Contrasting pattern of subtelomeric satellites in the Cannabaceae family
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
40909903
PubMed Central
PMC12406709
DOI
10.3389/fpls.2025.1631369
Knihovny.cz E-zdroje
- Klíčová slova
- Humulus, metaphase chromosomes, phylogenetics, satellite divergence, subtelomeric repeats,
- Publikační typ
- časopisecké články MeSH
INTRODUCTION: Satellite DNA (satDNA) is a rapidly evolving component of plant genomes, typically found in (peri)centromeric, (sub)telomeric, and other heterochromatic regions. Due to their variability and species- or population-specific distribution, satDNA serves as valuable cytogenetic markers for studying chromosomal rearrangements and karyotype evolution among closely related species. Previous studies have identified species-specific subtelomeric repeats CS-1 in Cannabis sativa, HSR1 in Humulus lupulus, and HJSR in Humulus japonicus. These satellites have been used to differentiate sex chromosomes from autosomes, however, their evolutionary origins, sequence variation and conservation pattern across related species remain largely unexplored. METHODS: In this study, we analyze sequence similarity among these satellites and assess their interspecific chromosomal localization using fluorescence in situ hybridization (FISH). RESULTS: Our results reveal that the HSR1 and HJSR satellites are shared across all studied species, suggesting their common origin from a shared pool of satDNA in their common ancestor. In contrast, the CS-1 satellite exhibits higher sequence divergence. DISCUSSION: Although all three satellites are predominantly localized in subtelomeric regions, we identified species-specific exceptions. These findings provide new insight into the evolutionary dynamics of satDNA within the Cannabaceae family and offer further support for the divergence of Humulus species.
Zobrazit více v PubMed
Akagi T., Segawa T., Uchida R., Tanaka H., Shirasawa K., Yamagishi N., et al. (2025). Evolution and functioning of an X–A balance sex-determining system in hops. Nat. Plants. 11 (7), 1339–1352. doi: 10.1038/s41477-025-02017-6, PMID: PubMed DOI
Alexandrov O. S., Divashuk M. G., Yakovin N. A., Karlov G. I. (2012). Sex chromosome differentiation in Humulus japonicus Siebold & Zuccarini 1846 (Cannabaceae) revealed by fluorescence in PubMed DOI PMC
Belyayev A., Jandová M., Josefiová J., Kalendar R., Mahelka V., Mandák B., et al. (2020). The major satellite DNA families of the diploid Chenopodium album aggregate species: Arguments for and against the “library hypothesis. PloS One 15, e0241206. doi: 10.1371/journal.pone.0241206, PMID: PubMed DOI PMC
Belyayev A., Josefiová J., Jandová M., Kalendar R., Krak K., Mandák B. (2019). Natural history of a satellite DNA family: from the ancestral genome component to species-specific sequences, concerted and non-concerted evolution. IJMS 20, 1201. doi: 10.3390/ijms20051201, PMID: PubMed DOI PMC
Bolger A. M., Lohse M., Usadel B. (2014). Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120. doi: 10.1093/bioinformatics/btu170, PMID: PubMed DOI PMC
Camacho J. P. M., Cabrero J., López-León M. D., Martín-Peciña M., Perfectti F., Garrido-Ramos M. A., et al. (2022). Satellitome comparison of two oedipodine grasshoppers highlights the contingent nature of satellite DNA evolution. BMC Biol. 20, 36. doi: 10.1186/s12915-021-01216-9, PMID: PubMed DOI PMC
Crooks G. E., Hon G., Chandonia J.-M., Brenner S. E. (2004). WebLogo: A sequence logo generator: figure 1. Genome Res. 14, 1188–1190. doi: 10.1101/gr.849004, PMID: PubMed DOI PMC
Cuñado N., Navajas-Pérez R., de la Herrán R., Ruiz Rejón C., Ruiz Rejón M., Santos J. L., et al. (2007). The evolution of sex chromosomes in the genus Rumex (Polygonaceae): Identification of a new species with heteromorphic sex chromosomes. Chromosome Res. 15, 825–833. doi: 10.1007/s10577-007-1166-6, PMID: PubMed DOI
