Impact of Repetitive Elements on the Y Chromosome Formation in Plants
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
29104214
PubMed Central
PMC5704215
DOI
10.3390/genes8110302
PII: genes8110302
Knihovny.cz E-zdroje
- Klíčová slova
- Y chromosome, satellites, sex chromosomes, transposable elements,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
In contrast to animals, separate sexes and sex chromosomes in plants are very rare. Although the evolution of sex chromosomes has been the subject of numerous studies, the impact of repetitive sequences on sex chromosome architecture is not fully understood. New genomic approaches shed light on the role of satellites and transposable elements in the process of Y chromosome evolution. We discuss the impact of repetitive sequences on the structure and dynamics of sex chromosomes with specific focus on Rumex acetosa and Silene latifolia. Recent papers showed that both the expansion and shrinkage of the Y chromosome is influenced by sex-specific regulation of repetitive DNA spread. We present a view that the dynamics of Y chromosome formation is an interplay of genetic and epigenetic processes.
Zobrazit více v PubMed
Bachtrog D. Y-chromosome evolution: Emerging insights into processes of Y-chromosome degeneration. Nat. Rev. Genet. 2013;14:113–124. doi: 10.1038/nrg3366. PubMed DOI PMC
Vyskot B., Hobza R. The genomics of plant sex chromosomes. Plant Sci. 2015;236:126–315. doi: 10.1016/j.plantsci.2015.03.019. PubMed DOI
Akagi T., Henry I.M., Tao R., Comai L. Plant genetics. A Y-chromosome-encoded small RNA acts as a sex determinant in persimmons. Science. 2014;346:646–650. doi: 10.1126/science.1257225. PubMed DOI
Mohanty J.N., Nayak S., Jha S., Joshi R.K. Transcriptome profiling of the floral buds and discovery of genes related to sex-differentiation in the dioecious cucurbit Coccinia grandis (L.) Voigt. Gene. 2017;626:395–406. doi: 10.1016/j.gene.2017.05.058. PubMed DOI
Murase K., Shigenobu S., Fujii S., Ueda K., Murata T., Sakamoto A., Wada Y., Yamaguchi K., Osakabe Y., Osakabe K., et al. MYB transcription factor gene involved in sex determination in Asparagus officinalis. Genes Cells. 2017;22:115–123. doi: 10.1111/gtc.12453. PubMed DOI
Tennessen J.A., Govindarajulu R., Liston A., Ashman T.-L. Homomorphic ZW chromosomes in a wild strawberry show distinctive recombination heterogeneity but a small sex-determining region. New Phytol. 2016;211:1412–1423. doi: 10.1111/nph.13983. PubMed DOI PMC
Slancarova V., Zdanska J., Janousek B., Talianova M., Zschach C., Zluvova J., Siroky J., Kovacova V., Blavet H., Danihelka J., et al. Evolution of sex determination systems with heterogametic males and females in silene. Evolution. 2013;67:3669–3677. doi: 10.1111/evo.12223. PubMed DOI
Ming R., Bendahmane A., Renner S.S. Sex chromosomes in land plants. Annu. Rev. Plant Biol. 2011;62:485–514. doi: 10.1146/annurev-arplant-042110-103914. PubMed DOI
Renner S.S. The relative and absolute frequencies of angiosperm sexual systems: Dioecy, monoecy, gynodioecy, and an updated online database. Am. J. Bot. 2014;101:1588–1596. doi: 10.3732/ajb.1400196. PubMed DOI
