Impact of Repetitive Elements on the Y Chromosome Formation in Plants

. 2017 Nov 01 ; 8 (11) : . [epub] 20171101

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid29104214

In contrast to animals, separate sexes and sex chromosomes in plants are very rare. Although the evolution of sex chromosomes has been the subject of numerous studies, the impact of repetitive sequences on sex chromosome architecture is not fully understood. New genomic approaches shed light on the role of satellites and transposable elements in the process of Y chromosome evolution. We discuss the impact of repetitive sequences on the structure and dynamics of sex chromosomes with specific focus on Rumex acetosa and Silene latifolia. Recent papers showed that both the expansion and shrinkage of the Y chromosome is influenced by sex-specific regulation of repetitive DNA spread. We present a view that the dynamics of Y chromosome formation is an interplay of genetic and epigenetic processes.

Zobrazit více v PubMed

Bachtrog D. Y-chromosome evolution: Emerging insights into processes of Y-chromosome degeneration. Nat. Rev. Genet. 2013;14:113–124. doi: 10.1038/nrg3366. PubMed DOI PMC

Vyskot B., Hobza R. The genomics of plant sex chromosomes. Plant Sci. 2015;236:126–315. doi: 10.1016/j.plantsci.2015.03.019. PubMed DOI

Akagi T., Henry I.M., Tao R., Comai L. Plant genetics. A Y-chromosome-encoded small RNA acts as a sex determinant in persimmons. Science. 2014;346:646–650. doi: 10.1126/science.1257225. PubMed DOI

Mohanty J.N., Nayak S., Jha S., Joshi R.K. Transcriptome profiling of the floral buds and discovery of genes related to sex-differentiation in the dioecious cucurbit Coccinia grandis (L.) Voigt. Gene. 2017;626:395–406. doi: 10.1016/j.gene.2017.05.058. PubMed DOI

Murase K., Shigenobu S., Fujii S., Ueda K., Murata T., Sakamoto A., Wada Y., Yamaguchi K., Osakabe Y., Osakabe K., et al. MYB transcription factor gene involved in sex determination in Asparagus officinalis. Genes Cells. 2017;22:115–123. doi: 10.1111/gtc.12453. PubMed DOI

Tennessen J.A., Govindarajulu R., Liston A., Ashman T.-L. Homomorphic ZW chromosomes in a wild strawberry show distinctive recombination heterogeneity but a small sex-determining region. New Phytol. 2016;211:1412–1423. doi: 10.1111/nph.13983. PubMed DOI PMC

Slancarova V., Zdanska J., Janousek B., Talianova M., Zschach C., Zluvova J., Siroky J., Kovacova V., Blavet H., Danihelka J., et al. Evolution of sex determination systems with heterogametic males and females in silene. Evolution. 2013;67:3669–3677. doi: 10.1111/evo.12223. PubMed DOI

Ming R., Bendahmane A., Renner S.S. Sex chromosomes in land plants. Annu. Rev. Plant Biol. 2011;62:485–514. doi: 10.1146/annurev-arplant-042110-103914. PubMed DOI

Renner S.S. The relative and absolute frequencies of angiosperm sexual systems: Dioecy, monoecy, gynodioecy, and an updated online database. Am. J. Bot. 2014;101:1588–1596. doi: 10.3732/ajb.1400196. PubMed DOI

Na J.-K., Wang J., Ming R. Accumulation of interspersed and sex-specific repeats in the non-recombining region of papaya sex chromosomes. BMC Genomics. 2014;15:335. doi: 10.1186/1471-2164-15-335. PubMed DOI PMC

Gschwend A.R., Yu Q., Tong E.J., Zeng F., Han J., VanBuren R., Aryal R., Charlesworth D., Moore P.H., Paterson A.H., et al. Rapid divergence and expansion of the X chromosome in papaya. Proc. Natl. Acad. Sci. USA. 2012;109:13716–13721. doi: 10.1073/pnas.1121096109. PubMed DOI PMC