Divashuk M. G., Alexandrov O. S., Kroupin P. Y., Karlov G. I. (2011). Molecular cytogenetic mapping of Humulus lupulus sex chromosomes. Cytogenet. Genome Res. 134, 213–219. doi: 10.1159/000328831, PMID: PubMed DOI
Divashuk M. G., Alexandrov O. S., Razumova O. V., Kirov I. V., Karlov G. I. (2014). Molecular cytogenetic characterization of the dioecious Cannabis sativa with an XY chromosome sex determination system. PloS One 9 (1), e85118. doi: 10.1371/journal.pone.0085118, PMID: PubMed DOI PMC
Durfy S. J., Willard H. F. (1990). Concerted evolution of primate alpha satellite DNA. J. Mol. Biol. 216, 555–566. doi: 10.1016/0022-2836(90)90383-W, PMID: PubMed DOI
Easterling K. A., Pitra N. J., Morcol T. B., Aquino J. R., Lopes L. G., Bussey K. C., et al. (2020). Identification of tandem repeat families from long-read sequences of Humulus lupulus. PloS One 15 (6), e0233971. doi: 10.1371/journal.pone.0233971, PMID: PubMed DOI PMC
Feschotte C., Jiang N., Wessler S. R. (2002). Plant transposable elements: where genetics meets genomics. Nat. Rev. Genet. 3, 329–341. doi: 10.1038/nrg793, PMID: PubMed DOI
Fry K., Poon R., Whitcome P., Idriss J., Salser W., Mazrimas J., et al. (1973). Nucleotide sequence of HS-β Satellite DNA from kangaroo rat PubMed DOI PMC
Gao S., Wang B., Xie S., Xu X., Zhang J., Pei L., et al. (2020). A high-quality reference genome of wild Cannabis sativa. Hortic. Res. 7. doi: 10.1038/s41438-020-0295-3, PMID: PubMed DOI PMC
Garrido-Ramos M. A. (2015). Satellite DNA in plants: more than just rubbish. Cytogenet. Genome Res. 146, 153–170. doi: 10.1159/000437008, PMID: PubMed DOI
Goes C. A. G., Dos Santos R. Z., Aguiar W. R. C., Alves D. C. V., Silva D. M. Z. D. A., Foresti F., et al. (2022). Revealing the satellite DNA history in psalidodon and astyanax characid fish by comparative satellitomics. Front. Genet. 13. doi: 10.3389/fgene.2022.884072, PMID: PubMed DOI PMC
Grabowska-Joachimiak A., Sliwinska E., Pigula M., Skomra U., Joachimiak A. J. (2006). Genome size in Humulus lupulus L. and H. japonicus Siebold & Zucc. (Cannabaceae). Acta Societatis Botanicorum Poloniae, 75(3), 207–214. doi: 10.17221/4367-PSE DOI
Hobza R., Bačovský V., Čegan R., Horáková L., Hubinský M., Janíček T., et al. (2024). Sexy ways: approaches to studying plant sex chromosomes. J. Exp. Bot. 75 (17), 5204–5219. doi: 10.1093/jxb/erae173, PMID: PubMed DOI PMC
Horáková L., Jedlička P., Čegan R., Navrátilová P., Tanaka H., Toyoda A., et al. (2025). Dynamic patterns of repeats and retrotransposons in the centromeres of PubMed DOI PMC
Jagannathan M., Warsinger-Pepe N., Watase G. J., Yamashita Y. M. (2017). Comparative analysis of satellite DNA in the drosophila melanogaster species complex. G3 (Bethesda) 7, 693–704. doi: 10.1534/g3.116.035352, PMID: PubMed DOI PMC
Jesionek W., Bodláková M., Kubát Z., Čegan R., Vyskot B., Vrána J., et al. (2021). Fundamentally different repetitive element composition of sex chromosomes in PubMed DOI PMC
Jiang C.-H., Sun T.-L., Xiang D.-X., Wei S.-S., Li W.-Q. (2018). Anticancer activity and mechanism of xanthohumol: A prenylated flavonoid from hops (Humulus lupulus L.). Front. Pharmacol. 9. doi: 10.3389/fphar.2018.00530, PMID: PubMed DOI PMC
Jin J., Yang M., Fritsch P. W., Van Velzen R., Li D., Yi T. (2020). Born migrators: Historical biogeography of the cosmopolitan family Cannabaceae. J. Sytematics Evol. 58, 461–473. doi: 10.1111/jse.12552 DOI
Kim S.-Y., Kim C.-S., Lee J., Bang J.-W. (2008). Karyotype Analysis and Physical Mapping Using Two rRNA Genes in Dioecious Plant, Humulus japonicus Sieboid & Zucc. Genes Genom. 30 (2), 157–161.