Na J.-K., Wang J., Ming R. Accumulation of interspersed and sex-specific repeats in the non-recombining region of papaya sex chromosomes. BMC Genomics. 2014;15:335. doi: 10.1186/1471-2164-15-335. PubMed DOI PMC
Gschwend A.R., Yu Q., Tong E.J., Zeng F., Han J., VanBuren R., Aryal R., Charlesworth D., Moore P.H., Paterson A.H., et al. Rapid divergence and expansion of the X chromosome in papaya. Proc. Natl. Acad. Sci. USA. 2012;109:13716–13721. doi: 10.1073/pnas.1121096109. PubMed DOI PMC
Kejnovsky E., Hobza R., Cermak T., Kubat Z., Vyskot B. The role of repetitive DNA in structure and evolution of sex chromosomes in plants. Heredity. 2009;102:533–541. doi: 10.1038/hdy.2009.17. PubMed DOI
Zhang W., Wang X., Yu Q., Ming R., Jiang J. DNA methylation and heterochromatinization in the male-specific region of the primitive Y chromosome of papaya. Genome Res. 2008;18:1938–1943. doi: 10.1101/gr.078808.108. PubMed DOI PMC
Sakamoto K., Ohmido N., Fukui K., Kamada H., Satoh S. Site-specific accumulation of a line-like retrotransposon in a sex chromosome of the dioecious plant Cannabis sativa. Plant Mol. Biol. 2000;44:723–732. doi: 10.1023/A:1026574405717. PubMed DOI
Puterova J., Razumova O., Martinek T., Alexandrov O., Divashuk M., Kubat Z., Hobza R., Karlov G., Kejnovsky E. Satellite DNA and Transposable Elements in Seabuckthorn (Hippophae rhamnoides), a Dioecious Plant with Small Y and Large X Chromosomes. Genome Biol. Evol. 2017;9:197–212. doi: 10.1093/gbe/evw303. PubMed DOI PMC
Sousa A., Bellot S., Fuchs J., Houben A., Renner S.S. Analysis of transposable elements and organellar DNA in male and female genomes of a species with a huge Y chromosome reveals distinct Y centromeres. Plant J. 2016;88:387–396. doi: 10.1111/tpj.13254. PubMed DOI
Vyskot B., Hobza R. Gender in plants: Sex chromosomes are emerging from the fog. Trends Genet. 2004;20:432–438. doi: 10.1016/j.tig.2004.06.006. PubMed DOI
Kubat Z., Zluvova J., Vogel I., Kovacova V., Cermak T., Cegan R., Hobza R., Vyskot B., Kejnovsky E. Possible mechanisms responsible for absence of a retrotransposon family on a plant Y chromosome. New Phytol. 2014;202:662–678. doi: 10.1111/nph.12669. PubMed DOI
Navajas-Pérez R., de la Herrán R., López González G., Jamilena M., Lozano R., Ruiz Rejón C., Ruiz Rejón M., Garrido-Ramos M.A. The evolution of reproductive systems and sex-determining mechanisms within rumex (polygonaceae) inferred from nuclear and chloroplastidial sequence data. Mol. Biol. Evol. 2005;22:1929–1939. doi: 10.1093/molbev/msi186. PubMed DOI
Sousa A., Fuchs J., Renner S.S. Molecular cytogenetics (FISH, GISH) of Coccinia grandis: A ca. 3 myr-old species of cucurbitaceae with the largest Y/autosome divergence in flowering plants. Cytogenet. Genome Res. 2013;139:107–118. doi: 10.1159/000345370. PubMed DOI
Novák P., Neumann P., Macas J. Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data. BMC Bioinformatics. 2010;11:378. doi: 10.1186/1471-2105-11-378. PubMed DOI PMC
