Fundamentally different repetitive element composition of sex chromosomes in Rumex acetosa
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32902599
PubMed Central
PMC7750719
DOI
10.1093/aob/mcaa160
PII: 5903355
Knihovny.cz E-zdroje
- Klíčová slova
- Rumex acetosa, genome dynamics, satellites, sex chromosomes, transposable elements,
- MeSH
- chromozomy rostlin MeSH
- hybridizace in situ fluorescenční MeSH
- molekulární evoluce MeSH
- pohlavní chromozomy MeSH
- retroelementy MeSH
- Rumex * genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- retroelementy MeSH
BACKGROUND AND AIMS: Dioecious species with well-established sex chromosomes are rare in the plant kingdom. Most sex chromosomes increase in size but no comprehensive analysis of the kind of sequences that drive this expansion has been presented. Here we analyse sex chromosome structure in common sorrel (Rumex acetosa), a dioecious plant with XY1Y2 sex determination, and we provide the first chromosome-specific repeatome analysis for a plant species possessing sex chromosomes. METHODS: We flow-sorted and separately sequenced sex chromosomes and autosomes in R. acetosa using the two-dimensional fluorescence in situ hybridization in suspension (FISHIS) method and Illumina sequencing. We identified and quantified individual repeats using RepeatExplorer, Tandem Repeat Finder and the Tandem Repeats Analysis Program. We employed fluorescence in situ hybridization (FISH) to analyse the chromosomal localization of satellites and transposons. KEY RESULTS: We identified a number of novel satellites, which have, in a fashion similar to previously known satellites, significantly expanded on the Y chromosome but not as much on the X or on autosomes. Additionally, the size increase of Y chromosomes is caused by non-long terminal repeat (LTR) and LTR retrotransposons, while only the latter contribute to the enlargement of the X chromosome. However, the X chromosome is populated by different LTR retrotransposon lineages than those on Y chromosomes. CONCLUSIONS: The X and Y chromosomes have significantly diverged in terms of repeat composition. The lack of recombination probably contributed to the expansion of diverse satellites and microsatellites and faster fixation of newly inserted transposable elements (TEs) on the Y chromosomes. In addition, the X and Y chromosomes, despite similar total counts of TEs, differ significantly in the representation of individual TE lineages, which indicates that transposons proliferate preferentially in either the paternal or the maternal lineage.
Zobrazit více v PubMed
Afgan E, Baker D, van den Beek M, et al. . 2016. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update. Nucleic Acids Research 44: W3–W10. PubMed PMC
Ainsworth C. 2000. Boys and girls come out to play: the molecular biology of dioecious plants. Annals of Botany 86: 211–221.
Ainsworth C, Parker J, Buchanan-Wollaston V. 1998. Sex determination by X:autosome dosage: Rumex acetosa (sorrel). In: Ainsworth C. ed. Sex determination in plants. Oxford: Bios Scientific Publishers.
Akagi H, Yokozeki Y, Inagaki A, Mori K, Fujimura T. 2001. Micron, a microsatellite-targeting transposable element in the rice genome. Molecular Genetics and Genomics 266: 471–480. PubMed
Benson G. 1999. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Research 27: 573–580. PubMed PMC
Błocka-Wandas M, Sliwinska E, Grabowska-Joachimiak A, Musial K, Joachimiak AJ. 2007. Male gametophyte development and two different DNA classes of pollen grains in Rumex acetosa L., a plant with an XX/XY1Y2 sex chromosome system and a female-biased sex ratio. Sexual Plant Reproduction 20: 171–180.
Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30: 2114–2120. PubMed PMC
Bouzidi MF, Franchel J, Tao Q, et al. . 2006. A sunflower BAC library suitable for PCR screening and physical mapping of targeted genomic regions. Theoretical and Applied Genetics 113: 81–89. PubMed
Calarco JP, Borges F, Donoghue MT, et al. . 2012. Reprogramming of DNA methylation in pollen guides epigenetic inheritance via small RNA. Cell 151: 194–205. PubMed PMC
Cegan R, Vyskot B, Kejnovsky E, et al. . 2012. Genomic diversity in two related plant species with and without sex chromosomes - Silene latifolia and S. vulgaris. PLoS ONE 7: e31898. PubMed PMC
Cermak T, Kubat Z, Hobza R, et al. . 2008. Survey of repetitive sequences in Silene latifolia with respect to their distribution on sex chromosomes. Chromosome Research 16: 961–976. PubMed
Charlesworth B. 1991. The evolution of sex chromosomes. Science 251: 1030–1033. PubMed
Charlesworth B, Charlesworth D. 1978. A model for the evolution of dioecy and gynodioecy. American Naturalist 112: 975–997.
Charlesworth B, Wall JD. 1999. Inbreeding, heterozygote advantage and the evolution of neo-X and neo-Y sex chromosomes. Proceedings of the Royal Society of London. Series B: Biological Sciences 266: 51–56.
Charlesworth B, Coyne JA, Barton NH. 1987. The relative rates of evolution of sex chromosomes and autosomes. American Naturalist 130: 113–146.
Charlesworth D. 2016. Plant sex chromosomes. Annual Review of Plant Biology 67: 397–420. PubMed
Charlesworth D. 2019. Young sex chromosomes in plants and animals. New Phytologist 224: 1095–1107. PubMed
Charlesworth D, Charlesworth B. 1980. Sex differences in fitness and selection for centric fusions between sex-chromosomes and autosomes. Genetics Research 35: 205–214. PubMed
Costich DE, Meagher TR, Yurkow EJ. 1991. A rapid means of sex identification in Silene latifolia by use of flow cytometry. Plant Molecular Biology Reporter 9: 359–370.
Creasey KM, Zhai J, Borges F, et al. . 2014. miRNAs trigger widespread epigenetically activated siRNAs from transposons in Arabidopsis. Nature 508: 411–415. PubMed PMC
Cuñado N, Navajas-Pérez R, de la Herrán R, et al. . 2007. The evolution of sex chromosomes in the genus Rumex (Polygonaceae): identification of a new species with heteromorphic sex chromosomes. Chromosome Research 15: 825–833. PubMed
Divashuk MG, Alexandrov OS, Kroupin PY, Karlov GI. 2011. Molecular cytogenetic mapping of Humulus lupulus sex chromosomes. Cytogenetic and Genome Research 134: 213–219. PubMed
Divashuk MG, Alexandrov OS, Razumova OV, Kirov IV, Karlov GI. 2014. Molecular cytogenetic characterization of the dioecious Cannabis sativa with an XY chromosome sex determination system. PLoS ONE 9: e85118. PubMed PMC
Doležel J, Göhde W. 1995. Sex determination in dioecious plants Melandrium album and M. rubrum using high-resolution flow cytometry. Cytometry 19: 103–106. PubMed
Eggert C. 2004. Sex determination: the amphibian models. Reproduction Nutrition Development 44: 539–549. PubMed
Farooq U, Lovleen, Saggoo MIS. 2014. Male meiosis and behaviour of sex chromosomes in different populations of Rumex acetosa L. from the Western Himalayas, India. Plant Systematics and Evolution 300: 287–294.