Kejnovsky E., Hobza R., Cermak T., Kubat Z., Vyskot B. The role of repetitive DNA in structure and evolution of sex chromosomes in plants. Heredity. 2009;102:533–541. doi: 10.1038/hdy.2009.17. PubMed DOI

Zhang W., Wang X., Yu Q., Ming R., Jiang J. DNA methylation and heterochromatinization in the male-specific region of the primitive Y chromosome of papaya. Genome Res. 2008;18:1938–1943. doi: 10.1101/gr.078808.108. PubMed DOI PMC

Sakamoto K., Ohmido N., Fukui K., Kamada H., Satoh S. Site-specific accumulation of a line-like retrotransposon in a sex chromosome of the dioecious plant Cannabis sativa. Plant Mol. Biol. 2000;44:723–732. doi: 10.1023/A:1026574405717. PubMed DOI

Puterova J., Razumova O., Martinek T., Alexandrov O., Divashuk M., Kubat Z., Hobza R., Karlov G., Kejnovsky E. Satellite DNA and Transposable Elements in Seabuckthorn (Hippophae rhamnoides), a Dioecious Plant with Small Y and Large X Chromosomes. Genome Biol. Evol. 2017;9:197–212. doi: 10.1093/gbe/evw303. PubMed DOI PMC

Sousa A., Bellot S., Fuchs J., Houben A., Renner S.S. Analysis of transposable elements and organellar DNA in male and female genomes of a species with a huge Y chromosome reveals distinct Y centromeres. Plant J. 2016;88:387–396. doi: 10.1111/tpj.13254. PubMed DOI

Vyskot B., Hobza R. Gender in plants: Sex chromosomes are emerging from the fog. Trends Genet. 2004;20:432–438. doi: 10.1016/j.tig.2004.06.006. PubMed DOI

Kubat Z., Zluvova J., Vogel I., Kovacova V., Cermak T., Cegan R., Hobza R., Vyskot B., Kejnovsky E. Possible mechanisms responsible for absence of a retrotransposon family on a plant Y chromosome. New Phytol. 2014;202:662–678. doi: 10.1111/nph.12669. PubMed DOI

Navajas-Pérez R., de la Herrán R., López González G., Jamilena M., Lozano R., Ruiz Rejón C., Ruiz Rejón M., Garrido-Ramos M.A. The evolution of reproductive systems and sex-determining mechanisms within rumex (polygonaceae) inferred from nuclear and chloroplastidial sequence data. Mol. Biol. Evol. 2005;22:1929–1939. doi: 10.1093/molbev/msi186. PubMed DOI

Sousa A., Fuchs J., Renner S.S. Molecular cytogenetics (FISH, GISH) of Coccinia grandis: A ca. 3 myr-old species of cucurbitaceae with the largest Y/autosome divergence in flowering plants. Cytogenet. Genome Res. 2013;139:107–118. doi: 10.1159/000345370. PubMed DOI

Novák P., Neumann P., Macas J. Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data. BMC Bioinformatics. 2010;11:378. doi: 10.1186/1471-2105-11-378. PubMed DOI PMC

Novak P., Neumann P., Pech J., Steinhaisl J., Macas J. RepeatExplorer: A Galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads. Bioinformatics. 2013;29:792–793. doi: 10.1093/bioinformatics/btt054. PubMed DOI

Novák P., Ávila Robledillo L., Koblížková A., Vrbová I., Neumann P., Macas J. TAREAN: A computational tool for identification and characterization of satellite DNA from unassembled short reads. Nucleic Acids Res. 2017;45:e111. doi: 10.1093/nar/gkx257. PubMed DOI PMC

Kejnovsky E., Kubat Z., Hobza R., Lengerova M., Sato S., Tabata S., Fukui K., Matsunaga S., Vyskot B. Accumulation of chloroplast DNA sequences on the Y chromosome of Silene latifolia. Genetica. 2006;128:167–175. doi: 10.1007/s10709-005-5701-0. PubMed DOI

Steflova P., Hobza R., Vyskot B., Kejnovsky E. Strong accumulation of chloroplast DNA in the Y chromosomes of Rumex acetosa and Silene latifolia. Cytogenet. Genome Res. 2014;142:59–65. doi: 10.1159/000355212. PubMed DOI

