N., Watase G. J., Yamashita Y. M. (2017). Comparative analysis of satellite DNA in the drosophila melanogaster species complex. G3 (Bethesda) 7, 693–704. doi:  10.1534/g3.116.035352, PMID: PubMed DOI PMC

Jesionek W., Bodláková M., Kubát Z., Čegan R., Vyskot B., Vrána J., et al. (2021). Fundamentally different repetitive element composition of sex chromosomes in PubMed DOI PMC

Jiang C.-H., Sun T.-L., Xiang D.-X., Wei S.-S., Li W.-Q. (2018). Anticancer activity and mechanism of xanthohumol: A prenylated flavonoid from hops (Humulus lupulus L.). Front. Pharmacol. 9. doi:  10.3389/fphar.2018.00530, PMID: PubMed DOI PMC

Jin J., Yang M., Fritsch P. W., Van Velzen R., Li D., Yi T. (2020). Born migrators: Historical biogeography of the cosmopolitan family Cannabaceae. J. Sytematics Evol. 58, 461–473. doi:  10.1111/jse.12552 DOI

Kim S.-Y., Kim C.-S., Lee J., Bang J.-W. (2008). Karyotype Analysis and Physical Mapping Using Two rRNA Genes in Dioecious Plant, Humulus japonicus Sieboid & Zucc. Genes Genom. 30 (2), 157–161.

Koo D.-H., Hong C. P., Batley J., Chung Y. S., Edwards D., Bang J.-W., et al. (2011). Rapid divergence of repetitive DNAs in Brassica relatives. Genomics 97, 173–185. doi:  10.1016/j.ygeno.2010.12.002, PMID: PubMed DOI

Koukalova B., Moraes A. P., Renny-Byfield S., Matyasek R., Leitch A. R., Kovarik A. (2010). Fall and rise of satellite repeats in allopolyploids of PubMed DOI

Lapierre É., Monthony A. S., Torkamaneh D. (2023). Genomics-based taxonomy to clarify cannabis classification. Genome 66, 202–211. doi:  10.1139/gen-2023-0005, PMID: PubMed DOI

Li H. (2013). Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. doi:  10.48550/ARXIV.1303.3997 DOI

Ling L.-Z., Zhang S.-D. (2019). The complete chloroplast genome of PubMed DOI PMC

Ljdo J. W., Wells R. A., Baldini A., Reeders S. T. (1991). Improved telomere detection using a telomere repeat probe (TTAGGG)n generated by PCR. Nucleic acids research, 19(17), 4780., PMID: PubMed PMC

Lower S. S., McGurk M. P., Clark A. G., Barbash D. A. (2018). Satellite DNA evolution: old ideas, new approaches. Curr. Opin. Genet. Dev. 49, 70–78. doi:  10.1016/j.gde.2018.03.003, PMID: PubMed DOI PMC

Lynch R. C., Padgitt-Cobb L. K., Garfinkel A. R., Knaus B. J., Hartwick N. T., Allsing N., et al. (2025). Domesticated cannabinoid synthases amid a wild mosaic cannabis pangenome. Nature. 643(8073), 1001–1010. doi:  10.1038/s41586-025-09065-0, PMID: PubMed DOI PMC

Mandolino G., Carboni A., Forapani S., Faeti V., Ranalli P. (1999). Identification of DNA markers linked to the male sex in dioecious hemp (Cannabis sativa L.). Theoretical and applied genetics, 98(1), 86–92. doi:  10.1007/s001220051043 DOI

McPartland J. M. (2018). PubMed DOI PMC

Mestrovic N., Plohl M., Mravinac B., Ugarkovic D. (1998). Evolution of satellite DNAs from the genus Palorus–experimental evidence for the “library” hypothesis. Mol. Biol. Evol. 15, 1062–1068. doi:  10.1093/oxfordjournals.molbev.a026005, PMID: PubMed DOI

Murakami A. (2000). Comparison of Sequence of rbcL and Non-coding Regions of Chloroplast DNA and ITS2 Region of rDNA in Genus Humulus. Breed. Sci. 50, 155–160. doi:  10.1270/jsbbs.50.155 DOI

Murakami A., Darby P., Javornik B., Pais M. S. S., Seigner E., Lutz A., et al. (2006). Molecular phylogeny of wild Hops, Humulus lupulus L. Heredity 97, 66–74. doi:  10.1038/sj.hdy.6800839, PMID: PubMed DOI

Navajas-Pérez R., Quesada Del Bosque M. E., Garrido-Ramos M. A. (2009. a). Effect of location, organization, and repeat-copy number in satellite-DNA evolution. Mol. Genet. Genomics 282, 395–406. doi:  10.1007/s00438-009-0472-4, PMID: PubMed DOI

Navajas-Pérez R., Schwarzacher T., Rejón M. R., Garrido-Ramos M. A. (2009. b). Molecular cytogenetic characterization of Rumex papillaris, a dioecious plant with an XX/XY1Y2 sex chromosome system. Genetica 135, 87–93. doi:  10.1007/s10709-008-9261-y, PMID: PubMed DOI

Navajas-Pérez R., Schwarzacher T., de la Herrán R., Ruiz Rejón C., Ruiz Rejón M., Garrido-Ramos M. A. (2006). The origin and evolution of the variability in a Y-specific satellite-DNA of Rumex acetosa and its relatives. Gene 368, 61–71. doi:  10.1016/j.gene.2005.10.013, PMID: PubMed DOI

Novák P., Ávila Robledillo L., Koblížková A., Vrbová I., Neumann P., Macas J. (2017). TAREAN: a computational tool for identification and characterization of satellite DNA from unassembled short reads. Nucleic Acids Res. 45, e111–e111. doi:  10.1093/nar/gkx257, PMID: PubMed DOI PMC

Novák P., Guignard M. S., Neumann P., Kelly L. J., Mlinarec J., Koblížková A., et al. (2020). Repeat-sequence turnover shifts fundamentally in species with large genomes. Nat. Plants 6, 1325–1329. doi:  10.1038/s41477-020-00785-x, PMID: PubMed DOI

Novák P., Neumann P., Pech J., Steinhaisl J., MacAs J. (2013). RepeatExplorer: A Galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads. Bioinformatics 29, 792–793. doi:  10.1093/bioinformatics/btt054, PMID: PubMed DOI

Padgitt-Cobb L. K., Pitra N. J., Matthews P. D., Henning J. A., Hendrix D. A. (2023). An improved assembly of the “Cascade” hop ( PubMed DOI PMC

Palacios-Gimenez O. M., Dias G. B., De Lima L. G., Kuhn G. C. E. S., Ramos É., Martins C., et al. (2017). High-throughput analysis of the satellitome revealed enormous diversity of satellite DNAs in the neo-Y chromosome of the cricket Eneoptera Surinamensis. Sci. Rep. 7, 6422. doi:  10.1038/s41598-017-06822-8, PMID: PubMed DOI PMC

Patzak J., Vejl P., Skupinová S., Nesvadba V. (2002). Identification of sex in F 1 progenies of hop (Humulus lupulus L.) by molecular marker. Plant, Soil and Environment, 48(7), 318–321.

Pisupati R., Vergara D., Kane N. C. (2018). Diversity and evolution of the repetitive genomic content in Cannabis sativa. BMC Genomics 19 (1), 156. doi:  10.1186/s12864-018-4494-3, PMID: PubMed DOI PMC

Plohl M., Luchetti A., Meštrović N., Mantovani B. (2008). Satellite DNAs between selfishness and functionality: Structure, genomics and evolution of tandem repeats in centromeric (hetero)chromatin. Gene 409, 72–82. doi:  10.1016/j.gene.2007.11.013, PMID: PubMed DOI

Plohl M., Meštrović N., Mravinac B. (2012). Satellite DNA evolution. Genome Dyn. 7 (126), 10–1159 doi:  10.1159/000337122, PMID: PubMed DOI

Polley A., Seigner E., Ganal M. W. (1997).Identification of sex in hop (Humulus lupulus) using molecular markers. Genome 40 (3), 357–361 doi:  10.1139/g97-048, PMID: PubMed DOI

Prentout D., Stajner N., Cerenak A., Tricou T., Brochier-Armanet C., Jakse J., et al. (2021). Plant genera Cannabis and Humulus share the same pair of well-differentiated sex chromosomes. New Phytol. 231, 1599–1611. doi:  10.1111/nph.17456, PMID: PubMed DOI

Quesada Del Bosque M. E., Navajas-Pérez R., Panero J. L., Fernández-González A., Garrido-Ramos M. A. (2011). A satellite DNA evolutionary analysis in the North American endemic dioecious plant PubMed DOI

Razumova O. V., Alexandrov O. S., Divashuk M. G., Sukhorada T. I., Karlov G. I. (2016). Molecular cytogenetic analysis of monoecious hemp (Cannabis sativa L.) cultivars reveals its karyotype variations and sex chromosomes constitution. Protoplasma 253, 895–901. doi:  10.1007/s00709-015-0851-0, PMID: PubMed DOI

Ryu Y.-K., Kang Y., Go J., Park H.-Y., Noh J.-R., Kim Y.-H., et al. (2017). PubMed DOI

Sacchi B., Humphries Z., Kružlicová J., Bodláková M., Pyne C., Choudhury B. I., et al. (2024). Phased assembly of neo-sex chromosomes reveals extensive Y degeneration and rapid genome evolution in PubMed DOI PMC

Schmidt N., Sielemann K., Breitenbach S., Fuchs J., Pucker B., Weisshaar B., et al. (2024). Repeat turnover meets stable chromosomes: repetitive DNA sequences mark speciation and gene pool boundaries in sugar beet and wild beets. Plant J. 118, 171–190. doi:  10.1111/tpj.16599, PMID: PubMed DOI

Schmidt T., Heitkam T., Liedtke S., Schubert V., Menzel G. (2019). Adding color to a century-old enigma: multi-color chromosome identification unravels the autotriploid nature of saffron ( PubMed DOI

Small E. (2015). Evolution and classification of cannabis sativa (Marijuana, hemp) in relation to human utilization. Bot. Rev. 81, 189–294. doi:  10.1007/s12229-015-9157-3 DOI

Utsunomia R., Ruiz-Ruano F. J., Silva D. M. Z. A., Serrano É. A., Rosa I. F., Scudeler P. E. S., et al. (2017). A glimpse into the satellite DNA library in characidae fish (Teleostei, characiformes). Front. Genet. 8. doi:  10.3389/fgene.2017.00103, PMID: PubMed DOI PMC

Waye J. S., Willard H. F. (1989). Concerted evolution of alpha satellite DNA: Evidence for species specificity and a general lack of sequence conservation among alphoid sequences of higher primates. Chromosoma 98, 273–279. doi:  10.1007/BF00327313, PMID: PubMed DOI

Wei K. H.-C., Grenier J. K., Barbash D. A., Clark A. G. (2014). Correlated variation and population differentiation in satellite DNA abundance among lines of PubMed DOI PMC

Yang M.-Q., Van Velzen R., Bakker F. T., Sattarian A., Li D.-Z., Yi T.-S. (2013). Molecular phylogenetics and character evolution of Cannabaceae. TAXON 62, 473–485. doi:  10.12705/623.9 DOI

Yoong Lim K., Kovarik A., Matyasek R., Chase M. W., Knapp S., McCarthy E., et al. (2006). Comparative genomics and repetitive sequence divergence in the species of diploid PubMed DOI

Yu B. C., Yang M. C., Lee K. H., Kim K. H., Choi S. U., Lee K. R. (2007). Two new phenolic constituents ofHumulus japonicus and their cytotoxicity test PubMed DOI

Zanoli P., Zavatti M. (2008). Pharmacognostic and pharmacological profile of Humulus lupulus L. J. Ethnopharmacol. 116, 383–396. doi:  10.1016/j.jep.2008.01.011, PMID: PubMed DOI

Zhang G. J., Jia K. L., Wang J., Gao W. J., Li S. F. (2023). Genome-wide analysis of transposable elements and satellite DNA in Humulus scandens, a dioecious plant with XX/XY1Y2 chromosomes. Front. Plant Sci. 14. doi:  10.3389/fpls.2023.1230250, PMID: PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...