Filatov DA, Howell EC, Groutides C, Armstrong SJ. 2009. Recent spread of a retrotransposon in the Silene latifolia genome, apart from the Y chromosome. Genetics 181: 811–817. PubMed PMC
Gehring M, Henikoff S. 2007. DNA methylation dynamics in plant genomes. Biochimica et Biophysica Acta 1769: 276–286. PubMed
Giorgi D, Farina A, Grosso V, Gennaro A, Ceoloni C, Lucretti S. 2013. FISHIS: fluorescence in situ hybridization in suspension and chromosome flow sorting made easy. PLoS ONE 8: e57994. PubMed PMC
Grabowska-Joachimiak A, Joachimiak A. 2002. C-banded karyotypes of two Silene species with heteromorphic sex chromosomes. Genome 45: 243–252. PubMed
Grabowska-Joachimiak A, Kula A, Książczyk T, Chojnicka J, Sliwinska E, Joachimiak AJ. 2015. Chromosome landmarks and autosome-sex chromosome translocations in Rumex hastatulus, a plant with XX/XY1Y2 sex chromosome system. Chromosome Research 23: 187–197. PubMed PMC
Gschwend AR, Yu Q, Tong EJ, et al. .. 2012. Rapid divergence and expansion of the X chromosome in papaya. Proceedings of the National Academy of Sciences of the USA 109: 13716–13721. PubMed PMC
Hernandez D, François P, Farinelli L, Osterås M, Schrenzel J. 2008. De novo bacterial genome sequencing: millions of very short reads assembled on a desktop computer. Genome Research 18: 802–809. PubMed PMC
Hobza R, Kubat Z, Cegan R, Jesionek W, Vyskot B, Kejnovsky E. 2015. Impact of repetitive DNA on sex chromosome evolution in plants. Chromosome Research 23: 561–570. PubMed
Hobza R, Cegan R, Jesionek W, Kejnovsky E, Vyskot B, Kubat Z. 2017. Impact of repetitive elements on the Y chromosome formation in plants. Genes 8: 302. PubMed PMC
Hobza R, Hudzieczek V, Kubat Z, et al. . 2018. Sex and the flower-developmental aspects of sex chromosome evolution. Annals of Botany 122: 1085–1101. PubMed PMC
Hossain MU, Islam M, Afroz M, Sultana SS, Alam SS. 2016. Karyotype and RAPD analysis of male and female Coccinia grandis L. from Bangladesh. Cytologia 81: 349–355.
Hough J, Hollister JD, Wang W, Barrett SC, Wright SI. 2014. Genetic degeneration of old and young Y chromosomes in the flowering plant Rumex hastatulus. Proceedings of the National Academy of Sciences of the USA 111: 7713–7718. PubMed PMC
Hsieh TF, Ibarra CA, Silva P, et al. . 2009. Genome-wide demethylation of Arabidopsis endosperm. Science 324: 1451–1454. PubMed PMC
Ibarra CA, Feng X, Schoft VK, et al. . 2012. Active DNA demethylation in plant companion cells reinforces transposon methylation in gametes. Science 337: 1360–1364. PubMed PMC
Jaenike J. 2001. Sex chromosome meiotic drive. Annual Review of Ecology and Systematics 32: 25–49.
Jiang N, Wessler SR. 2001. Insertion preference of maize and rice miniature inverted repeat transposable elements as revealed by the analysis of nested elements. Plant Cell 13: 2553–2564. PubMed PMC
Kasjaniuk M, Grabowska-Joachimiak A, Joachimiak AJ. 2019. Testing the translocation hypothesis and Haldane’s rule in Rumex hastatulus. Protoplasma 256: 237–247. PubMed PMC
Kearse M, Moir R, Wilson A, et al. . 2012. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28: 1647–1649. PubMed PMC
Kejnovský E, Michalovova M, Steflova P, et al. . 2013. Expansion of microsatellites on evolutionary young Y chromosome. PLoS ONE 8: e45519. PubMed PMC
Kihara H, Ono T. 1923. Cytological studies on Rumex L. I. Chromosomes of Rumex acetosa L. Shokubutsugaku Zasshi 37: 84–90.