VanBuren R., Ming R. Organelle DNA accumulation in the recently evolved papaya sex chromosomes. Mol. Genet. Genomics. 2013;288:277–284. doi: 10.1007/s00438-013-0747-7. PubMed DOI

Shibata F., Hizume M., Kuroki Y. Chromosome painting of Y chromosomes and isolation of a Y chromosome-specific repetitive sequence in the dioecious plant Rumex acetosa. Chromosoma. 1999;108:266–270. doi: 10.1007/s004120050377. PubMed DOI

Shibata F., Hizume M., Kuroki Y. Differentiation and the polymorphic nature of the Y chromosomes revealed by repetitive sequences in the dioecious plant, Rumex acetosa. Chromosome Res. 2000;8:229–236. doi: 10.1023/A:1009252913344. PubMed DOI

Mariotti B., Manzano S., Kejnovský E., Vyskot B., Jamilena M. Accumulation of Y-specific satellite DNAs during the evolution of Rumex acetosa sex chromosomes. Mol. Genet. Genomics. 2009;281:249–259. doi: 10.1007/s00438-008-0405-7. PubMed DOI

Steflova P., Tokan V., Vogel I., Lexa M., Macas J., Novak P., Hobza R., Vyskot B., Kejnovsky E. Contrasting patterns of transposable element and satellite distribution on sex chromosomes (XY1Y2) in the dioecious plant Rumex acetosa. Genome Biol. Evol. 2013;5:769–782. doi: 10.1093/gbe/evt049. PubMed DOI PMC

Michalovova M., Kubat Z., Hobza R., Vyskot B., Kejnovsky E. Fully automated pipeline for detection of sex linked genes using RNA-Seq data. BMC Bioinformatics. 2015;16:78. doi: 10.1186/s12859-015-0509-0. PubMed DOI PMC

Hobza R., Lengerova M., Svoboda J., Kubekova H., Kejnovsky E., Vyskot B. An accumulation of tandem DNA repeats on the Y chromosome in Silene latifolia during early stages of sex chromosome evolution. Chromosoma. 2006;115:376–382. doi: 10.1007/s00412-006-0065-5. PubMed DOI

Hobza R., Kejnovsky E., Vyskot B., Widmer A. The role of chromosomal rearrangements in the evolution of Silene latifolia sex chromosomes. Mol. Genet. Genomics. 2007;278:633–638. doi: 10.1007/s00438-007-0279-0. PubMed DOI

Mehrotra S., Goyal V. Repetitive Sequences in Plant Nuclear DNA: Types, Distribution, Evolution and Function. Genom. Proteom. Bioinform. 2014;12:164–171. doi: 10.1016/j.gpb.2014.07.003. PubMed DOI PMC

Cermak T., Kubat Z., Hobza R., Koblizkova A., Widmer A., Macas J., Vyskot B., Kejnovsky E. Survey of repetitive sequences in Silene latifolia with respect to their distribution on sex chromosomes. Chromosom. Res. 2008;16:961–976. doi: 10.1007/s10577-008-1254-2. PubMed DOI

Filatov D.A., Howell E.C., Groutides C., Armstrong S.J. Recent spread of a retrotransposon in the Silene latifolia genome, apart from the Y chromosome. Genetics. 2009;181:811–817. doi: 10.1534/genetics.108.099267. PubMed DOI PMC

Kralova T., Cegan R., Kubat Z., Vrana J., Vyskot B., Vogel I., Kejnovsky E., Hobza R. Identification of a novel retrotransposon with sex chromosome-specific distribution in Silene latifolia. Cytogenet. Genome Res. 2014;143:87–95. doi: 10.1159/000362142. PubMed DOI

Cegan R., Vyskot B., Kejnovsky E., Kubat Z., Blavet H., Šafář J., Doležel J., Blavet N., Hobza R. Genomic diversity in two related plant species with and without sex chromosomes—Silene latifolia and S. vulgaris. PLoS ONE. 2012;7:e31898. doi: 10.1371/journal.pone.0031898. PubMed DOI PMC