Koo D.-H., Hong C. P., Batley J., Chung Y. S., Edwards D., Bang J.-W., et al. (2011). Rapid divergence of repetitive DNAs in Brassica relatives. Genomics 97, 173–185. doi: 10.1016/j.ygeno.2010.12.002, PMID: PubMed DOI
Koukalova B., Moraes A. P., Renny-Byfield S., Matyasek R., Leitch A. R., Kovarik A. (2010). Fall and rise of satellite repeats in allopolyploids of PubMed DOI
Lapierre É., Monthony A. S., Torkamaneh D. (2023). Genomics-based taxonomy to clarify cannabis classification. Genome 66, 202–211. doi: 10.1139/gen-2023-0005, PMID: PubMed DOI
Li H. (2013). Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. doi: 10.48550/ARXIV.1303.3997 DOI
Ling L.-Z., Zhang S.-D. (2019). The complete chloroplast genome of PubMed DOI PMC
Ljdo J. W., Wells R. A., Baldini A., Reeders S. T. (1991). Improved telomere detection using a telomere repeat probe (TTAGGG)n generated by PCR. Nucleic acids research, 19(17), 4780., PMID: PubMed PMC
Lower S. S., McGurk M. P., Clark A. G., Barbash D. A. (2018). Satellite DNA evolution: old ideas, new approaches. Curr. Opin. Genet. Dev. 49, 70–78. doi: 10.1016/j.gde.2018.03.003, PMID: PubMed DOI PMC
Lynch R. C., Padgitt-Cobb L. K., Garfinkel A. R., Knaus B. J., Hartwick N. T., Allsing N., et al. (2025). Domesticated cannabinoid synthases amid a wild mosaic cannabis pangenome. Nature. 643(8073), 1001–1010. doi: 10.1038/s41586-025-09065-0, PMID: PubMed DOI PMC
Mandolino G., Carboni A., Forapani S., Faeti V., Ranalli P. (1999). Identification of DNA markers linked to the male sex in dioecious hemp (Cannabis sativa L.). Theoretical and applied genetics, 98(1), 86–92. doi: 10.1007/s001220051043 DOI
McPartland J. M. (2018). PubMed DOI PMC
Mestrovic N., Plohl M., Mravinac B., Ugarkovic D. (1998). Evolution of satellite DNAs from the genus Palorus–experimental evidence for the “library” hypothesis. Mol. Biol. Evol. 15, 1062–1068. doi: 10.1093/oxfordjournals.molbev.a026005, PMID: PubMed DOI
Murakami A. (2000). Comparison of Sequence of rbcL and Non-coding Regions of Chloroplast DNA and ITS2 Region of rDNA in Genus Humulus. Breed. Sci. 50, 155–160. doi: 10.1270/jsbbs.50.155 DOI
Murakami A., Darby P., Javornik B., Pais M. S. S., Seigner E., Lutz A., et al. (2006). Molecular phylogeny of wild Hops, Humulus lupulus L. Heredity 97, 66–74. doi: 10.1038/sj.hdy.6800839, PMID: PubMed DOI
Navajas-Pérez R., Quesada Del Bosque M. E., Garrido-Ramos M. A. (2009. a). Effect of location, organization, and repeat-copy number in satellite-DNA evolution. Mol. Genet. Genomics 282, 395–406. doi: 10.1007/s00438-009-0472-4, PMID: PubMed DOI
Navajas-Pérez R., Schwarzacher T., Rejón M. R., Garrido-Ramos M. A. (2009. b). Molecular cytogenetic characterization of Rumex papillaris, a dioecious plant with an XX/XY1Y2 sex chromosome system. Genetica 135, 87–93. doi: 10.1007/s10709-008-9261-y, PMID: PubMed DOI