Kozielska M, Weissing FJ, Beukeboom LW, Pen I. 2010. Segregation distortion and the evolution of sex-determining mechanisms. Heredity 104: 100–112. PubMed
Kralova T, Cegan R, Kubat Z, et al. . 2014. Identification of a novel retrotransposon with sex chromosome specific distribution in Silene latifolia. Cytogenetic and Genome Research 143: 87–95. PubMed
Kubat Z, Hobza R, Vyskot B, Kejnovsky E. 2008. Microsatellite accumulation on the Y chromosome in Silene latifolia. Genome 51: 350–356. PubMed
Kubat Z, Zluvova J, Vogel I, et al. . 2014. Possible mechanisms responsible for absence of a retrotransposon family on a plant Y chromosome. New Phytologist 202: 662–678. PubMed
Lande R. 1979. Effective deme sizes during long-term evolution estimated from rates of chromosomal rearrangement. Evolution 33: 234–251. PubMed
Lande R. 1985. The fixation of chromosomal rearrangements in a subdivided population with local extinction and colonization. Heredity 54: 323–332. PubMed
Lengerova M, Vyskot B. 2001. Sex chromatin and nucleolar analyses in Rumex acetosa L. Protoplasma 217: 147–153. PubMed
Li SF, Gao WJ, Zhao XP, Dong TY, Deng CL, Lu LD. 2014. Analysis of transposable elements in the genome of Asparagus officinalis from high coverage sequence data. PLoS ONE 9: e97189. PubMed PMC
Liu Z, Moore P, Ma H, Ackerman C, et al. . 2004. A primitive Y chromosome in papaya marks incipient sex chromosome evolution. Nature 427: 348–352. PubMed
Macas J, Novák P, Pellicer J, et al. . 2015. In depth characterization of repetitive DNA in 23 plant genomes reveals sources of genome size variation in the legume tribe Fabeae. PLoS ONE 10: e0143424. PubMed PMC
Marchler-Bauer A, Bo Y, Han L, et al. . 2017. CDD/SPARCLE: functional classification of proteins via subfamily domain architectures. Nucleic Acids Research 45: D200–D203. PubMed PMC
Mariotti B, Navajas-Pérez R, Lozano R, et al. . 2006. Cloning and characterization of dispersed repetitive DNA derived from microdissected sex chromosomes of Rumex acetosa. Genome 49: 114–121. PubMed
Mariotti B, Manzano S, Kejnovský E, Vyskot B, Jamilena M. 2009. Accumulation of Y-specific satellite DNAs during the evolution of Rumex acetosa sex chromosomes. Molecular Genetics and Genomics 281: 249. PubMed
Martínez G, Panda K, Köhler C, Slotkin RK. 2016. Silencing in sperm cells is directed by RNA movement from the surrounding nurse cell. Nature Plants 2: 1–8. PubMed
Martínez G, Choudury SG, Slotkin RK. 2017. tRNA-derived small RNAs target transposable element transcripts. Nucleic Acids Research 45: 5142–5152. PubMed PMC
Matsunaga S, Hizume M, Kawano S, Kuroiwa T. 1994. Cytological analyses in Melandrium album: genome size, chromosome size and fluorescence in situ hybridization. Cytologia 59: 135–141.
Michalovova M, Kubat Z, Hobza R, Vyskot B, Kejnovsky E. 2015. Fully automated pipeline for detection of sex linked genes using RNA-Seq data. BMC Bioinformatics 16: 78. PubMed PMC
Ming R, Bendahmane A, Renner SS. 2011. Sex chromosomes in land plants. Annual Review of Plant Biology 62: 485–514. PubMed
Miura I. 2017. Sex determination and sex chromosomes in Amphibia. Sexual Development 11: 298–306. PubMed
Na JK, Wang J, Ming R. 2014. Accumulation of interspersed and sex-specific repeats in the non-recombining region of papaya sex chromosomes. BMC Genome 15: 335. PubMed PMC
Naito K, Monden Y, Yasuda K, Saito H, Okumoto Y. 2014. mPing: the bursting transposon. Breeding Science 64: 109–114. PubMed PMC
Navajas-Pérez R, de la Herrán R, López González G, et al. . 2005. a The evolution of reproductive systems and sex-determining mechanisms within Rumex (Polygonaceae) inferred from nuclear and chloroplastidial sequence data. Molecular Biology and Evolution 22: 1929–1939. PubMed
Navajas-Pérez R, de la Herrán R, Jamilena M, et al. . 2005. b Reduced rates of sequence evolution of Y-linked satellite DNA in Rumex (Polygonaceae). Journal of Molecular Evolution 60: 391–399. PubMed
Navajas-Pérez R, Schwarzacher T, de la Herrán R, Ruiz Rejón C, Ruiz Rejón M, Garrido-Ramos MA. 2006. The origin and evolution of the variability in a Y-specific satellite-DNA of Rumex acetosa and its relatives. Gene 368: 61–71. PubMed
Navajas-Pérez R, Schwarzacher T, Rejón MR, Garrido-Ramos MA. 2009. Molecular cytogenetic characterization of Rumex papillaris, a dioecious plant with an XX/XY1Y2 sex chromosome system. Genetica 135: 87–93. PubMed
Novák P, Neumann P, Macas J. 2010. Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data. BMC Bioinformatics 11: 378. PubMed PMC
Novák P, Neumann P, Pech J, Steinhaisl J, Macas J. 2013. RepeatExplorer: a Galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads. Bioinformatics 29: 792–793. PubMed
Okada S, Sone T, Fujisawa M, et al. . 2001. The Y chromosome in the liverwort Marchantia polymorpha has accumulated unique repeat sequences harboring a male-specific gene. Proceedings of the National Academy of Sciences of the USA 98: 9454–9459. PubMed PMC
Oyama RK, Silber MV, Renner SS. 2010. A specific insertion of a solo-LTR characterizes the Y-chromosome of Bryonia dioica (Cucurbitaceae). BMC Research Notes 3: 166. PubMed PMC
Parker JS. 1990. Sex-chromosome and sexual differentiation in flowering plants. Chromosomes Today 10: 187–198.
Parker JS, Clark MS. 1991. Dosage sex-chromosome systems in plants. Plant Science 80: 79–92.
Ponnikas S, Sigeman H, Abbott JK, Hansson B. 2018. Why do sex chromosomes stop recombining? Trends in Genetics 34: 492–503. PubMed
Preston BD, Dougherty JP. 1996. Mechanisms of retroviral mutation. Trends in Microbiology 4: 16–21. PubMed
Puterova J, Razumova O, Martinek T, et al. . 2017. Satellite DNA and transposable elements in seabuckthorn (Hippophae rhamnoides), a dioecious plant with small Y and large X chromosomes. Genome Biology and Evolution 9: evw303. PubMed PMC
Puterova J, Kubat Z, Kejnovsky E, et al. . 2018. The slowdown of Y chromosome expansion in dioecious Silene latifolia due to DNA loss and male-specific silencing of retrotransposons. BMC Genomics 19: 153. PubMed PMC
Ramsay L, Macaulay M, Cardle L, et al. . 1999. Intimate association of microsatellite repeats with retrotransposons and other dispersed repetitive elements in barley. Plant Journal 17: 415–425. PubMed
RStudio Team 2020. RStudio: integrated development for R. Boston, MA: RStudio, PBC; http://www.rstudio.com/ (18 February 2020, date last accessed).
Renner SS. 2014. The relative and absolute frequencies of angiosperm sexual systems: dioecy, monoecy, gynodioecy, and an updated online database. American Journal of Botany 101: 1588–1596. PubMed
Rice WR. 1984. Sex chromosomes and the evolution of sexual dimorphism. Evolution 38: 735–742. PubMed
Rice WR. 1987. The accumulation of sexually antagonistic genes as a selective agent promoting the evolution of reduced recombination between primitive sex chromosomes. Evolution 41: 911–914. PubMed
Sakamoto K, Ohmido N, Fukui K, Kamada H, Satoh S. 2000. Site-specific accumulation of a LINE-like retrotransposon in a sex chromosome of the dioecious plant Cannabis sativa. Plant Molecular Biology 44: 723–732. PubMed
Sakamoto K, Abe T, Matsuyama T, et al. . 2005. RAPD markers encoding retrotransposable elements are linked to the male sex in Cannabis sativa L. Genome 48: 931–936. PubMed
Schartl M. 2004. Sex chromosome evolution in non-mammalian vertebrates. Current Opinion in Genetics & Development 14: 634–641. PubMed
Schmid M, Nanda I, Steinlein C, Kausch K, Epplen JT, Haaf T. 1991. Sex-determining mechanisms and sex chromosomes in Amphibia. Amphibian Cytogenetics and Evolution 393–430.
Shibata F, Hizume M, Kuroki Y. 1999. Chromosome painting of Y chromosomes and isolation of a Y chromosome-specific repetitive sequence in the dioecious plant Rumex acetosa. Chromosoma 108: 266–270. PubMed
Shibata F, Hizume M, Kuroki Y. 2000. Differentiation and the polymorphic nature of the Y chromosomes revealed by repetitive sequences in the dioecious plant, Rumex acetosa. Chromosome Research 8: 229–236. PubMed
Simková H, Svensson JT, Condamine P, et al. . 2008. Coupling amplified DNA from flow-sorted chromosomes to high-density SNP mapping in barley. BMC Genomics 9: 294. PubMed PMC
Slotkin RK, Vaughn M, Borges F, et al. . 2009. Epigenetic reprogramming and small RNA silencing of transposable elements in pollen. Cell 136: 461–472. PubMed PMC
Smith BW. 1964. The evolving karyotype of Rumex hastatulus. Evolution 18: 93–104.
Sobreira TJP, Durham AM, Gruber A. 2006 TRAP: automated classification, quantification and annotation of tandemly repeated sequences. Bioinformatics 22: 361–362. PubMed
Sousa A, Bellot S, Fuchs J, Houben A, Renner SS. 2016. Analysis of transposable elements and organellar DNA in male and female genomes of a species with a huge Y chromosome reveals distinct Y centromeres. Plant Journal 88: 387–396. PubMed
Steflova P, Tokan V, Vogel I, et al. . 2013. Contrasting patterns of transposable element and satellite distribution on sex chromosomes (XY1Y2) in the dioecious plant Rumex acetosa. Genome Biology and Evolution 5: 769–782. PubMed PMC
Steflova P, Hobza R, Vyskot B, Kejnovsky E. 2014. Strong accumulation of chloroplast DNA in the Y chromosomes of Rumex acetosa and Silene latifolia. Cytogenetic and Genome Research 142: 59–65. PubMed
Truţă E, Cǎpraru G, Surdu Ş, et al. . 2010. Karyotypic studies in ecotypes of Hippophaë rhamnoides L. from Romania. Silvae Genetica 59: 175–182.
Úbeda F, Patten MM, Wild G. 2015. On the origin of sex chromosomes from meiotic drive. Proceedings of the Royal Society B: Biological Sciences 282: 20141932. PubMed PMC
Vagera J, Paulíková D, Doležel J. 1994. The development of male and female regenerants by in vitro androgenesis in dioecious plant Melandrium album. Annals of Botany 73: 455–459.
Veltsos P, Cossard G, Beaudoing E, et al. . 2018. Size and content of the sex-determining region of the Y chromosome in dioecious Mercurialis annua, a plant with homomorphic sex chromosomes. Genes 9: 277. PubMed PMC
Veltsos P, Ridout KE, Toups MA, et al. . 2019. Early sex-chromosome evolution in the diploid dioecious plant Mercurialis annua. Genetics 212: 815–835. PubMed PMC
Veuskens J, Ye D, Oliveira M, et al. . 1992. Sex determination in the dioecious Melandrium album: androgenic embryogenesis requires the presence of the X chromosome. Genome 35: 8–16.
Vondrak T, Ávila Robledillo L, Novák P, Koblížková A, Neumann P, Macas J. 2020. Characterization of repeat arrays in ultra-long nanopore reads reveals frequent origin of satellite DNA from retrotransposon-derived tandem repeats. Plant Journal 101: 484–500. PubMed PMC
Vrána J, Cápal P, Šimková H, Karafiátová M, Čížková J, Doležel J. 2016. Flow analysis and sorting of plant chromosomes. Current Protocols in Cytometry 78: 5.3.1–5.3.43. PubMed
Vyskot B, Hobza R. 2004. Gender in plants: sex chromosomes are emerging from the fog. Trends in Genetics 20: 432–438. PubMed
de Waal Malefijt M, Charlesworth B. 1979. A model for the evolution of translocation heterozygosity. Heredity 43: 315–331.
Yu Q, Hou S, Hobza R, et al. . 2007. Chromosomal location and gene paucity of the male specific region on papaya Y chromosome. Molecular Genetics and Genomics 278: 177–185. PubMed
Sexy ways: approaches to studying plant sex chromosomes