Kuhl J.C., Havey M.J., Martin W.J., Cheung F., Yuan Q., Landherr L., Hu Y., Leebens-Mack J., Town C.D., Sink K.C. Comparative genomic analyses in Asparagus. Genome. 2005;48:1052–1060. doi: 10.1139/g05-073. PubMed DOI

Harkess A., Mercati F., Abbate L., McKain M., Pires J.C., Sala T., Sunseri F., Falavigna A., Leebens-Mack J. Retrotransposon proliferation coincident with the evolution of dioecy in Asparagus. G3 Genes, Genomes, Genet. 2016;6:2679–2685. doi: 10.1534/g3.116.030239. PubMed DOI PMC

Akagi H., Yokozeki Y., Inagaki A., Mori K., Fujimura T. Micron, a microsatellite-targeting transposable element in the rice genome. Mol. Genet. Genomics. 2001;266:471–480. doi: 10.1007/s004380100563. PubMed DOI

Jiang N., Wessler S.R. Insertion preference of maize and rice miniature inverted repeat transposable elements as revealed by the analysis of nested elements. Plant Cell. 2001;13:2553–2564. doi: 10.1105/tpc.13.11.2553. PubMed DOI PMC

Naito K., Monden Y., Yasuda K., Saito H., Okumoto Y. mPing: The bursting transposon. Breed. Sci. 2014;64:109–114. doi: 10.1270/jsbbs.64.109. PubMed DOI PMC

Reinders J., Mirouze M., Nicolet J., Paszkowski J. Parent-of-origin control of transgenerational retrotransposon proliferation in Arabidopsis. EMBO Rep. 2013;14:823–828. doi: 10.1038/embor.2013.95. PubMed DOI PMC

Gehring M., Henikoff S. DNA methylation dynamics in plant genomes. Biochim. Biophys. Acta BBA Gene Struct. Expr. 2002;1769:276–286. doi: 10.1016/j.bbaexp.2007.01.009. PubMed DOI

Hsieh T.-F., Ibarra C.A., Silva P., Zemach A., Eshed-Williams L., Fischer R.L., Zilberman D. Genome-wide demethylation of Arabidopsis endosperm. Science. 2009;324:1451–1454. doi: 10.1126/science.1172417. PubMed DOI PMC

Calarco J.P., Borges F., Donoghue M.T.A., Van Ex F., Jullien P.E., Lopes T., Gardner R., Berger F., Feijó J.A., Becker J.D., et al. Reprogramming of DNA methylation in pollen guides epigenetic inheritance via small RNA. Cell. 2012;151:194–205. doi: 10.1016/j.cell.2012.09.001. PubMed DOI PMC

Slotkin R.K., Vaughn M., Borges F., Tanurdžić M., Becker J.D., Feijó J.A., Martienssen R.A. Epigenetic Reprogramming and Small RNA Silencing of Transposable Elements in Pollen. Cell. 2009;136:461–472. doi: 10.1016/j.cell.2008.12.038. PubMed DOI PMC

Ibarra C.A., Feng X., Schoft V.K., Hsieh T.-F., Uzawa R., Rodrigues J.A., Zemach A., Chumak N., Machlicova A., Nishimura T., et al. Active DNA Demethylation in Plant Companion Cells Reinforces Transposon Methylation in Gametes. Science. 2012;337:1360–1364. doi: 10.1126/science.1224839. PubMed DOI PMC

Martínez G., Panda K., Köhler C., Slotkin R.K. Silencing in sperm cells is directed by RNA movement from the surrounding nurse cell. Nat. Plants. 2016;2:16030. doi: 10.1038/nplants.2016.30. PubMed DOI

Fultz D., Choudury S.G., Slotkin R.K. Silencing of active transposable elements in plants. Curr. Opin. Plant Biol. 2015;27:67–76. doi: 10.1016/j.pbi.2015.05.027. PubMed DOI