Novak P., Neumann P., Pech J., Steinhaisl J., Macas J. RepeatExplorer: A Galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads. Bioinformatics. 2013;29:792–793. doi: 10.1093/bioinformatics/btt054. PubMed DOI
Novák P., Ávila Robledillo L., Koblížková A., Vrbová I., Neumann P., Macas J. TAREAN: A computational tool for identification and characterization of satellite DNA from unassembled short reads. Nucleic Acids Res. 2017;45:e111. doi: 10.1093/nar/gkx257. PubMed DOI PMC
Kejnovsky E., Kubat Z., Hobza R., Lengerova M., Sato S., Tabata S., Fukui K., Matsunaga S., Vyskot B. Accumulation of chloroplast DNA sequences on the Y chromosome of Silene latifolia. Genetica. 2006;128:167–175. doi: 10.1007/s10709-005-5701-0. PubMed DOI
Steflova P., Hobza R., Vyskot B., Kejnovsky E. Strong accumulation of chloroplast DNA in the Y chromosomes of Rumex acetosa and Silene latifolia. Cytogenet. Genome Res. 2014;142:59–65. doi: 10.1159/000355212. PubMed DOI
VanBuren R., Ming R. Organelle DNA accumulation in the recently evolved papaya sex chromosomes. Mol. Genet. Genomics. 2013;288:277–284. doi: 10.1007/s00438-013-0747-7. PubMed DOI
Shibata F., Hizume M., Kuroki Y. Chromosome painting of Y chromosomes and isolation of a Y chromosome-specific repetitive sequence in the dioecious plant Rumex acetosa. Chromosoma. 1999;108:266–270. doi: 10.1007/s004120050377. PubMed DOI
Shibata F., Hizume M., Kuroki Y. Differentiation and the polymorphic nature of the Y chromosomes revealed by repetitive sequences in the dioecious plant, Rumex acetosa. Chromosome Res. 2000;8:229–236. doi: 10.1023/A:1009252913344. PubMed DOI
Mariotti B., Manzano S., Kejnovský E., Vyskot B., Jamilena M. Accumulation of Y-specific satellite DNAs during the evolution of Rumex acetosa sex chromosomes. Mol. Genet. Genomics. 2009;281:249–259. doi: 10.1007/s00438-008-0405-7. PubMed DOI
Steflova P., Tokan V., Vogel I., Lexa M., Macas J., Novak P., Hobza R., Vyskot B., Kejnovsky E. Contrasting patterns of transposable element and satellite distribution on sex chromosomes (XY1Y2) in the dioecious plant Rumex acetosa. Genome Biol. Evol. 2013;5:769–782. doi: 10.1093/gbe/evt049. PubMed DOI PMC
Michalovova M., Kubat Z., Hobza R., Vyskot B., Kejnovsky E. Fully automated pipeline for detection of sex linked genes using RNA-Seq data. BMC Bioinformatics. 2015;16:78. doi: 10.1186/s12859-015-0509-0. PubMed DOI PMC
Hobza R., Lengerova M., Svoboda J., Kubekova H., Kejnovsky E., Vyskot B. An accumulation of tandem DNA repeats on the Y chromosome in Silene latifolia during early stages of sex chromosome evolution. Chromosoma. 2006;115:376–382. doi: 10.1007/s00412-006-0065-5. PubMed DOI
Hobza R., Kejnovsky E., Vyskot B., Widmer A. The role of chromosomal rearrangements in the evolution of Silene latifolia sex chromosomes. Mol. Genet. Genomics. 2007;278:633–638. doi: 10.1007/s00438-007-0279-0. PubMed DOI
Mehrotra S., Goyal V. Repetitive Sequences in Plant Nuclear DNA: Types, Distribution, Evolution and Function. Genom. Proteom. Bioinform. 2014;12:164–171. doi: 10.1016/j.gpb.2014.07.003. PubMed DOI PMC
Cermak T., Kubat Z., Hobza R., Koblizkova A., Widmer A., Macas J., Vyskot B., Kejnovsky E. Survey of repetitive sequences in Silene latifolia with respect to their distribution on sex chromosomes. Chromosom. Res. 2008;16:961–976. doi: 10.1007/s10577-008-1254-2. PubMed DOI
Filatov D.A., Howell E.C., Groutides C., Armstrong S.J. Recent spread of a retrotransposon in the Silene latifolia genome, apart from the Y chromosome. Genetics. 2009;181:811–817. doi: 10.1534/genetics.108.099267. PubMed DOI PMC
Kralova T., Cegan R., Kubat Z., Vrana J., Vyskot B., Vogel I., Kejnovsky E., Hobza R. Identification of a novel retrotransposon with sex chromosome-specific distribution in Silene latifolia. Cytogenet. Genome Res. 2014;143:87–95. doi: 10.1159/000362142. PubMed DOI
Cegan R., Vyskot B., Kejnovsky E., Kubat Z., Blavet H., Šafář J., Doležel J., Blavet N., Hobza R. Genomic diversity in two related plant species with and without sex chromosomes—Silene latifolia and S. vulgaris. PLoS ONE. 2012;7:e31898. doi: 10.1371/journal.pone.0031898. PubMed DOI PMC
Kuhl J.C., Havey M.J., Martin W.J., Cheung F., Yuan Q., Landherr L., Hu Y., Leebens-Mack J., Town C.D., Sink K.C. Comparative genomic analyses in Asparagus. Genome. 2005;48:1052–1060. doi: 10.1139/g05-073. PubMed DOI
Harkess A., Mercati F., Abbate L., McKain M., Pires J.C., Sala T., Sunseri F., Falavigna A., Leebens-Mack J. Retrotransposon proliferation coincident with the evolution of dioecy in Asparagus. G3 Genes, Genomes, Genet. 2016;6:2679–2685. doi: 10.1534/g3.116.030239. PubMed DOI PMC
Akagi H., Yokozeki Y., Inagaki A., Mori K., Fujimura T. Micron, a microsatellite-targeting transposable element in the rice genome. Mol. Genet. Genomics. 2001;266:471–480. doi: 10.1007/s004380100563. PubMed DOI
Jiang N., Wessler S.R. Insertion preference of maize and rice miniature inverted repeat transposable elements as revealed by the analysis of nested elements. Plant Cell. 2001;13:2553–2564. doi: 10.1105/tpc.13.11.2553. PubMed DOI PMC
Naito K., Monden Y., Yasuda K., Saito H., Okumoto Y. mPing: The bursting transposon. Breed. Sci. 2014;64:109–114. doi: 10.1270/jsbbs.64.109. PubMed DOI PMC
Reinders J., Mirouze M., Nicolet J., Paszkowski J. Parent-of-origin control of transgenerational retrotransposon proliferation in Arabidopsis. EMBO Rep. 2013;14:823–828. doi: 10.1038/embor.2013.95. PubMed DOI PMC
Gehring M., Henikoff S. DNA methylation dynamics in plant genomes. Biochim. Biophys. Acta BBA Gene Struct. Expr. 2002;1769:276–286. doi: 10.1016/j.bbaexp.2007.01.009. PubMed DOI
Hsieh T.-F., Ibarra C.A., Silva P., Zemach A., Eshed-Williams L., Fischer R.L., Zilberman D. Genome-wide demethylation of Arabidopsis endosperm. Science. 2009;324:1451–1454. doi: 10.1126/science.1172417. PubMed DOI PMC
Calarco J.P., Borges F., Donoghue M.T.A., Van Ex F., Jullien P.E., Lopes T., Gardner R., Berger F., Feijó J.A., Becker J.D., et al. Reprogramming of DNA methylation in pollen guides epigenetic inheritance via small RNA. Cell. 2012;151:194–205. doi: 10.1016/j.cell.2012.09.001. PubMed DOI PMC
Slotkin R.K., Vaughn M., Borges F., Tanurdžić M., Becker J.D., Feijó J.A., Martienssen R.A. Epigenetic Reprogramming and Small RNA Silencing of Transposable Elements in Pollen. Cell. 2009;136:461–472. doi: 10.1016/j.cell.2008.12.038. PubMed DOI PMC
Ibarra C.A., Feng X., Schoft V.K., Hsieh T.-F., Uzawa R., Rodrigues J.A., Zemach A., Chumak N., Machlicova A., Nishimura T., et al. Active DNA Demethylation in Plant Companion Cells Reinforces Transposon Methylation in Gametes. Science. 2012;337:1360–1364. doi: 10.1126/science.1224839. PubMed DOI PMC
Martínez G., Panda K., Köhler C., Slotkin R.K. Silencing in sperm cells is directed by RNA movement from the surrounding nurse cell. Nat. Plants. 2016;2:16030. doi: 10.1038/nplants.2016.30. PubMed DOI
Fultz D., Choudury S.G., Slotkin R.K. Silencing of active transposable elements in plants. Curr. Opin. Plant Biol. 2015;27:67–76. doi: 10.1016/j.pbi.2015.05.027. PubMed DOI
Cuerda-Gil D., Slotkin R.K. Non-canonical RNA-directed DNA methylation. Nat. Plants. 2016;2:16163. doi: 10.1038/nplants.2016.163. PubMed DOI
Chibalina M.V., Filatov D.A. Plant Y chromosome degeneration is retarded by haploid purifying selection. Curr. Biol. 2011;21:1475–1479. doi: 10.1016/j.cub.2011.07.045. PubMed DOI
Creasey K.M., Zhai J., Borges F., Van Ex F., Regulski M., Meyers B.C., Martienssen R.A. miRNAs trigger widespread epigenetically activated siRNAs from transposons in Arabidopsis. Nature. 2014;508:411–415. doi: 10.1038/nature13069. PubMed DOI PMC
Kejnovsky E., Leitch I.J., Leitch A.R. Contrasting evolutionary dynamics between angiosperm and mammalian genomes. Trends Ecol. Evol. 2009;24:572–582. doi: 10.1016/j.tree.2009.04.010. PubMed DOI
Ito H. Small RNAs and transposon silencing in plants. Dev. Growth Differ. 2012;54:100–107. doi: 10.1111/j.1440-169X.2011.01309.x. PubMed DOI
Rozen S., Skaletsky H., Marszalek J.D., Minx P.J., Cordum H.S., Waterston R.H., Wilson R.K., Page D.C. Abundant gene conversion between arms of palindromes in human and ape Y chromosomes. Nature. 2003;423:873–876. doi: 10.1038/nature01723. PubMed DOI
Trombetta B., Cruciani F. Y chromosome palindromes and gene conversion. Hum. Genet. 2017;136:605–619. doi: 10.1007/s00439-017-1777-8. PubMed DOI
Skaletsky H., Kuroda-Kawaguchi T., Minx P.J., Cordum H.S., Hillier L., Brown L.G., Repping S., Pyntikova T., Ali J., Bieri T., et al. The male-specific region of the human Y chromosome is a mosaic of discrete sequence classes. Nature. 2003;423:825–837. doi: 10.1038/nature01722. PubMed DOI
Betrán E., Demuth J.P., Williford A. Why chromosome palindromes? Int. J. Evol. Biol. 2012;2012:207958. doi: 10.1155/2012/207958. PubMed DOI PMC
Warburton P.E., Giordano J., Cheung F., Gelfand Y., Benson G. Inverted repeat structure of the human genome: The X-chromosome contains a preponderance of large, highly homologous inverted repeats that contain testes genes. Genome Res. 2004;14:1861–1869. doi: 10.1101/gr.2542904. PubMed DOI PMC
De Vries M., Vosters S., Merkx G., D’Hauwers K., Wansink D.G., Ramos L., de Boer P. Human male meiotic sex chromosome inactivation. PLoS ONE. 2012;7:e31485. doi: 10.1371/journal.pone.0031485. PubMed DOI PMC
Lexa M., Kejnovský E., Steflová P., Konvalinová H., Vorlícková M., Vyskot B. Quadruplex-forming sequences occupy discrete regions inside plant LTR retrotransposons. Nucleic Acids Res. 2014;42:968–978. doi: 10.1093/nar/gkt893. PubMed DOI PMC
Lexa M., Steflova P., Martinek T., Vorlickova M., Vyskot B., Kejnovsky E. Guanine quadruplexes are formed by specific regions of human transposable elements. BMC Genomics. 2014;15:1032. doi: 10.1186/1471-2164-15-1032. PubMed DOI PMC
Lisch D. Epigenetic Regulation of Transposable Elements in Plants. Annu. Rev. Plant Biol. 2009;60:43–66. doi: 10.1146/annurev.arplant.59.032607.092744. PubMed DOI
Lengerova M., Vyskot B. Sex chromatin and nucleolar analyses in Rumex acetosa L. Protoplasma. 2001;217:147–153. doi: 10.1007/BF01283395. PubMed DOI
Sahakyan A.B., Murat P., Mayer C., Balasubramanian S. G-quadruplex structures within the 3′ UTR of LINE-1 elements stimulate retrotransposition. Nat. Struct. Mol. Biol. 2017;24:243–247. doi: 10.1038/nsmb.3367. PubMed DOI
Kubat Z., Hobza R., Vyskot B., Kejnovsky E. Microsatellite accumulation on the Y chromosome in Silene latifolia. Genome. 2008;51:350–356. doi: 10.1139/G08-024. PubMed DOI
Kejnovský E., Michalovova M., Steflova P., Kejnovska I., Manzano S., Hobza R., Kubat Z., Kovarik J., Jamilena M., Vyskot B. Expansion of Microsatellites on Evolutionary Young Y Chromosome. PLoS ONE. 2013;8:e45519. doi: 10.1371/journal.pone.0045519. PubMed DOI PMC
Huppert J.L., Balasubramanian S. G-quadruplexes in promoters throughout the human genome. Nucleic Acids Res. 2007;35:406–413. doi: 10.1093/nar/gkl1057. PubMed DOI PMC
Nadir E., Margalit H., Gallily T., Ben-Sasson S.A. Microsatellite spreading in the human genome: Evolutionary mechanisms and structural implications. Proc. Natl. Acad. Sci. USA. 1996;93:6470–6475. doi: 10.1073/pnas.93.13.6470. PubMed DOI PMC
Ellegren H. Microsatellites: Simple sequences with complex evolution. Nat. Rev. Genet. 2004;5:435–445. doi: 10.1038/nrg1348. PubMed DOI
Kass D.H., Batzer M.A., Deininger P.L. Gene conversion as a secondary mechanism of short interspersed element (SINE) evolution. Mol. Cell. Biol. 1995;15:19–25. doi: 10.1128/MCB.15.1.19. PubMed DOI PMC
Krzywinski J., Sangaré D., Besansky N.J. Satellite DNA from the Y chromosome of the malaria vector Anopheles gambiae. Genetics. 2005;169:185–196. doi: 10.1534/genetics.104.034264. PubMed DOI PMC
Hawkins J.S., Proulx S.R., Rapp R.A., Wendel J.F. Rapid DNA loss as a counterbalance to genome expansion through retrotransposon proliferation in plants. Proc. Natl. Acad. Sci. USA. 2009;106:17811–17816. doi: 10.1073/pnas.0904339106. PubMed DOI PMC
The Silene latifolia genome and its giant Y chromosome
Sexy ways: approaches to studying plant sex chromosomes
The Role of Satellite DNAs in Genome Architecture and Sex Chromosome Evolution in Crambidae Moths
Fundamentally different repetitive element composition of sex chromosomes in Rumex acetosa
Early Sex-Chromosome Evolution in the Diploid Dioecious Plant Mercurialis annua
Sex and the flower - developmental aspects of sex chromosome evolution
Evolution of Plant B Chromosome Enriched Sequences
DNA methylation and genetic degeneration of the Y chromosome in the dioecious plant Silene latifolia