Genomic diversity in two related plant species with and without sex chromosomes--Silene latifolia and S. vulgaris
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
22393373
PubMed Central
PMC3290532
DOI
10.1371/journal.pone.0031898
PII: PONE-D-11-17137
Knihovny.cz E-zdroje
- MeSH
- chromozomy rostlin MeSH
- délka genomu * MeSH
- genetická variace MeSH
- genom rostlinný MeSH
- genomika MeSH
- hybridizace in situ fluorescenční MeSH
- hybridizace nukleových kyselin MeSH
- Magnoliopsida genetika MeSH
- mikrosatelitní repetice genetika MeSH
- modely genetické MeSH
- molekulární evoluce MeSH
- polyploidie MeSH
- repetitivní sekvence nukleových kyselin genetika MeSH
- rostlinné geny MeSH
- rostlinné proteiny genetika MeSH
- satelitní DNA genetika MeSH
- Silene klasifikace genetika MeSH
- výpočetní biologie metody MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- rostlinné proteiny MeSH
- satelitní DNA MeSH
BACKGROUND: Genome size evolution is a complex process influenced by polyploidization, satellite DNA accumulation, and expansion of retroelements. How this process could be affected by different reproductive strategies is still poorly understood. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed differences in the number and distribution of major repetitive DNA elements in two closely related species, Silene latifolia and S. vulgaris. Both species are diploid and possess the same chromosome number (2n = 24), but differ in their genome size and mode of reproduction. The dioecious S. latifolia (1C = 2.70 pg DNA) possesses sex chromosomes and its genome is 2.5× larger than that of the gynodioecious S. vulgaris (1C = 1.13 pg DNA), which does not possess sex chromosomes. We discovered that the genome of S. latifolia is larger mainly due to the expansion of Ogre retrotransposons. Surprisingly, the centromeric STAR-C and TR1 tandem repeats were found to be more abundant in S. vulgaris, the species with the smaller genome. We further examined the distribution of major repetitive sequences in related species in the Caryophyllaceae family. The results of FISH (fluorescence in situ hybridization) on mitotic chromosomes with the Retand element indicate that large rearrangements occurred during the evolution of the Caryophyllaceae family. CONCLUSIONS/SIGNIFICANCE: Our data demonstrate that the evolution of genome size in the genus Silene is accompanied by the expansion of different repetitive elements with specific patterns in the dioecious species possessing the sex chromosomes.
Zobrazit více v PubMed
Greilhuber J, Borsch T, Muller K, Worberg A, Porembski S, et al. Smallest angiosperm genomes found in Lentibulariaceae with chromosomes of bacterial size. Plant Biology. 2006;8:770–777. PubMed
Pellicer J, Fay MF, Leitch IJ. The largest eukaryotic genome of them all? Botanical Journal of the Linnean Society. 2010;164:10–15.
Thomas CA. The genetic organization of chromosomes. Annual Reviews of Genetics. 1971;5:237–256. PubMed
Gregory TR. Coincidence, coevolution, or causation? DNA content, cellsize, and the C-value enigma. Biological Reviews. 2001;76:65–101. PubMed
Leitch IJ, Bennett MD. Polyploidy in angiosperms. Trends in Plant Sciences. 1997;2:470–476.
Neumann P, Koblizkova A, Navratilova A, Macas J. Significant expansion of Vicia pannonica genome size mediated by amplification of a single type of giant retroelement. Genetics. 2006;173:1047–1056. PubMed PMC
Hawkins JS, Kim HR, Nason JD, Wing RA, et al. Differential lineage-specific amplification of transposable elements is responsible for genome size variation in Gossypium. Genome Research. 2006;16:1252–1261. PubMed PMC
Kejnovsky E, Leitch I, Leitch A. Contrasting evolutionary dynamics between angiosperm and mammalian genomes. Trends in Ecology and Evolution . 2009;24:572–582. PubMed
Kidwell MG, Lisch DR. Perspective: transposable elements, parasitic DNA, and genome evolution. Evolution. 2001;55:1–24. PubMed
Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, et al. A unified classification system for eukaryotic transposable elements. Nature Reviews Genetics. 2007;8:973–982. PubMed
Bennetzen JL. Transposable elements contributions to plant gene and genome evolution. Plant Molecular Biology. 2000;42:251–269. PubMed
Charlesworth B, Sniegowski P, Stephan W. The evolutionary dynamics of repetitive DNA in eukaryotes. Nature. 1994;371:215–220. PubMed
Heslop-Harrison JS, Brandes A, Schwarzacher T. Tandemly repeated DNA sequences and centromeric chromosomal regions of Arabidopsis species. Chromosome Research. 2003;11:241–253. PubMed
Taylor DR, Olson MS, McCauley DE. A quantitative genetic analysis of nuclear-cytoplasmic male sterility in structured populations of Silene vulgaris. Genetics. 2001;158:833–841. PubMed PMC
Vyskot B, Hobza R. Gender in plants: sex chromosomes are emerging from the fog. Trends in Genetics. 2004;20:432–438. PubMed
Kejnovsky E, Hobza R, Kubat Z, Cermak T, Vyskot B. The role of repetitive DNA in structure and evolution of sex chromosomes in plants. Heredity. 2009;102:533–541. PubMed
Buzek J, Koutnikova H, Houben A, Riha K, Janousek B, et al. Isolation and characterization of X chromosome-derived DNA sequences from a dioecious plant Melandrium album. Chromosome Research. 1997;5:57–65. PubMed
Kazama Y, Sugiyama R, Matsunaga S, Shibata F, Uchida W, et al. Organization of the KpnI family of chromosomal distal-end satellite DNAs in Silene latifolia. Journal of Plant Research. 2003;116:317–326. PubMed
Kazama Y, Sugiyama R, Suto Y, Uchida W, Kawano S. The clustering of four subfamilies of satellite DNA at individual chromosome ends in Silene latifolia. Genome. 2006;49:520–530. PubMed
Hobza R, Lengerova M, Svoboda J, Kubekova H, Kejnovsky E, et al. An accumulation of tandem DNA repeats on the Y chromosome in Silene latifolia during early stages of sex chromosome evolution. Chromosoma. 2006;115:376–382. PubMed
Hobza R, Kejnovsky E, Vyskot B, Widmer A. The role of chromosomal rearrangements in the evolution of Silene latifolia sex chromosomes. Molecular Genetics and Genomics. 2007;278:633–638. PubMed
Kubat Z, Hobza R, Vyskot B, Kejnovsky E. Microsatellite accumulation on the Y chromosome in Silene latifolia. . Genome. 2008;51:350–356. PubMed
Kejnovsky E, Kubat Z, Hobza R, Lengerova M, Sato I, et al. Accumulation of chloroplast DNA sequences on the Y chromosome of Silene latifolia. . Genetica. 2006;128:167–175. PubMed
Matsunaga S, Yagisawa F, Yamamoto M, Uchida W, Nakao S, et al. LTR retrotransposons in the dioecious plant Silene latifolia. Genome. 2002;45:745–751. PubMed
Obara M, Matsunaga S, Nakao S, Kawano S. A plant Y chromosome-STS marker encoding a degenerate retrotransposon. Genes and Genetic Systems. 2002;77:393–398. PubMed
Kejnovsky E, Kubat Z, Macas J, Hobza R, Mracek J, et al. Retand: A novel family of gypsy-like retrotransposon harboring an amplified tandem repeat. Molecular Genetics and Genomics. 2006;276:254–263. PubMed
Pritham AJ, Zhang YH, Feschotte C, Kesseli RV. An Ac-like transposable element family with transcriptionally active Y-linked copies in the white campion, Silene latifolia. Genetics. 2003;165:799–807. PubMed PMC
Cermak T, Kubat Z, Hobza R, Koblizkova A, Widmer A, et al. Survey of repetitive sequences in Silene latifolia with respect to their distribution on sex chromosomes. Chromosome Research. 2008;16:961–976. PubMed
Bergero R, Forrest A, Charlesworth D. Active miniature transposons from a plant genome and its nonrecombining Y chromosome. Genetics. 2008;178:1085–1092. PubMed PMC
Marais G, Nicolas M, Bergero R, Chambrier P, Kejnovsky E, et al. Evidence for degeneration of the Y chromosome in the dioecious plant Silene latifolia. Current Biology. 2008;18:545–549. PubMed
Cegan R, Marais GAB, Kubekova H, Blavet N, Widmer A, et al. Structure and evolution of Apetala3, a sex-linked gene in Silene latifolia. BMC Plant Biol. 2010;10:180. PubMed PMC
Siroky J, Lysák MA, Dolezel J, Kejnovsky E, Vyskot B. Heterogeneity of rDNA distribution and genome size in Silene spp. . Chromosome Research. 2001;9:387–393. PubMed
Filatov DA, Howell EC, Groutides C, Armstrong SJ. Recent spread of retrotransposon in the Silene latifolia genome, apart from the Y chromosome. Genetics. 2009;181:811–817. PubMed PMC
Nicolas M, Marais G, Hykelova V, Janousek B, Laporte V, et al. A gradual process of recombination restriction in the evolutionary history of the sex chromosomes in dioecious plants. PLoS Biology. 2005;3:e4. PubMed PMC
Macas J, Kejnovský E, Neumann P, Novák P, Koblížková A, et al. Next Generation Sequencing-Based Analysis of Repetitive DNA in the Model Dioceous Plant Silene latifolia. PLoS One. 2011;6:e27335. PubMed PMC
Morse AM, Peterson DG, Islam-Faridi MN, Smith KE, Magbanua Z, et al. Evolution of Genome Size and Complexity in Pinus. PLoS ONE. 2009;4:e4332. PubMed PMC
Renny-Byfield S, Chester M, Kovarík A, Le Comber SC, Grandbastien M-A, et al. Next generation sequencing reveals genome downsizing in allotetraploid Nicotiana tabacum, predominantly through the elimination of paternally derived repetitive DNAs. Mol Biol Evol. 2011;28:2843–2854. PubMed
Dong H, Chen Y, Shen Y, Wang S, Zhao G, et al. Artificial duplicate reads in sequencing data of 454 Genome Sequencer FLX System. Acta Bioch Bioph Sin. 2011;43:496–500. PubMed
Nakamura K, Oshima T, Morimoto T, Ikeda S, Yoshikawa H, et al. Sequence-specific error profile of Illumina sequencers. Nucleic Acids Res. 2011;39:e90. PubMed PMC
Siroky J, Hodurkova J, Negrutiu I, Vyskot B. Functional and Structural Chromosome Analyses in Autotetraploid Silene latifolia. Annals of Botany. 1999;84:633–638.
Kumar A, Bennetzen JL. Plant retrotransposons. Annual Review of Genetics. 1999;33:479–532. PubMed
Petrov DA, Wendel JF. Fox CW, Wolf JB, editors. Genome evolution in eukaryotes: The genome size perspective. Evolutionary genetics: Concepts and case studies. 2006. pp. 144–156. Oxford University Press, Oxford, UK.
Hu TT, Pattyn P, Bakker EG, Cao J, Cheng J-F, et al. The Arabidopsis lyrata genome sequence and the basis of rapid genome size change. Nature Genetics. 2011;43:476–481. PubMed PMC
Ma J, Devos KM, Bennetzen JL. Analyses of LTR-retrotransposon structures reveal recent and rapid genomic DNA loss in rice. Genome Research. 2004;14:860–869. PubMed PMC
Figueira A, Janick J, Goldsbrough P. Genome size and DNA polymorphism in Theobroma cacao. Journal of the American Society for Horticultural Science. 1992;117:673–677.
Cohen S, Segal D. Extrachromosomal circular DNA in eukaryotes: possible involvement in the plasticity of tandem repeats. Cytogenetic and Genome Research. 2009;124:327–338. PubMed
Bouzidi MF, Franchel J, Tao QZ, Stormo K, Mraz A, et al. A sunflower BAC library suitable for PCR screening and physical mapping of targeted genomic regions. Theoretical and Applied Genetics. 2006;113:81–89. PubMed
Chevreux B, Pfisterer T, Drescher B, Driesel AJ, Müller WEG, et al. Using the miraEST Assembler for Reliable and automated mRNA Transcript Assembly and SNP Detection in Sequenced ESTs. Genome Research. 2004;14:1147–1159. PubMed PMC
Pertea G, Huang X, Liang F, Antonescu V, Sultana R, et al. TIGR Gene Indices clustering tools (TGICL): a software system for fast clustering of large EST datasets. Bioinformatics. 2003;19:651–2. PubMed
Drummond AJ, Ashton B, Buxton S, Cheung M, Cooper A, et al. 2010. Geneious v5.3, Available from http://www.geneious.com.
Burge C, Karlin S. Prediction of complete gene structures in human genomic DNA. Journal of Molecular Biology. 1997;268:78–94. PubMed
Katoh K, Asimenos G, Toh H. Multiple Alignment of DNA Sequences with MAFFT. Methods in Molecular Biology. 2009;537:39–64. PubMed
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. Journal of Molecular Biology. 1990;215:403–410. PubMed
Jurka J, Kapitonov VV, Pavlicek A, Klonowski P, Kohany O, et al. Repbase Update, a database of eukaryotic repetitive elements. Cytogenetic and Genome Research. 2005;110:426–467. PubMed
Kohany O, Gentless AJ, Hankus L, Jurka J. Annotation, submission and screening of repetitive elements in Repbase: Repbase Submitter and Censor. BMC Bioinformatics. 2006;7:474. PubMed PMC
Smit AFA, Hubley R, Green P. RepeatMasker Open-3.0. 1996. http://www.repeatmasker.org.
Xu Z, Wang H. LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Research. 2007;35 (Web Server issue):W265–W268. PubMed PMC
Brodie R, Roper RL, Upton C. JDotter: a Java interface to multiple doplots generated by dotter. Bioinformatics. 2004;20:279–281. PubMed
Stothard P. The Sequence Manipulation Suite: JavaScript programs for analyzing and formatting protein and DNA sequences. Biotechniques. 2000;28:102–1104. PubMed
Field D, Tiwari B, Booth T, Houten S, Swan D, et al. Open software for biologists: from famine to feast. Nature Biotechnology. 2006;24:801–803. PubMed
Duret L, Gasteiger E, Perrière G. LalnView: a graphical viewer for pairwise sequence alignments. Computer Applications in the Biosciences. 1996;12:507–510. PubMed
Lengerova M, Kejnovsky E, Hobza R, Macas J, Grant SR, et al. Multicolor FISH mapping of the dioecious model plant, Silene latifolia. Theoretical and Applied Genetics. 2004;108:1193–1199. PubMed
Sexy ways: approaches to studying plant sex chromosomes
Fundamentally different repetitive element composition of sex chromosomes in Rumex acetosa
Evolution of sex determination and heterogamety changes in section Otites of the genus Silene
Sex and the flower - developmental aspects of sex chromosome evolution
Impact of Repetitive Elements on the Y Chromosome Formation in Plants
Impact of repetitive DNA on sex chromosome evolution in plants