Cuerda-Gil D., Slotkin R.K. Non-canonical RNA-directed DNA methylation. Nat. Plants. 2016;2:16163. doi: 10.1038/nplants.2016.163. PubMed DOI

Chibalina M.V., Filatov D.A. Plant Y chromosome degeneration is retarded by haploid purifying selection. Curr. Biol. 2011;21:1475–1479. doi: 10.1016/j.cub.2011.07.045. PubMed DOI

Creasey K.M., Zhai J., Borges F., Van Ex F., Regulski M., Meyers B.C., Martienssen R.A. miRNAs trigger widespread epigenetically activated siRNAs from transposons in Arabidopsis. Nature. 2014;508:411–415. doi: 10.1038/nature13069. PubMed DOI PMC

Kejnovsky E., Leitch I.J., Leitch A.R. Contrasting evolutionary dynamics between angiosperm and mammalian genomes. Trends Ecol. Evol. 2009;24:572–582. doi: 10.1016/j.tree.2009.04.010. PubMed DOI

Ito H. Small RNAs and transposon silencing in plants. Dev. Growth Differ. 2012;54:100–107. doi: 10.1111/j.1440-169X.2011.01309.x. PubMed DOI

Rozen S., Skaletsky H., Marszalek J.D., Minx P.J., Cordum H.S., Waterston R.H., Wilson R.K., Page D.C. Abundant gene conversion between arms of palindromes in human and ape Y chromosomes. Nature. 2003;423:873–876. doi: 10.1038/nature01723. PubMed DOI

Trombetta B., Cruciani F. Y chromosome palindromes and gene conversion. Hum. Genet. 2017;136:605–619. doi: 10.1007/s00439-017-1777-8. PubMed DOI

Skaletsky H., Kuroda-Kawaguchi T., Minx P.J., Cordum H.S., Hillier L., Brown L.G., Repping S., Pyntikova T., Ali J., Bieri T., et al. The male-specific region of the human Y chromosome is a mosaic of discrete sequence classes. Nature. 2003;423:825–837. doi: 10.1038/nature01722. PubMed DOI

Betrán E., Demuth J.P., Williford A. Why chromosome palindromes? Int. J. Evol. Biol. 2012;2012:207958. doi: 10.1155/2012/207958. PubMed DOI PMC

Warburton P.E., Giordano J., Cheung F., Gelfand Y., Benson G. Inverted repeat structure of the human genome: The X-chromosome contains a preponderance of large, highly homologous inverted repeats that contain testes genes. Genome Res. 2004;14:1861–1869. doi: 10.1101/gr.2542904. PubMed DOI PMC

De Vries M., Vosters S., Merkx G., D’Hauwers K., Wansink D.G., Ramos L., de Boer P. Human male meiotic sex chromosome inactivation. PLoS ONE. 2012;7:e31485. doi: 10.1371/journal.pone.0031485. PubMed DOI PMC

Lexa M., Kejnovský E., Steflová P., Konvalinová H., Vorlícková M., Vyskot B. Quadruplex-forming sequences occupy discrete regions inside plant LTR retrotransposons. Nucleic Acids Res. 2014;42:968–978. doi: 10.1093/nar/gkt893. PubMed DOI PMC

Lexa M., Steflova P., Martinek T., Vorlickova M., Vyskot B., Kejnovsky E. Guanine quadruplexes are formed by specific regions of human transposable elements. BMC Genomics. 2014;15:1032. doi: 10.1186/1471-2164-15-1032. PubMed DOI PMC

Lisch D. Epigenetic Regulation of Transposable Elements in Plants. Annu. Rev. Plant Biol. 2009;60:43–66. doi: 10.1146/annurev.arplant.59.032607.092744. PubMed DOI

Lengerova M., Vyskot B. Sex chromatin and nucleolar analyses in Rumex acetosa L. Protoplasma. 2001;217:147–153. doi: 10.1007/BF01283395. PubMed DOI

Sahakyan A.B., Murat P., Mayer C., Balasubramanian S. G-quadruplex structures within the 3′ UTR of LINE-1 elements stimulate retrotransposition. Nat. Struct. Mol. Biol. 2017;24:243–247. doi: 10.1038/nsmb.3367. PubMed DOI

