Evolution of sex determination and heterogamety changes in section Otites of the genus Silene

. 2019 Jan 31 ; 9 (1) : 1045. [epub] 20190131

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid30705300
Odkazy

PubMed 30705300
PubMed Central PMC6355844
DOI 10.1038/s41598-018-37412-x
PII: 10.1038/s41598-018-37412-x
Knihovny.cz E-zdroje

Switches in heterogamety are known to occur in both animals and plants. Although plant sex determination systems probably often evolved more recently than those in several well-studied animals, including mammals, and have had less time for switches to occur, we previously detected a switch in heterogamety in the plant genus Silene: section Otites has both female and male heterogamety, whereas S. latifolia and its close relatives, in a different section of the genus, Melandrium (subgenus Behenantha), all have male heterogamety. Here we analyse the evolution of sex chromosomes in section Otites, which is estimated to have evolved only about 0.55 MYA. Our study confirms female heterogamety in S. otites and newly reveals female heterogamety in S. borysthenica. Sequence analyses and genetic mapping show that the sex-linked regions of these two species are the same, but the region in S. colpophylla, a close relative with male heterogamety, is different. The sex chromosome pairs of S. colpophylla and S. otites each correspond to an autosome of the other species, and both differ from the XY pair in S. latifolia. Silene section Otites species are suitable for detailed studies of the events involved in such changes, and our phylogenetic analysis suggests a possible change from female to male heterogamety within this section. Our analyses suggest a possibility that has so far not been considered, change in heterogamety through hybridization, in which a male-determining chromosome from one species is introgressed into another one, and over-rides its previous sex-determining system.

Zobrazit více v PubMed

Charlesworth B, Charlesworth D. A model for the evolution of dioecy and gynodioecy. Am. Nat. 1978;112:975. doi: 10.1086/283342. DOI

Lloyd DG. The distribution of gender in four angiosperm species illustrating two evolutionary pathways to dioecy. Evolution. 1980;34:123–134. doi: 10.1111/j.1558-5646.1980.tb04795.x. PubMed DOI

Webb, B. C. J. In Gender and Sexual Dimorphism in Flowering Plants (eds Geber, M. A., Dawson, T. E. & Delph, L. F.) 61–95 (Springer, 1999).

Renner SS, Won H. Repeated evolution of dioecy from monoecy in Siparunaceae (Laurales) Syst. Biol. 2001;50:700–712. doi: 10.1080/106351501753328820. PubMed DOI

Spigler RB, Lewers KS, Main DS, Ashman T-L. Genetic mapping of sex determination in a wild strawberry, Fragaria virginiana, reveals earliest form of sex chromosome. Heredity. 2008;101:507–517. doi: 10.1038/hdy.2008.100. PubMed DOI

Spigler RB, Lewers KS, Johnson AL, Ashman T-L. Comparative mapping reveals autosomal origin of sex chromosome in octoploid Fragaria virginiana. J. Hered. 2010;101:Suppl, S107–117. doi: 10.1093/jhered/esq001. PubMed DOI

Goldberg, M. T., Spigler, R. B. & Ashman, T.-L. Comparative genetic mapping points to different sex chromosomes in sibling species of wild strawberry (Fragaria). Genetics186, 10.1534/genetics.110.122911 (2010). PubMed PMC

Ashman T-L, et al. Multilocus sex determination revealed in two populations of gynodioecious wild strawberry. Fragaria vesca subsp. bracteata. 2015;G3(5):2759–2773. PubMed PMC

Lloyd DG. Breeding systems in Cotula III. dioecious populations. New Phytologist. 1975;74:109–123. doi: 10.1111/j.1469-8137.1975.tb01345.x. DOI

Hormaza JI, Dollo L, Polito VS. Identification of a RAPD marker linked to sex determination in Pistacia vera using bulked segregant analysis. Theor. Appl. Genet. 1994;89:9–13. doi: 10.1007/BF00226975. PubMed DOI

Esfandiyari B, Davarynejad GH, Shahriari F, Kiani M, Mathe A. Data to the sex determination in Pistacia species using molecular markers. Euphytica. 2012;185:227–231. doi: 10.1007/s10681-011-0527-6. DOI

Eppley SM, O’Quinn R, Brown AL. New sequence-tagged site molecular markers for identification of sex in Distichlis spicata. Mol. Ecol. Resour. 2009;9:1373–1374. doi: 10.1111/j.1755-0998.2009.02570.x. PubMed DOI

Grewal MS, Ellis JR. Sex determination in Potentilla fruticosa. Heredity. 1972;29:359. doi: 10.1038/hdy.1972.99. DOI

Beukeboom, L. W. & Perrin, N. The evolution of sex determination. (Oxford University Press, 2014), 10.1093/acprof:oso/9780199657148.001.0001.

Yin T, et al. Genome structure and emerging evidence of an incipient sex chromosome in. Populus. Genome Res. 2008;18:422–430. doi: 10.1101/gr.7076308. PubMed DOI PMC

Sansome FW. Sex determination in Silene otites and related species. Journal of Genetics. 1938;35:387–396. doi: 10.1007/BF02982363. DOI

Slancarova V, et al. Evolution of sex determination systems with heterogametic males and females in Silene. Evolution. 2013;67:3669–77. doi: 10.1111/evo.12223. PubMed DOI

Myosho T, et al. Tracing the emergence of a novel sex-determining gene in medaka. Oryzias luzonensis. Genetics. 2012;191:163–70. doi: 10.1534/genetics.111.137497. PubMed DOI PMC

Myosho T, Takehana Y, Hamaguchi S, Sakaizumi M. Turnover of sex chromosomes in Celebensis group medaka fishes. G3. 2015;5:2685–91. doi: 10.1534/g3.115.021543. PubMed DOI PMC

Böhne A, Wilson CA, Postlethwait JH, Salzburger W. Variations on a theme: Genomics of sex determination in the cichlid fish Astatotilapia burtoni. BMC Genomics. 2016;17:883. doi: 10.1186/s12864-016-3178-0. PubMed DOI PMC

Roberts RB, Ser JR, Kocher TD. Sexual conflict resolved by invasion of a novel sex determiner in lake Malawi cichlid fishes. Science. 2009;326:998–1001. doi: 10.1126/science.1174705. PubMed DOI PMC

Gammerdinger WJ, et al. Novel Sex Chromosomes in 3 Cichlid Fishes from Lake Tanganyika. J. Hered. 2018;109:489–500. doi: 10.1093/jhered/esy003. PubMed DOI

Tennessen JA, et al. Repeated translocation of a gene cassette drives sex-chromosome turnover in strawberries. PLoS Biol. 2018;16:e2006062. doi: 10.1371/journal.pbio.2006062. PubMed DOI PMC

Boucher LD, Manchester SR, Judd WS. An extinct genus of Salicaceae based on twigs with attached flowers, fruits, and foliage from the Eocene Green River Formation of Utah and Colorado, USA. Am. J. Bot. 2003;90:1389–99. doi: 10.3732/ajb.90.9.1389. PubMed DOI

Manchester SR, Judd WS, Handley B. Foliage and fruits of early poplars (Salicaceae: Populus) from the Eocene of Utah, Colorado, and Wyoming. Int. J. Plant Sci. 2006;167:897–908. doi: 10.1086/503918. DOI

Geraldes A, et al. Recent Y chromosome divergence despite ancient origin of dioecy in poplars (Populus) Mol. Ecol. 2015;24:3243–56. doi: 10.1111/mec.13126. PubMed DOI

Hou J, et al. Different autosomes evolved into sex chromosomes in the sister genera of Salix and Populus. Sci. Rep. 2015;5:9076. doi: 10.1038/srep09076. PubMed DOI PMC

Pucholt P, Rönnberg-Wästljung A-C, Berlin S. Single locus sex determination and female heterogamety in the basket willow (Salix viminalis L.) Heredity. 2015;114:575–83. doi: 10.1038/hdy.2014.125. PubMed DOI PMC

Pucholt P, Wright AE, Conze LL, Mank JE, Berlin S. Recent sex chromosome divergence despite ancient dioecy in the willow Salix viminalis. Mol. Biol. Evol. 2017;34:1991–2001. doi: 10.1093/molbev/msx144. PubMed DOI PMC

Tuskan GA, et al. The obscure events contributing to the evolution of an incipient sex chromosome in Populus: a retrospective working hypothesis. Tree Genet. Genomes. 2012;8:559–571. doi: 10.1007/s11295-012-0495-6. DOI

Zhou R, et al. Characterization of a large sex determination region in Salix purpurea L. (Salicaceae) Mol. Genet. Genomics. 2018;293:1437–1452. doi: 10.1007/s00438-018-1473-y. PubMed DOI

Casimiro-Soriguer, I., Buide, M. L. & Narbona, E. Diversity of sexual systems within different lineages of the genus Silene. AoB Plants7 (2015). PubMed PMC

Charlesworth D, Laporte V. The male-sterility polymorphism of Silene vulgaris: analysis of genetic dat from two populations and comparison with Thymus vulgaris. Genetics. 1998;150:1267–82. PubMed PMC

Stone JD, Kolouskova P, Sloan DB, Storchova H. Non-coding RNA may be associated with cytoplasmic male sterility in Silene vulgaris. J. Exp. Bot. 2017;68:1599–1612. doi: 10.1093/jxb/erx057. PubMed DOI PMC

Garraud C, Brachi B, Dufay M, Touzet P, Shykoff JA. Genetic determination of male sterility in gynodioecious Silene nutans. Heredity. 2011;106:757–764. doi: 10.1038/hdy.2010.116. PubMed DOI PMC

Bari EA. Cytological studies in the genus Silene L. New Phytol. 1973;72:833–838. doi: 10.1111/j.1469-8137.1973.tb02059.x. DOI

Kruckeberg AR. Chromosome numbers in Silene (Caryophylaceae): I. Madroño. 1954;12:238–246.

Mrackova M, et al. Independent origin of sex chromosomes in two species of the genus Silene. Genetics. 2008;179:1129–1133. doi: 10.1534/genetics.107.085670. PubMed DOI PMC

Blackburn KB. Sex chromosomes in plants. Nature. 1923;112:687–688. doi: 10.1038/112687c0. DOI

Bergero R, Forrest A, Kamau E, Charlesworth D. Evolutionary strata on the X chromosomes of the dioecious plant Silene latifolia: evidence from new sex-linked genes. Genetics. 2007;175:1945–1954. doi: 10.1534/genetics.106.070110. PubMed DOI PMC

Rautenberg A, Hathaway L, Oxelman B, Prentice HC. Geographic and phylogenetic patterns in Silene section Melandrium (Caryophyllaceae) as inferred from chloroplast and nuclear DNA sequences. Mol. Phylogenet. Evol. 2010;57:978–91. doi: 10.1016/j.ympev.2010.08.003. PubMed DOI

Papadopulos AST, Chester M, Ridout K, Filatov DA. Rapid Y degeneration and dosage compensation in plant sex chromosomes. Proc. Natl. Acad. Sci. USA. 2015;112:13021–6. doi: 10.1073/pnas.1508454112. PubMed DOI PMC

Krasovec M, Chester M, Ridout K, Filatov DA. The mutation rate and the age of the sex chromosomes in Silene latifolia. Curr. Biol. 2018;28:1832–1838.e4. doi: 10.1016/j.cub.2018.04.069. PubMed DOI

Veller C, Muralidhar P, Constable GWA, Nowak MA. Drift-induced selection between male and female heterogamety. Genetics. 2017;207:711–727. PubMed PMC

Saunders PA, Neuenschwander S, Perrin N. Sex chromosome turnovers and genetic drift: a simulation study. J. Evol. Biol. 2018;31:1413–1419. doi: 10.1111/jeb.13336. PubMed DOI

van Doorn GS. Evolutionary transitions between sex-determining mechanisms: a review of theory. Sex Dev. 2014;8:7–19. doi: 10.1159/000357023. PubMed DOI

Blaser O, Grossen C, Neuenschwander S, Perrin N. Sex-chromosome turnovers induced by deleterious mutation load. Evolution. 2013;67:635–645. doi: 10.1111/j.1558-5646.2012.01810.x. PubMed DOI

Blaser O, Neuenschwander S, Perrin N. Sex-chromosome turnovers: the hot-potato model. Am. Nat. 2014;183:140–146. doi: 10.1086/674026. PubMed DOI

Brelsford A, et al. Homologous sex chromosomes in three deeply divergent anuran species. Evolution. 2013;67:2434–2440. doi: 10.1111/evo.12151. PubMed DOI

Ogata M, et al. Change of the heterogametic sex from male to female in the frog. Genetics. 2003;164:613–620. PubMed PMC

Ogata M, Lambert M, Ezaz T, Miura I. Reconstruction of female heterogamety from admixture of XX-XY and ZZ-ZW sex-chromosome systems within a frog species. Mol. Ecol. 2018;27:4078–4089. doi: 10.1111/mec.14831. PubMed DOI

Bergero R, Qiu S, Forrest A, Borthwick H, Charlesworth D. Expansion of the pseudo-autosomal region and ongoing recombination suppression in the Silene latifolia sex chromosomes. Genetics. 2013;194:673–86. doi: 10.1534/genetics.113.150755. PubMed DOI PMC

Michalovova M, Kubat Z, Hobza R, Vyskot B, Kejnovsky E. Fully automated pipeline for detection of sex linked genes using RNA-Seq data. BMC Bioinformatics. 2015;16:78. doi: 10.1186/s12859-015-0509-0. PubMed DOI PMC

Kass RE, Raftery AE. Bayes factors. J. Am. Stat. Assoc. 1995;90:773–795. doi: 10.1080/01621459.1995.10476572. DOI

Wrigley F. Taxonomy and chorology of Silene section Otites (Caryophyllaceae) Ann. Bot. Fenn. 1986;23:69–81.

Suarez-Villota EY, Pansonato-Alves JC, Foresti F, Gallardo MH. Homomorphic sex chromosomes and the intriguing Y chromosome of Ctenomys rodent species (Rodentia, Ctenomyidae) Cytogenet. Genome Res. 2014;143:232–240. doi: 10.1159/000366173. PubMed DOI

Kirkpatrick M. The evolution of genome structure by natural and sexual selection. J. Hered. 2017;108:3–11. doi: 10.1093/jhered/esw041. PubMed DOI PMC

Lahn BT, Page DC. Four evolutionary strata on the human X chromosome. Science. 1999;286:964–967. doi: 10.1126/science.286.5441.964. PubMed DOI

Newton WCF. Genetical experiments with Silene otites and related species. J. Genet. 1931;24:109–120. doi: 10.1007/BF03020825. DOI

van Doorn GS, Kirkpatrick M. Transitions between male and female heterogamety caused by sex-antagonistic selection. Genetics. 2010;186:629–45. doi: 10.1534/genetics.110.118596. PubMed DOI PMC

Howell EC, Armstrong SJ, Filatov DA. Evolution of neo-sex chromosomes in Silene diclinis. Genetics. 2009;182:1109–1115. doi: 10.1534/genetics.109.103580. PubMed DOI PMC

Westergaard M. The mechanism of sex determination in dioecious flowering plants. Adv. Genet. 1958;9:217–281. doi: 10.1016/S0065-2660(08)60163-7. PubMed DOI

Zluvova J, et al. The inter-specific hybrid Silene latifolia x S. viscosa reveals early events of sex chromosome evolution. Evol. Dev. 2005;7:327–336. doi: 10.1111/j.1525-142X.2005.05038.x. PubMed DOI

Zluvova J, et al. Early events in the evolution of the Silene latifolia Y chromosome: male specialization and recombination arrest. Genetics. 2007;177:375–386. doi: 10.1534/genetics.107.071175. PubMed DOI PMC

Kazama Y, et al. A new physical mapping approach refines the sex-determining gene positions on the Silene latifolia Y-chromosome. Sci. Rep. 2016;6:18917. doi: 10.1038/srep18917. PubMed DOI PMC

Marais GAB, et al. Evidence for degeneration of the Y chromosome in the dioecious plant Silene latifolia. Curr. Biol. 2008;18:545–549. doi: 10.1016/j.cub.2008.03.023. PubMed DOI

Muyle A, et al. Rapid de novo evolution of X chromosome dosage compensation in Silene latifolia, a plant with young sex chromosomes. PLoS Biol. 2012;10:e1001308. doi: 10.1371/journal.pbio.1001308. PubMed DOI PMC

Bergero R, Qiu S, Charlesworth D. Gene loss from a plant sex chromosome system. Curr. Biol. 2015;25:1234–1240. doi: 10.1016/j.cub.2015.03.015. PubMed DOI

Shull GH. Reversible sex mutants in Lychnis dioica. Bot. Gaz. 1911;52:329–368. doi: 10.1086/330665. DOI

Miller PM, Kesseli RV. A sex-chromosome mutation in Silene latifolia. Sex. Plant Reprod. 2011;24:211–217. doi: 10.1007/s00497-011-0163-2. PubMed DOI PMC

Janousek B, Siroký J, Vyskot B. Epigenetic control of sexual phenotype in a dioecious plant. Melandrium album. Mol. Gen. Genet. 1996;250:483–490. doi: 10.1007/BF02174037. PubMed DOI

Janoušek B, Grant SR, Vyskot B. Non-transmissibility of the Y chromosome through the female line in androhermaphrodite plants of Melandrium album. Heredity. 1998;80:576–583. doi: 10.1046/j.1365-2540.1998.00322.x. DOI

Correns CB. Vererbung and Verteilung des geschlechtes bei den hoheren Pflanzen. Handb. Vererbungsw. 1928;2:1–138.

Yoshimoto S, et al. A W-linked DM-domain gene, DM-W, participates in primary ovary development in Xenopus laevis. Proc. Natl. Acad. Sci. 2008;105:2469–2474. doi: 10.1073/pnas.0712244105. PubMed DOI PMC

Kopp A. Dmrt genes in the development and evolution of sexual dimorphism. Trends in Genetics. 2012;28:175–184. doi: 10.1016/j.tig.2012.02.002. PubMed DOI PMC

Charlesworth D. Plant contributions to our understanding of sex chromosome evolution. New Phytol. 2015;208:52–65. doi: 10.1111/nph.13497. PubMed DOI

Torii KU. Leucine-rich repeat receptor kinases in plants: structure, function, and signal transduction pathways. Int. Rev. Cytol. 2004;234:1–46. doi: 10.1016/S0074-7696(04)34001-5. PubMed DOI

Manna S. An overview of pentatricopeptide repeat proteins and their applications. Biochimie. 2015;113:93–9. doi: 10.1016/j.biochi.2015.04.004. PubMed DOI

Gross T, Broholm S, Becker A. CRABS CLAW acts as a bifunctional transcription factor in flower development. Front. Plant Sci. 2018;9:835. doi: 10.3389/fpls.2018.00835. PubMed DOI PMC

Mukherjee K, Brocchieri L, Bürglin TR. A comprehensive classification and evolutionary analysis of plant homeobox genes. Mol. Biol. Evol. 2009;26:2775–2794. doi: 10.1093/molbev/msp201. PubMed DOI PMC

Angerer H. Eukaryotic LYR Proteins Interact with Mitochondrial Protein Complexes. Biology (Basel) 2015;4:133–150. PubMed PMC

Hazak O, Hardtke CS. CLAVATA 1-type receptors in plant development. J. Exp. Bot. 2016;67:4827–4833. doi: 10.1093/jxb/erw247. PubMed DOI

Chevreux B, et al. Using the miraEST assembler for reliable and automated mRNA transcript assembly and SNP detection in sequenced ESTs. Genome Res. 2004;14:1147–1159. doi: 10.1101/gr.1917404. PubMed DOI PMC

Duarte JM, et al. Identification of shared single copy nuclear genes in Arabidopsis, Populus, Vitis and Oryza and their phylogenetic utility across various taxonomic levels. BMC Evol. Biol. 2010;10:61. doi: 10.1186/1471-2148-10-61. PubMed DOI PMC

Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC

Song L, et al. Rcorrector: efficient and accurate error correction for Illumina RNA-seq reads. Gigascience. 2015;4:48. doi: 10.1186/s13742-015-0089-y. PubMed DOI PMC

Haas BJ, et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 2013;8:1494–512. doi: 10.1038/nprot.2013.084. PubMed DOI PMC

Hebert, F. O. Trinotate_pipeline: Annotation Pipeline – Trinotate, 10.5281/zenodo.50974 (2016).

Conesa A, Götz S. Blast2GO: A comprehensive suite for functional analysis in plant genomics. Int. J. Plant Genomics. 2008;2008:619832. doi: 10.1155/2008/619832. PubMed DOI PMC

Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25:1754–60. doi: 10.1093/bioinformatics/btp324. PubMed DOI PMC

Li H, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25:2078–9. doi: 10.1093/bioinformatics/btp352. PubMed DOI PMC

Langmead, B. Aligning short sequencing reads with Bowtie. Curr. Protoc. Bioinformatics Chapter 11, Unit11.7 (2010). PubMed PMC

Thorvaldsdottir H, Robinson JT, Mesirov JP. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief. Bioinform. 2013;14:178–192. doi: 10.1093/bib/bbs017. PubMed DOI PMC

Hongtrakul V, Slabaugh MB, Knapp SJ. DFLP, SSCP, and SSR markers for Δ9-stearoyl-acyl carrier protein desaturases strongly expressed in developing seeds of sunflower: intron lengths are polymorphic among elite inbred lines. Mol. Breed. 1998;4:195–203. doi: 10.1023/A:1009646720400. DOI

Neff MM, Neff JD, Chory J, Pepper AE. dCAPS, a simple technique for the genetic analysis of single nucleotide polymorphisms: experimental applications in Arabidopsis thaliana genetics. Plant J. 1998;14:387–92. doi: 10.1046/j.1365-313X.1998.00124.x. PubMed DOI

Reed GH, Wittwer CT. Sensitivity and specificity of single-nucleotide polymorphism scanning by high-resolution melting analysis. Clin. Chem. 2004;50:1748–54. doi: 10.1373/clinchem.2003.029751. PubMed DOI

Simko I. High-resolution DNA melting analysis in plant research. Trends Plant Sci. 2016;21:528–537. doi: 10.1016/j.tplants.2016.01.004. PubMed DOI

van Ooijen JW. Multipoint maximum likelihood mapping in a full-sib family of an outbreeding species. Genet. Res. 2011;93:343–349. doi: 10.1017/S0016672311000279. PubMed DOI

Voorrips RE. MapChart: software for the graphical presentation of linkage maps and QTLs. J. Hered. 2002;93:77–78. doi: 10.1093/jhered/93.1.77. PubMed DOI

Camacho C, et al. BLAST+: architecture and applications. BMC Bioinformatics. 2009;10:421. doi: 10.1186/1471-2105-10-421. PubMed DOI PMC

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J. Mol. Biol. 1990;215:403–410. doi: 10.1016/S0022-2836(05)80360-2. PubMed DOI

Emms DM, et al. OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol. 2015;16:157. doi: 10.1186/s13059-015-0721-2. PubMed DOI PMC

Enright AJ, Van Dongen S, Ouzounis CA. An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res. 2002;30:1575–84. doi: 10.1093/nar/30.7.1575. PubMed DOI PMC

Lischer HEL, Excoffier L, Heckel G. Ignoring heterozygous sites biases phylogenomic estimates of divergence times: implications for the evolutionary history of microtus voles. Mol. Biol. Evol. 2014;31:817–831. doi: 10.1093/molbev/mst271. PubMed DOI

Patterson M, et al. WhatsHap: weighted haplotype assembly for future-generation sequencing reads. J. Comput. Biol. 2015;22:498–509. doi: 10.1089/cmb.2014.0157. PubMed DOI

Garg S, Martin M, Marschall T. Read-based phasing of related individuals. Bioinformatics. 2016;32:i234–i242. doi: 10.1093/bioinformatics/btw276. PubMed DOI PMC

Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26:841–842. doi: 10.1093/bioinformatics/btq033. PubMed DOI PMC

Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30:3059–3066. doi: 10.1093/nar/gkf436. PubMed DOI PMC

Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 2013;30:772–80. doi: 10.1093/molbev/mst010. PubMed DOI PMC

Ogilvie HA, Bouckaert RR, Drummond AJ. StarBEAST2 brings faster species tree inference and accurate estimates of substitution rates. Mol. Biol. Evol. 2017;34:2101–2114. doi: 10.1093/molbev/msx126. PubMed DOI PMC

Bouckaert R, et al. BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 2014;10:e1003537. doi: 10.1371/journal.pcbi.1003537. PubMed DOI PMC

De La Torre AR, Li Z, Van de Peer Y, Ingvarsson PK. Contrasting rates of molecular evolution and patterns of selection among gymnosperms and flowering plants. Mol. Biol. Evol. 2017;34:1363–1377. doi: 10.1093/molbev/msx069. PubMed DOI PMC

Pond SLK, Frost SDW, Muse SV. HyPhy: hypothesis testing using phylogenies. Bioinformatics. 2005;21:676–9. doi: 10.1093/bioinformatics/bti079. PubMed DOI

Pagel M, Meade A, Barker D. Bayesian estimation of ancestral character states on phylogenies. Syst. Biol. 2004;53:673–684. doi: 10.1080/10635150490522232. PubMed DOI

Rambaut, A., Suchard, M. A., Xie, D. & Drummond, A. J. Tracer v1.5. (2013). Available at: http://beast.bio.ed.ac.uk/Tracer.

Cegan R, et al. Structure and evolution of Apetala3, a sex-linked gene in Silene latifolia. BMC Plant Biol. 2010;10:180. doi: 10.1186/1471-2229-10-180. PubMed DOI PMC

Cegan R, et al. Genomic diversity in two related plant species with and without sex chromosomes - Silene latifolia and S. vulgaris. PLoS One. 2012;7:e31898. doi: 10.1371/journal.pone.0031898. PubMed DOI PMC

Hernandez D, Francois P, Farinelli L, Osteras M, Schrenzel J. De novo bacterial genome sequencing: millions of very short reads assembled on a desktop computer. Genome Res. 2008;18:802–809. doi: 10.1101/gr.072033.107. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...