Navajas-Pérez R., Schwarzacher T., de la Herrán R., Ruiz Rejón C., Ruiz Rejón M., Garrido-Ramos M. A. (2006). The origin and evolution of the variability in a Y-specific satellite-DNA of Rumex acetosa and its relatives. Gene 368, 61–71. doi: 10.1016/j.gene.2005.10.013, PMID: PubMed DOI
Novák P., Ávila Robledillo L., Koblížková A., Vrbová I., Neumann P., Macas J. (2017). TAREAN: a computational tool for identification and characterization of satellite DNA from unassembled short reads. Nucleic Acids Res. 45, e111–e111. doi: 10.1093/nar/gkx257, PMID: PubMed DOI PMC
Novák P., Guignard M. S., Neumann P., Kelly L. J., Mlinarec J., Koblížková A., et al. (2020). Repeat-sequence turnover shifts fundamentally in species with large genomes. Nat. Plants 6, 1325–1329. doi: 10.1038/s41477-020-00785-x, PMID: PubMed DOI
Novák P., Neumann P., Pech J., Steinhaisl J., MacAs J. (2013). RepeatExplorer: A Galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads. Bioinformatics 29, 792–793. doi: 10.1093/bioinformatics/btt054, PMID: PubMed DOI
Padgitt-Cobb L. K., Pitra N. J., Matthews P. D., Henning J. A., Hendrix D. A. (2023). An improved assembly of the “Cascade” hop ( PubMed DOI PMC
Palacios-Gimenez O. M., Dias G. B., De Lima L. G., Kuhn G. C. E. S., Ramos É., Martins C., et al. (2017). High-throughput analysis of the satellitome revealed enormous diversity of satellite DNAs in the neo-Y chromosome of the cricket Eneoptera Surinamensis. Sci. Rep. 7, 6422. doi: 10.1038/s41598-017-06822-8, PMID: PubMed DOI PMC
Patzak J., Vejl P., Skupinová S., Nesvadba V. (2002). Identification of sex in F 1 progenies of hop (Humulus lupulus L.) by molecular marker. Plant, Soil and Environment, 48(7), 318–321.
Pisupati R., Vergara D., Kane N. C. (2018). Diversity and evolution of the repetitive genomic content in Cannabis sativa. BMC Genomics 19 (1), 156. doi: 10.1186/s12864-018-4494-3, PMID: PubMed DOI PMC
Plohl M., Luchetti A., Meštrović N., Mantovani B. (2008). Satellite DNAs between selfishness and functionality: Structure, genomics and evolution of tandem repeats in centromeric (hetero)chromatin. Gene 409, 72–82. doi: 10.1016/j.gene.2007.11.013, PMID: PubMed DOI
Plohl M., Meštrović N., Mravinac B. (2012). Satellite DNA evolution. Genome Dyn. 7 (126), 10–1159 doi: 10.1159/000337122, PMID: PubMed DOI
Polley A., Seigner E., Ganal M. W. (1997).Identification of sex in hop (Humulus lupulus) using molecular markers. Genome 40 (3), 357–361 doi: 10.1139/g97-048, PMID: PubMed DOI
Prentout D., Stajner N., Cerenak A., Tricou T., Brochier-Armanet C., Jakse J., et al. (2021). Plant genera Cannabis and Humulus share the same pair of well-differentiated sex chromosomes. New Phytol. 231, 1599–1611. doi: 10.1111/nph.17456, PMID: PubMed DOI
Quesada Del Bosque M. E., Navajas-Pérez R., Panero J. L., Fernández-González A., Garrido-Ramos M. A. (2011). A satellite DNA evolutionary analysis in the North American endemic dioecious plant PubMed DOI
Razumova O. V., Alexandrov O. S., Divashuk M. G., Sukhorada T. I., Karlov G. I. (2016). Molecular cytogenetic analysis of monoecious hemp (Cannabis sativa L.) cultivars reveals its karyotype variations and sex chromosomes constitution. Protoplasma 253, 895–901. doi: 10.1007/s00709-015-0851-0, PMID: PubMed DOI
Ryu Y.-K., Kang Y., Go J., Park H.-Y., Noh J.-R., Kim Y.-H., et al. (2017). PubMed DOI
Sacchi B., Humphries Z., Kružlicová J., Bodláková M., Pyne C., Choudhury B. I., et al. (2024). Phased assembly of neo-sex chromosomes reveals extensive Y degeneration and rapid genome evolution in PubMed DOI PMC
Schmidt N., Sielemann K., Breitenbach S., Fuchs J., Pucker B., Weisshaar B., et al. (2024). Repeat turnover meets stable chromosomes: repetitive DNA sequences mark speciation and gene pool boundaries in sugar beet and wild beets. Plant J. 118, 171–190. doi: 10.1111/tpj.16599, PMID: PubMed DOI
Schmidt T., Heitkam T., Liedtke S., Schubert V., Menzel G. (2019). Adding color to a century-old enigma: multi-color chromosome identification unravels the autotriploid nature of saffron ( PubMed DOI
Small E. (2015). Evolution and classification of cannabis sativa (Marijuana, hemp) in relation to human utilization. Bot. Rev. 81, 189–294. doi: 10.1007/s12229-015-9157-3 DOI
Utsunomia R., Ruiz-Ruano F. J., Silva D. M. Z. A., Serrano É. A., Rosa I. F., Scudeler P. E. S., et al. (2017). A glimpse into the satellite DNA library in characidae fish (Teleostei, characiformes). Front. Genet. 8. doi: 10.3389/fgene.2017.00103, PMID: PubMed DOI PMC
Waye J. S., Willard H. F. (1989). Concerted evolution of alpha satellite DNA: Evidence for species specificity and a general lack of sequence conservation among alphoid sequences of higher primates. Chromosoma 98, 273–279. doi: 10.1007/BF00327313, PMID: PubMed DOI
Wei K. H.-C., Grenier J. K., Barbash D. A., Clark A. G. (2014). Correlated variation and population differentiation in satellite DNA abundance among lines of PubMed DOI PMC
Yang M.-Q., Van Velzen R., Bakker F. T., Sattarian A., Li D.-Z., Yi T.-S. (2013). Molecular phylogenetics and character evolution of Cannabaceae. TAXON 62, 473–485. doi: 10.12705/623.9 DOI
Yoong Lim K., Kovarik A., Matyasek R., Chase M. W., Knapp S., McCarthy E., et al. (2006). Comparative genomics and repetitive sequence divergence in the species of diploid PubMed DOI
Yu B. C., Yang M. C., Lee K. H., Kim K. H., Choi S. U., Lee K. R. (2007). Two new phenolic constituents ofHumulus japonicus and their cytotoxicity test PubMed DOI
Zanoli P., Zavatti M. (2008). Pharmacognostic and pharmacological profile of Humulus lupulus L. J. Ethnopharmacol. 116, 383–396. doi: 10.1016/j.jep.2008.01.011, PMID: PubMed DOI
Zhang G. J., Jia K. L., Wang J., Gao W. J., Li S. F. (2023). Genome-wide analysis of transposable elements and satellite DNA in Humulus scandens, a dioecious plant with XX/XY1Y2 chromosomes. Front. Plant Sci. 14. doi: 10.3389/fpls.2023.1230250, PMID: PubMed DOI PMC