Kubat Z., Hobza R., Vyskot B., Kejnovsky E. Microsatellite accumulation on the Y chromosome in Silene latifolia. Genome. 2008;51:350–356. doi: 10.1139/G08-024. PubMed DOI

Kejnovský E., Michalovova M., Steflova P., Kejnovska I., Manzano S., Hobza R., Kubat Z., Kovarik J., Jamilena M., Vyskot B. Expansion of Microsatellites on Evolutionary Young Y Chromosome. PLoS ONE. 2013;8:e45519. doi: 10.1371/journal.pone.0045519. PubMed DOI PMC

Huppert J.L., Balasubramanian S. G-quadruplexes in promoters throughout the human genome. Nucleic Acids Res. 2007;35:406–413. doi: 10.1093/nar/gkl1057. PubMed DOI PMC

Nadir E., Margalit H., Gallily T., Ben-Sasson S.A. Microsatellite spreading in the human genome: Evolutionary mechanisms and structural implications. Proc. Natl. Acad. Sci. USA. 1996;93:6470–6475. doi: 10.1073/pnas.93.13.6470. PubMed DOI PMC

Ellegren H. Microsatellites: Simple sequences with complex evolution. Nat. Rev. Genet. 2004;5:435–445. doi: 10.1038/nrg1348. PubMed DOI

Kass D.H., Batzer M.A., Deininger P.L. Gene conversion as a secondary mechanism of short interspersed element (SINE) evolution. Mol. Cell. Biol. 1995;15:19–25. doi: 10.1128/MCB.15.1.19. PubMed DOI PMC

Krzywinski J., Sangaré D., Besansky N.J. Satellite DNA from the Y chromosome of the malaria vector Anopheles gambiae. Genetics. 2005;169:185–196. doi: 10.1534/genetics.104.034264. PubMed DOI PMC

Hawkins J.S., Proulx S.R., Rapp R.A., Wendel J.F. Rapid DNA loss as a counterbalance to genome expansion through retrotransposon proliferation in plants. Proc. Natl. Acad. Sci. USA. 2009;106:17811–17816. doi: 10.1073/pnas.0904339106. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

The Silene latifolia genome and its giant Y chromosome

. 2025 Feb 07 ; 387 (6734) : 630-636. [epub] 20250206

Detection and classification of long terminal repeat sequences in plant LTR-retrotransposons and their analysis using explainable machine learning

. 2024 Dec 18 ; 17 (1) : 57. [epub] 20241218

Sexy ways: approaches to studying plant sex chromosomes

. 2024 Sep 11 ; 75 (17) : 5204-5219.

Satellite DNAs and the evolution of the multiple X1X2Y sex chromosomes in the wolf fish Hoplias malabaricus (Teleostei; Characiformes)

. 2024 Sep 02 ; 14 (1) : 20402. [epub] 20240902

Non-canonical bases differentially represented in the sex chromosomes of the dioecious plant Silene latifolia

. 2024 Jul 10 ; 75 (13) : 3849-3861.

The Role of Satellite DNAs in Genome Architecture and Sex Chromosome Evolution in Crambidae Moths

. 2021 ; 12 () : 661417. [epub] 20210330

Fundamentally different repetitive element composition of sex chromosomes in Rumex acetosa

. 2021 Jan 01 ; 127 (1) : 33-47.

Early Sex-Chromosome Evolution in the Diploid Dioecious Plant Mercurialis annua

. 2019 Jul ; 212 (3) : 815-835. [epub] 20190521

Sex and the flower - developmental aspects of sex chromosome evolution

. 2018 Dec 31 ; 122 (7) : 1085-1101.

Evolution of Plant B Chromosome Enriched Sequences

. 2018 Oct 22 ; 9 (10) : . [epub] 20181022

DNA methylation and genetic degeneration of the Y chromosome in the dioecious plant Silene latifolia

. 2018 Jul 16 ; 19 (1) : 540. [epub] 20180716

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace