Evolution of sex determination and heterogamety changes in section Otites of the genus Silene
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
30705300
PubMed Central
PMC6355844
DOI
10.1038/s41598-018-37412-x
PII: 10.1038/s41598-018-37412-x
Knihovny.cz E-zdroje
- MeSH
- Bayesova věta MeSH
- chromozomy rostlin genetika MeSH
- fylogeneze MeSH
- genetická vazba genetika MeSH
- Silene genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Switches in heterogamety are known to occur in both animals and plants. Although plant sex determination systems probably often evolved more recently than those in several well-studied animals, including mammals, and have had less time for switches to occur, we previously detected a switch in heterogamety in the plant genus Silene: section Otites has both female and male heterogamety, whereas S. latifolia and its close relatives, in a different section of the genus, Melandrium (subgenus Behenantha), all have male heterogamety. Here we analyse the evolution of sex chromosomes in section Otites, which is estimated to have evolved only about 0.55 MYA. Our study confirms female heterogamety in S. otites and newly reveals female heterogamety in S. borysthenica. Sequence analyses and genetic mapping show that the sex-linked regions of these two species are the same, but the region in S. colpophylla, a close relative with male heterogamety, is different. The sex chromosome pairs of S. colpophylla and S. otites each correspond to an autosome of the other species, and both differ from the XY pair in S. latifolia. Silene section Otites species are suitable for detailed studies of the events involved in such changes, and our phylogenetic analysis suggests a possible change from female to male heterogamety within this section. Our analyses suggest a possibility that has so far not been considered, change in heterogamety through hybridization, in which a male-determining chromosome from one species is introgressed into another one, and over-rides its previous sex-determining system.
Institute for Biological Physics University of Cologne Zülpicher Straße 77 Cologne Germany
Institute of Evolutionary Biology EH9 3FL University of Edinburgh Edinburgh UK
Zobrazit více v PubMed
Charlesworth B, Charlesworth D. A model for the evolution of dioecy and gynodioecy. Am. Nat. 1978;112:975. doi: 10.1086/283342. DOI
Lloyd DG. The distribution of gender in four angiosperm species illustrating two evolutionary pathways to dioecy. Evolution. 1980;34:123–134. doi: 10.1111/j.1558-5646.1980.tb04795.x. PubMed DOI
Webb, B. C. J. In Gender and Sexual Dimorphism in Flowering Plants (eds Geber, M. A., Dawson, T. E. & Delph, L. F.) 61–95 (Springer, 1999).
Renner SS, Won H. Repeated evolution of dioecy from monoecy in Siparunaceae (Laurales) Syst. Biol. 2001;50:700–712. doi: 10.1080/106351501753328820. PubMed DOI
Spigler RB, Lewers KS, Main DS, Ashman T-L. Genetic mapping of sex determination in a wild strawberry, Fragaria virginiana, reveals earliest form of sex chromosome. Heredity. 2008;101:507–517. doi: 10.1038/hdy.2008.100. PubMed DOI
Spigler RB, Lewers KS, Johnson AL, Ashman T-L. Comparative mapping reveals autosomal origin of sex chromosome in octoploid Fragaria virginiana. J. Hered. 2010;101:Suppl, S107–117. doi: 10.1093/jhered/esq001. PubMed DOI
Goldberg, M. T., Spigler, R. B. & Ashman, T.-L. Comparative genetic mapping points to different sex chromosomes in sibling species of wild strawberry (Fragaria). Genetics186, 10.1534/genetics.110.122911 (2010). PubMed PMC
Ashman T-L, et al. Multilocus sex determination revealed in two populations of gynodioecious wild strawberry. Fragaria vesca subsp. bracteata. 2015;G3(5):2759–2773. PubMed PMC
Lloyd DG. Breeding systems in Cotula III. dioecious populations. New Phytologist. 1975;74:109–123. doi: 10.1111/j.1469-8137.1975.tb01345.x. DOI
Hormaza JI, Dollo L, Polito VS. Identification of a RAPD marker linked to sex determination in Pistacia vera using bulked segregant analysis. Theor. Appl. Genet. 1994;89:9–13. doi: 10.1007/BF00226975. PubMed DOI
Esfandiyari B, Davarynejad GH, Shahriari F, Kiani M, Mathe A. Data to the sex determination in Pistacia species using molecular markers. Euphytica. 2012;185:227–231. doi: 10.1007/s10681-011-0527-6. DOI
Eppley SM, O’Quinn R, Brown AL. New sequence-tagged site molecular markers for identification of sex in Distichlis spicata. Mol. Ecol. Resour. 2009;9:1373–1374. doi: 10.1111/j.1755-0998.2009.02570.x. PubMed DOI
Grewal MS, Ellis JR. Sex determination in Potentilla fruticosa. Heredity. 1972;29:359. doi: 10.1038/hdy.1972.99. DOI
Beukeboom, L. W. & Perrin, N. The evolution of sex determination. (Oxford University Press, 2014), 10.1093/acprof:oso/9780199657148.001.0001.
Yin T, et al. Genome structure and emerging evidence of an incipient sex chromosome in. Populus. Genome Res. 2008;18:422–430. doi: 10.1101/gr.7076308. PubMed DOI PMC
Sansome FW. Sex determination in Silene otites and related species. Journal of Genetics. 1938;35:387–396. doi: 10.1007/BF02982363. DOI
Slancarova V, et al. Evolution of sex determination systems with heterogametic males and females in Silene. Evolution. 2013;67:3669–77. doi: 10.1111/evo.12223. PubMed DOI
Myosho T, et al. Tracing the emergence of a novel sex-determining gene in medaka. Oryzias luzonensis. Genetics. 2012;191:163–70. doi: 10.1534/genetics.111.137497. PubMed DOI PMC
Myosho T, Takehana Y, Hamaguchi S, Sakaizumi M. Turnover of sex chromosomes in Celebensis group medaka fishes. G3. 2015;5:2685–91. doi: 10.1534/g3.115.021543. PubMed DOI PMC
Böhne A, Wilson CA, Postlethwait JH, Salzburger W. Variations on a theme: Genomics of sex determination in the cichlid fish Astatotilapia burtoni. BMC Genomics. 2016;17:883. doi: 10.1186/s12864-016-3178-0. PubMed DOI PMC
Roberts RB, Ser JR, Kocher TD. Sexual conflict resolved by invasion of a novel sex determiner in lake Malawi cichlid fishes. Science. 2009;326:998–1001. doi: 10.1126/science.1174705. PubMed DOI PMC
Gammerdinger WJ, et al. Novel Sex Chromosomes in 3 Cichlid Fishes from Lake Tanganyika. J. Hered. 2018;109:489–500. doi: 10.1093/jhered/esy003. PubMed DOI
Tennessen JA, et al. Repeated translocation of a gene cassette drives sex-chromosome turnover in strawberries. PLoS Biol. 2018;16:e2006062. doi: 10.1371/journal.pbio.2006062. PubMed DOI PMC
Boucher LD, Manchester SR, Judd WS. An extinct genus of Salicaceae based on twigs with attached flowers, fruits, and foliage from the Eocene Green River Formation of Utah and Colorado, USA. Am. J. Bot. 2003;90:1389–99. doi: 10.3732/ajb.90.9.1389. PubMed DOI
Manchester SR, Judd WS, Handley B. Foliage and fruits of early poplars (Salicaceae: Populus) from the Eocene of Utah, Colorado, and Wyoming. Int. J. Plant Sci. 2006;167:897–908. doi: 10.1086/503918. DOI
Geraldes A, et al. Recent Y chromosome divergence despite ancient origin of dioecy in poplars (Populus) Mol. Ecol. 2015;24:3243–56. doi: 10.1111/mec.13126. PubMed DOI
Hou J, et al. Different autosomes evolved into sex chromosomes in the sister genera of Salix and Populus. Sci. Rep. 2015;5:9076. doi: 10.1038/srep09076. PubMed DOI PMC
Pucholt P, Rönnberg-Wästljung A-C, Berlin S. Single locus sex determination and female heterogamety in the basket willow (Salix viminalis L.) Heredity. 2015;114:575–83. doi: 10.1038/hdy.2014.125. PubMed DOI PMC
Pucholt P, Wright AE, Conze LL, Mank JE, Berlin S. Recent sex chromosome divergence despite ancient dioecy in the willow Salix viminalis. Mol. Biol. Evol. 2017;34:1991–2001. doi: 10.1093/molbev/msx144. PubMed DOI PMC
Tuskan GA, et al. The obscure events contributing to the evolution of an incipient sex chromosome in Populus: a retrospective working hypothesis. Tree Genet. Genomes. 2012;8:559–571. doi: 10.1007/s11295-012-0495-6. DOI
Zhou R, et al. Characterization of a large sex determination region in Salix purpurea L. (Salicaceae) Mol. Genet. Genomics. 2018;293:1437–1452. doi: 10.1007/s00438-018-1473-y. PubMed DOI
Casimiro-Soriguer, I., Buide, M. L. & Narbona, E. Diversity of sexual systems within different lineages of the genus Silene. AoB Plants7 (2015). PubMed PMC
Charlesworth D, Laporte V. The male-sterility polymorphism of Silene vulgaris: analysis of genetic dat from two populations and comparison with Thymus vulgaris. Genetics. 1998;150:1267–82. PubMed PMC
Stone JD, Kolouskova P, Sloan DB, Storchova H. Non-coding RNA may be associated with cytoplasmic male sterility in Silene vulgaris. J. Exp. Bot. 2017;68:1599–1612. doi: 10.1093/jxb/erx057. PubMed DOI PMC
Garraud C, Brachi B, Dufay M, Touzet P, Shykoff JA. Genetic determination of male sterility in gynodioecious Silene nutans. Heredity. 2011;106:757–764. doi: 10.1038/hdy.2010.116. PubMed DOI PMC
Bari EA. Cytological studies in the genus Silene L. New Phytol. 1973;72:833–838. doi: 10.1111/j.1469-8137.1973.tb02059.x. DOI
Kruckeberg AR. Chromosome numbers in Silene (Caryophylaceae): I. Madroño. 1954;12:238–246.
Mrackova M, et al. Independent origin of sex chromosomes in two species of the genus Silene. Genetics. 2008;179:1129–1133. doi: 10.1534/genetics.107.085670. PubMed DOI PMC
Blackburn KB. Sex chromosomes in plants. Nature. 1923;112:687–688. doi: 10.1038/112687c0. DOI
Bergero R, Forrest A, Kamau E, Charlesworth D. Evolutionary strata on the X chromosomes of the dioecious plant Silene latifolia: evidence from new sex-linked genes. Genetics. 2007;175:1945–1954. doi: 10.1534/genetics.106.070110. PubMed DOI PMC
Rautenberg A, Hathaway L, Oxelman B, Prentice HC. Geographic and phylogenetic patterns in Silene section Melandrium (Caryophyllaceae) as inferred from chloroplast and nuclear DNA sequences. Mol. Phylogenet. Evol. 2010;57:978–91. doi: 10.1016/j.ympev.2010.08.003. PubMed DOI
Papadopulos AST, Chester M, Ridout K, Filatov DA. Rapid Y degeneration and dosage compensation in plant sex chromosomes. Proc. Natl. Acad. Sci. USA. 2015;112:13021–6. doi: 10.1073/pnas.1508454112. PubMed DOI PMC
Krasovec M, Chester M, Ridout K, Filatov DA. The mutation rate and the age of the sex chromosomes in Silene latifolia. Curr. Biol. 2018;28:1832–1838.e4. doi: 10.1016/j.cub.2018.04.069. PubMed DOI
Veller C, Muralidhar P, Constable GWA, Nowak MA. Drift-induced selection between male and female heterogamety. Genetics. 2017;207:711–727. PubMed PMC
Saunders PA, Neuenschwander S, Perrin N. Sex chromosome turnovers and genetic drift: a simulation study. J. Evol. Biol. 2018;31:1413–1419. doi: 10.1111/jeb.13336. PubMed DOI
van Doorn GS. Evolutionary transitions between sex-determining mechanisms: a review of theory. Sex Dev. 2014;8:7–19. doi: 10.1159/000357023. PubMed DOI
Blaser O, Grossen C, Neuenschwander S, Perrin N. Sex-chromosome turnovers induced by deleterious mutation load. Evolution. 2013;67:635–645. doi: 10.1111/j.1558-5646.2012.01810.x. PubMed DOI
Blaser O, Neuenschwander S, Perrin N. Sex-chromosome turnovers: the hot-potato model. Am. Nat. 2014;183:140–146. doi: 10.1086/674026. PubMed DOI
Brelsford A, et al. Homologous sex chromosomes in three deeply divergent anuran species. Evolution. 2013;67:2434–2440. doi: 10.1111/evo.12151. PubMed DOI
Ogata M, et al. Change of the heterogametic sex from male to female in the frog. Genetics. 2003;164:613–620. PubMed PMC
Ogata M, Lambert M, Ezaz T, Miura I. Reconstruction of female heterogamety from admixture of XX-XY and ZZ-ZW sex-chromosome systems within a frog species. Mol. Ecol. 2018;27:4078–4089. doi: 10.1111/mec.14831. PubMed DOI
Bergero R, Qiu S, Forrest A, Borthwick H, Charlesworth D. Expansion of the pseudo-autosomal region and ongoing recombination suppression in the Silene latifolia sex chromosomes. Genetics. 2013;194:673–86. doi: 10.1534/genetics.113.150755. PubMed DOI PMC
Michalovova M, Kubat Z, Hobza R, Vyskot B, Kejnovsky E. Fully automated pipeline for detection of sex linked genes using RNA-Seq data. BMC Bioinformatics. 2015;16:78. doi: 10.1186/s12859-015-0509-0. PubMed DOI PMC
Kass RE, Raftery AE. Bayes factors. J. Am. Stat. Assoc. 1995;90:773–795. doi: 10.1080/01621459.1995.10476572. DOI
Wrigley F. Taxonomy and chorology of Silene section Otites (Caryophyllaceae) Ann. Bot. Fenn. 1986;23:69–81.
Suarez-Villota EY, Pansonato-Alves JC, Foresti F, Gallardo MH. Homomorphic sex chromosomes and the intriguing Y chromosome of Ctenomys rodent species (Rodentia, Ctenomyidae) Cytogenet. Genome Res. 2014;143:232–240. doi: 10.1159/000366173. PubMed DOI
Kirkpatrick M. The evolution of genome structure by natural and sexual selection. J. Hered. 2017;108:3–11. doi: 10.1093/jhered/esw041. PubMed DOI PMC
Lahn BT, Page DC. Four evolutionary strata on the human X chromosome. Science. 1999;286:964–967. doi: 10.1126/science.286.5441.964. PubMed DOI
Newton WCF. Genetical experiments with Silene otites and related species. J. Genet. 1931;24:109–120. doi: 10.1007/BF03020825. DOI
van Doorn GS, Kirkpatrick M. Transitions between male and female heterogamety caused by sex-antagonistic selection. Genetics. 2010;186:629–45. doi: 10.1534/genetics.110.118596. PubMed DOI PMC
Howell EC, Armstrong SJ, Filatov DA. Evolution of neo-sex chromosomes in Silene diclinis. Genetics. 2009;182:1109–1115. doi: 10.1534/genetics.109.103580. PubMed DOI PMC
Westergaard M. The mechanism of sex determination in dioecious flowering plants. Adv. Genet. 1958;9:217–281. doi: 10.1016/S0065-2660(08)60163-7. PubMed DOI
Zluvova J, et al. The inter-specific hybrid Silene latifolia x S. viscosa reveals early events of sex chromosome evolution. Evol. Dev. 2005;7:327–336. doi: 10.1111/j.1525-142X.2005.05038.x. PubMed DOI
Zluvova J, et al. Early events in the evolution of the Silene latifolia Y chromosome: male specialization and recombination arrest. Genetics. 2007;177:375–386. doi: 10.1534/genetics.107.071175. PubMed DOI PMC
Kazama Y, et al. A new physical mapping approach refines the sex-determining gene positions on the Silene latifolia Y-chromosome. Sci. Rep. 2016;6:18917. doi: 10.1038/srep18917. PubMed DOI PMC
Marais GAB, et al. Evidence for degeneration of the Y chromosome in the dioecious plant Silene latifolia. Curr. Biol. 2008;18:545–549. doi: 10.1016/j.cub.2008.03.023. PubMed DOI
Muyle A, et al. Rapid de novo evolution of X chromosome dosage compensation in Silene latifolia, a plant with young sex chromosomes. PLoS Biol. 2012;10:e1001308. doi: 10.1371/journal.pbio.1001308. PubMed DOI PMC
Bergero R, Qiu S, Charlesworth D. Gene loss from a plant sex chromosome system. Curr. Biol. 2015;25:1234–1240. doi: 10.1016/j.cub.2015.03.015. PubMed DOI
Shull GH. Reversible sex mutants in Lychnis dioica. Bot. Gaz. 1911;52:329–368. doi: 10.1086/330665. DOI
Miller PM, Kesseli RV. A sex-chromosome mutation in Silene latifolia. Sex. Plant Reprod. 2011;24:211–217. doi: 10.1007/s00497-011-0163-2. PubMed DOI PMC
Janousek B, Siroký J, Vyskot B. Epigenetic control of sexual phenotype in a dioecious plant. Melandrium album. Mol. Gen. Genet. 1996;250:483–490. doi: 10.1007/BF02174037. PubMed DOI
Janoušek B, Grant SR, Vyskot B. Non-transmissibility of the Y chromosome through the female line in androhermaphrodite plants of Melandrium album. Heredity. 1998;80:576–583. doi: 10.1046/j.1365-2540.1998.00322.x. DOI
Correns CB. Vererbung and Verteilung des geschlechtes bei den hoheren Pflanzen. Handb. Vererbungsw. 1928;2:1–138.
Yoshimoto S, et al. A W-linked DM-domain gene, DM-W, participates in primary ovary development in Xenopus laevis. Proc. Natl. Acad. Sci. 2008;105:2469–2474. doi: 10.1073/pnas.0712244105. PubMed DOI PMC
Kopp A. Dmrt genes in the development and evolution of sexual dimorphism. Trends in Genetics. 2012;28:175–184. doi: 10.1016/j.tig.2012.02.002. PubMed DOI PMC
Charlesworth D. Plant contributions to our understanding of sex chromosome evolution. New Phytol. 2015;208:52–65. doi: 10.1111/nph.13497. PubMed DOI
Torii KU. Leucine-rich repeat receptor kinases in plants: structure, function, and signal transduction pathways. Int. Rev. Cytol. 2004;234:1–46. doi: 10.1016/S0074-7696(04)34001-5. PubMed DOI
Manna S. An overview of pentatricopeptide repeat proteins and their applications. Biochimie. 2015;113:93–9. doi: 10.1016/j.biochi.2015.04.004. PubMed DOI
Gross T, Broholm S, Becker A. CRABS CLAW acts as a bifunctional transcription factor in flower development. Front. Plant Sci. 2018;9:835. doi: 10.3389/fpls.2018.00835. PubMed DOI PMC
Mukherjee K, Brocchieri L, Bürglin TR. A comprehensive classification and evolutionary analysis of plant homeobox genes. Mol. Biol. Evol. 2009;26:2775–2794. doi: 10.1093/molbev/msp201. PubMed DOI PMC
Angerer H. Eukaryotic LYR Proteins Interact with Mitochondrial Protein Complexes. Biology (Basel) 2015;4:133–150. PubMed PMC
Hazak O, Hardtke CS. CLAVATA 1-type receptors in plant development. J. Exp. Bot. 2016;67:4827–4833. doi: 10.1093/jxb/erw247. PubMed DOI
Chevreux B, et al. Using the miraEST assembler for reliable and automated mRNA transcript assembly and SNP detection in sequenced ESTs. Genome Res. 2004;14:1147–1159. doi: 10.1101/gr.1917404. PubMed DOI PMC
Duarte JM, et al. Identification of shared single copy nuclear genes in Arabidopsis, Populus, Vitis and Oryza and their phylogenetic utility across various taxonomic levels. BMC Evol. Biol. 2010;10:61. doi: 10.1186/1471-2148-10-61. PubMed DOI PMC
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC
Song L, et al. Rcorrector: efficient and accurate error correction for Illumina RNA-seq reads. Gigascience. 2015;4:48. doi: 10.1186/s13742-015-0089-y. PubMed DOI PMC
Haas BJ, et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 2013;8:1494–512. doi: 10.1038/nprot.2013.084. PubMed DOI PMC
Hebert, F. O. Trinotate_pipeline: Annotation Pipeline – Trinotate, 10.5281/zenodo.50974 (2016).
Conesa A, Götz S. Blast2GO: A comprehensive suite for functional analysis in plant genomics. Int. J. Plant Genomics. 2008;2008:619832. doi: 10.1155/2008/619832. PubMed DOI PMC
Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25:1754–60. doi: 10.1093/bioinformatics/btp324. PubMed DOI PMC
Li H, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25:2078–9. doi: 10.1093/bioinformatics/btp352. PubMed DOI PMC
Langmead, B. Aligning short sequencing reads with Bowtie. Curr. Protoc. Bioinformatics Chapter 11, Unit11.7 (2010). PubMed PMC
Thorvaldsdottir H, Robinson JT, Mesirov JP. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief. Bioinform. 2013;14:178–192. doi: 10.1093/bib/bbs017. PubMed DOI PMC
Hongtrakul V, Slabaugh MB, Knapp SJ. DFLP, SSCP, and SSR markers for Δ9-stearoyl-acyl carrier protein desaturases strongly expressed in developing seeds of sunflower: intron lengths are polymorphic among elite inbred lines. Mol. Breed. 1998;4:195–203. doi: 10.1023/A:1009646720400. DOI
Neff MM, Neff JD, Chory J, Pepper AE. dCAPS, a simple technique for the genetic analysis of single nucleotide polymorphisms: experimental applications in Arabidopsis thaliana genetics. Plant J. 1998;14:387–92. doi: 10.1046/j.1365-313X.1998.00124.x. PubMed DOI
Reed GH, Wittwer CT. Sensitivity and specificity of single-nucleotide polymorphism scanning by high-resolution melting analysis. Clin. Chem. 2004;50:1748–54. doi: 10.1373/clinchem.2003.029751. PubMed DOI
Simko I. High-resolution DNA melting analysis in plant research. Trends Plant Sci. 2016;21:528–537. doi: 10.1016/j.tplants.2016.01.004. PubMed DOI
van Ooijen JW. Multipoint maximum likelihood mapping in a full-sib family of an outbreeding species. Genet. Res. 2011;93:343–349. doi: 10.1017/S0016672311000279. PubMed DOI
Voorrips RE. MapChart: software for the graphical presentation of linkage maps and QTLs. J. Hered. 2002;93:77–78. doi: 10.1093/jhered/93.1.77. PubMed DOI
Camacho C, et al. BLAST+: architecture and applications. BMC Bioinformatics. 2009;10:421. doi: 10.1186/1471-2105-10-421. PubMed DOI PMC
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J. Mol. Biol. 1990;215:403–410. doi: 10.1016/S0022-2836(05)80360-2. PubMed DOI
Emms DM, et al. OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol. 2015;16:157. doi: 10.1186/s13059-015-0721-2. PubMed DOI PMC
Enright AJ, Van Dongen S, Ouzounis CA. An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res. 2002;30:1575–84. doi: 10.1093/nar/30.7.1575. PubMed DOI PMC
Lischer HEL, Excoffier L, Heckel G. Ignoring heterozygous sites biases phylogenomic estimates of divergence times: implications for the evolutionary history of microtus voles. Mol. Biol. Evol. 2014;31:817–831. doi: 10.1093/molbev/mst271. PubMed DOI
Patterson M, et al. WhatsHap: weighted haplotype assembly for future-generation sequencing reads. J. Comput. Biol. 2015;22:498–509. doi: 10.1089/cmb.2014.0157. PubMed DOI
Garg S, Martin M, Marschall T. Read-based phasing of related individuals. Bioinformatics. 2016;32:i234–i242. doi: 10.1093/bioinformatics/btw276. PubMed DOI PMC
Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26:841–842. doi: 10.1093/bioinformatics/btq033. PubMed DOI PMC
Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30:3059–3066. doi: 10.1093/nar/gkf436. PubMed DOI PMC
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 2013;30:772–80. doi: 10.1093/molbev/mst010. PubMed DOI PMC
Ogilvie HA, Bouckaert RR, Drummond AJ. StarBEAST2 brings faster species tree inference and accurate estimates of substitution rates. Mol. Biol. Evol. 2017;34:2101–2114. doi: 10.1093/molbev/msx126. PubMed DOI PMC
Bouckaert R, et al. BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 2014;10:e1003537. doi: 10.1371/journal.pcbi.1003537. PubMed DOI PMC
De La Torre AR, Li Z, Van de Peer Y, Ingvarsson PK. Contrasting rates of molecular evolution and patterns of selection among gymnosperms and flowering plants. Mol. Biol. Evol. 2017;34:1363–1377. doi: 10.1093/molbev/msx069. PubMed DOI PMC
Pond SLK, Frost SDW, Muse SV. HyPhy: hypothesis testing using phylogenies. Bioinformatics. 2005;21:676–9. doi: 10.1093/bioinformatics/bti079. PubMed DOI
Pagel M, Meade A, Barker D. Bayesian estimation of ancestral character states on phylogenies. Syst. Biol. 2004;53:673–684. doi: 10.1080/10635150490522232. PubMed DOI
Rambaut, A., Suchard, M. A., Xie, D. & Drummond, A. J. Tracer v1.5. (2013). Available at: http://beast.bio.ed.ac.uk/Tracer.
Cegan R, et al. Structure and evolution of Apetala3, a sex-linked gene in Silene latifolia. BMC Plant Biol. 2010;10:180. doi: 10.1186/1471-2229-10-180. PubMed DOI PMC
Cegan R, et al. Genomic diversity in two related plant species with and without sex chromosomes - Silene latifolia and S. vulgaris. PLoS One. 2012;7:e31898. doi: 10.1371/journal.pone.0031898. PubMed DOI PMC
Hernandez D, Francois P, Farinelli L, Osteras M, Schrenzel J. De novo bacterial genome sequencing: millions of very short reads assembled on a desktop computer. Genome Res. 2008;18:802–809. doi: 10.1101/gr.072033.107. PubMed DOI PMC
Sexy ways: approaches to studying plant sex chromosomes
Dosage compensation evolution in plants: theories, controversies and mechanisms
Adaptive changes of the autosomal part of the genome in a dioecious clade of Silene
Sex and the flower - developmental aspects of sex chromosome evolution