• This record comes from PubMed

Seed shape and size of Silene latifolia, differences between sexes, and influence of the parental genome in hybrids with Silene dioica

. 2024 ; 15 () : 1297676. [epub] 20240311

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection

Document type Journal Article

INTRODUCTION: Plants undergo various natural changes that dramatically modify their genomes. One is polyploidization and the second is hybridization. Both are regarded as key factors in plant evolution and result in phenotypic differences in different plant organs. In Silene, we can find both examples in nature, and this genus has a seed shape diversity that has long been recognized as a valuable source of information for infrageneric classification. METHODS: Morphometric analysis is a statistical study of shape and size and their covariations with other variables. Traditionally, seed shape description was limited to an approximate comparison with geometric figures (rounded, globular, reniform, or heart-shaped). Seed shape quantification has been based on direct measurements, such as area, perimeter, length, and width, narrowing statistical analysis. We used seed images and processed them to obtain silhouettes. We performed geometric morphometric analyses, such as similarity to geometric models and elliptic Fourier analysis, to study the hybrid offspring of S. latifolia and S. dioica. RESULTS: We generated synthetic tetraploids of Silene latifolia and performed controlled crosses between diploid S. latifolia and Silene dioica to analyze seed morphology. After imaging capture and post-processing, statistical analysis revealed differences in seed size, but not in shape, between S. latifolia diploids and tetraploids, as well as some differences in shape among the parentals and hybrids. A detailed inspection using fluorescence microscopy allowed for the identification of shape differences in the cells of the seed coat. In the case of hybrids, differences were found in circularity and solidity. Overal seed shape is maternally regulated for both species, whereas cell shape cannot be associated with any of the sexes. DISCUSSION: Our results provide additional tools useful for the combination of morphology with genetics, ecology or taxonomy. Seed shape is a robust indicator that can be used as a complementary tool for the genetic and phylogenetic analyses of Silene hybrid populations.

See more in PubMed

Akagi T., Fujita N., Masuda K., Shirasawa K., Nagaki K., Horiuchi A., et al. . (2023). Rapid and dynamic evolution of a giant Y chromosome in Silene latifolia . bioRxiv, 558759.

Arganda-Carreras I., Kaynig V., Rueden C., Eliceiri K. W., Schindelin J., Cardona A., et al. . (2017). Trainable Weka Segmentation: a machine learning tool for microscopy pixel classification. Bioinformatics 33, 2424–2426. doi: 10.1093/bioinformatics/btx180 PubMed DOI

Baena-Diaz F., Zemp N., Widmer A. (2019). Insights into the genetic architecture of sexual dimorphism from an interspecific cross between two diverging Silene (Caryophyllaceae) species. Mol. Ecol. 28, 5052–5067. doi: 10.1111/mec.15271 PubMed DOI

Baker H. (1950). The inheritance of certain characters in crosses between Melandrium dioicum and M. album . Genetica 25, 126–156. doi: 10.1007/BF01784828 PubMed DOI

Balounova V., Gogela R., Cegan R., Cangren P., Zluvova J., Safar J., et al. . (2019). Evolution of sex determination and heterogamety changes in section Otites of the genus Silene. Sci. Rep. 9, 1–13. doi: 10.1038/s41598-018-37412-x PubMed DOI PMC

Baskin C. C., Baskin J. M. (1998). Seeds: ecology, biogeography, and, evolution of dormancy and germination (San Diego California: Elsevier; ).

Beaulieu J. M., Moles A. T., Leitch I. J., Bennett M. D., Dickie J. B., Knight C. A. (2007). Correlated evolution of genome size and seed mass. New Phytol. 173, 422–437. doi: 10.1111/j.1469-8137.2006.01919.x PubMed DOI

Benítez H., Lemic D., Villalobos-Leiva A., Bažok R., Órdenes-Claveria R., Pajač Živković I., et al. . (2020). Breaking symmetry: Fluctuating Asymmetry and Geometric Morphometrics as tools for evaluating developmental instability under diverse agroecosystems. Symmetry 12, 1789. doi: 10.3390/sym12111789 DOI

Bernasconi G., Antonovics J., Biere A., Charlesworth D., Delph L. F., Filatov D., et al. . (2009). Silene as a model system in ecology and evolution. Hered. (Edinb) 103, 5–14. doi: 10.1038/hdy.2009.34 PubMed DOI

Blackburn K. B. (1933). On the relation between geographic races and polyploidy in Silene ciliata Pourr. Genetica 15, 49–66. doi: 10.1007/BF01591850 DOI

Blair A. C., Wolfe L. M. (2004). The evolution of an invasive plant: an experimental study with Silene latifolia . Ecology 85, 3035–3042. doi: 10.1890/04-0341 DOI

Bonhomme V., Picq S., Gaucherel C., Claude J. (2014). Momocs: outline analysis using R. J. Stat. Softw. 56, 1–24. doi: 10.18637/jss.v056.i13 DOI

Breno M., Bots J., Van Dongen S. (2013). Heritabilities of directional asymmetry in the fore-and hindlimbs of rabbit fetuses. PloS One 8, e76358. doi: 10.1371/journal.pone.0076358 PubMed DOI PMC

Casimiro-Soriguer I., Buide M. L., Narbona E. (2015). Diversity of sexual systems within different lineages of the genus Silene . AoB Plants 7, plv037. doi: 10.1093/aobpla/plv037 PubMed DOI PMC

Cervantes E., Rodríguez-Lorenzo J. L., Gutiérrez Del Pozo D., Martín-Gómez J. J., Janousek B., Tocino Á., et al. . (2022). Seed silhouettes as geometric objects: New applications of Elliptic Fourier Transform to seed morphology. Horticulturae 8, 974. doi: 10.3390/horticulturae8100974 DOI

Charlesworth D. (2013). Plant sex chromosome evolution. J. Exp. Bot. 64, 405–420. doi: 10.1093/jxb/ers322 PubMed DOI

Coyne J. A. (1992). Genetics and speciation. Nature 355, 511–515. doi: 10.1038/355511a0 PubMed DOI

Dadandi M. Y., Yildiz K. (2015). Seed morphology of some Silene L. (Caryophyllaceae) species collected from Turkey. Turkish J. Bot. 39, 280–297. doi: 10.3906/bot-1307-35 DOI

Dowd C. (2022). twosamples: Fast permutation based two sample tests, R.P.V. 2.0.0. Available at: https://CRAN.R-project.org/package=twosamples.

Ehlers K., Bhide A. S., Tekleyohans D. G., Wittkop B., Snowdon R. J., Becker A. (2016). The MADS Box genes ABS, SHP1, and SHP2 are essential for the coordination of cell divisions in ovule and seed coat development and for endosperm formation in Arabidopsis thaliana . PloS One 11, e0165075. doi: 10.1371/journal.pone.0165075 PubMed DOI PMC

Eliášová A., Münzbergová Z. (2014). Higher seed size and germination rate may favour autotetraploids of Vicia cracca L.(Fabaceae). Biol. J. Linn. Soc. 113, 57–73.

Goulson D. (2009). Evaluating the role of ecological isolation in maintaining the species boundary between Silene dioica and S. latifolia . Plant Ecol. 205, 201–211. doi: 10.1007/s11258-009-9610-7 DOI

Graham J. H., Raz S., Hel-Or H., Nevo E. (2010). Fluctuating asymmetry: methods, theory, and applications. Symmetry 2, 466–540. doi: 10.3390/sym2020466 DOI

Gutiérrez Del Pozo D., Martín-Gómez J. J., Tocino Á., Cervantes E. (2020). Seed geometry in the arecaceae . Horticulturae 6, 64. doi: 10.3390/horticulturae6040064 DOI

He L., Horandl E. (2022). Does polyploidy inhibit sex chromosome evolution in angiosperms? Front. Plant Sci. 13, 976765. PubMed PMC

Hobza R., Hrusakova P., Safar J., Bartos J., Janousek B., Zluvova J., et al. . (2006). MK17, a specific marker closely linked to the gynoecium suppression region on the Y chromosome in Silene latifolia. Theor. Appl. Genet. 130, 280–287. PubMed

Hobza R., Kejnovsky E., Vyskot B., Widmer A. (2007). The role of chromosomal rearrangements in the evolution of Silene latifolia sex chromosomes. Mol. Genet. Genomics 278, 633–638. doi: 10.1007/s00438-007-0279-0 PubMed DOI

Hobza R., Widmer A. (2008). Efficient molecular sexing in dioecious Silene latifolia and S. dioica and paternity analysis in F(1) hybrids. Mol. Ecol. Resour 8, 1274–1276. PubMed

Hoseini E., Ghahremaninejad F., Assadi M., Edalatiyan M. N. (2017). Seed micromorphology and its implication in subgeneric classification of Silene (Caryophyllaceae, Sileneae). Flora 228, 31–38. doi: 10.1016/j.flora.2017.01.006 DOI

Iwata H., Niikura S., Matsuura S., Takano Y., Ukai Y. (1998). Evaluation of variation of root shape of Japanese radish (Raphanus sativus L.) based on image analysis using elliptic Fourier descriptors. Euphytica 102, 143–149. doi: 10.1023/A:1018392531226 DOI

Jafari F., Zarre S., Gholipour A., Eggens F., Rabeler R. K., Oxelman B. (2020). A new taxonomic backbone for the infrageneric classification of the species-rich genus Silene (Caryophyllaceae). Taxon 69, 337–368. doi: 10.1002/tax.12230 DOI

Janoušek B., Hobza R., Vyskot B. (2013). “Chromosomes and sex differentiation,” in Plant Genome Diversity Volume 2 (Vienna: Springer; ), 167–186.

Johri B. M., Ambegaokar K. B., Srivastava P. S. (2013). Comparative embryology of angiosperms vol. 1/2 (Berlin Heidelberg GmbH: Springer-Verlag; ).

Juan A., Martín-Gómez J. J., Rodríguez-Lorenzo J. L., Janoušek B., Cervantes E. (2021). New techniques for seed shape description in Silene species. Taxonomy 2, 1–19.

Karrenberg S., Favre A. (2008). Genetic and ecological differentiation in the hybridizing campions Silene dioica and S. latifolia . Evolution 62, 763–773. doi: 10.1111/evo.2008.62.issue-4 PubMed DOI

Karrenberg S., Liu X., Hallander E., Favre A., Herforth-Rahme J., Widmer A. (2019). Ecological divergence plays an important role in strong but complex reproductive isolation in campions (Silene). Evolution 73, 245–261. doi: 10.1111/evo.13652 PubMed DOI

Kassambara A., Mundt F. (2017). Package ‘factoextra’. Extract visual. results multivariate Data anal. 76. Available at: https://CRAN.R-project.org/package=factoextra.

Klingenberg C. P. (2008). Morphological integration and developmental modularity. Annu. Rev. Ecol. Evol. System. 39, 115–132. doi: 10.1146/annurev.ecolsys.37.091305.110054 DOI

Kuhl F. P., Giardina C. R. (1982). Elliptic Fourier features of a closed contour. Comput. Graphics image Process. 18, 236–258. doi: 10.1016/0146-664X(82)90034-X DOI

Ladero M., Rivas-Martinez S., Amor A., Santos M. T., Alonso M. T. (1999). New hybrid of genus Silene (Caryophyllaceae) in the Serra da Estrela, Portugal. Bot. J. Linn. Soc. 130, 69–80. doi: 10.1111/boj.1999.130.issue-1 DOI

Li N., Xu R., Li Y. (2019). Molecular networks of seed size control in plants. Annu. Rev. Plant Biol. 70, 435–463. doi: 10.1146/annurev-arplant-050718-095851 PubMed DOI

Liu X., Karrenberg S. (2018). Genetic architecture of traits associated with reproductive barriers in Silene: Coupling, sex chromosomes and variation. Mol. Ecol. 27, 3889–3904. doi: 10.1111/mec.14562 PubMed DOI

Marais G. A., Nicolas M., Bergero R., Chambrier P., Kejnovsky E., Moneger F., et al. . (2008). Evidence for degeneration of the Y chromosome in the dioecious plant Silene latifolia . Curr. Biol. 18, 545–549. doi: 10.1016/j.cub.2008.03.023 PubMed DOI

Martin A. C. (1946). The comparative internal morphology of seeds. Am. Midland Nat. 36, 513–660. doi: 10.2307/2421457 DOI

Martín-Gómez J. J., Porceddu M., Bacchetta G., Cervantes E. (2022. a). Seed morphology in species from the Silene mollissima aggregate (Caryophyllaceae) by comparison with geometric models. Plants 11, 901. doi: 10.3390/plants11070901 PubMed DOI PMC

Martín-Gómez J. J., Rewicz A., Rodríguez-Lorenzo J. L., Janoušek B., Cervantes E. (2020). Seed morphology in Silene based on geometric models. Plants 9, 1787. doi: 10.3390/plants9121787 PubMed DOI PMC

Martín-Gómez J. J., Rodríguez-Lorenzo J. L., Janoušek B., Juan A., Cervantes E. (2023). Comparison of seed images with geometric models, an approach to the morphology of Silene (Caryophyllaceae). Taxonomy 3, 109–132. doi: 10.3390/taxonomy3010010 DOI

Martín-Gómez J. J., Rodríguez-Lorenzo J. L., Juan A., Tocino Á., Janousek B., Cervantes E. (2022. b). Seed morphological properties related to taxonomy in Silene L. species. Taxonomy 2, 298–323. doi: 10.3390/taxonomy2030024 DOI

Matzig D. N. (2021). outlineR: An R package to derive outline shapes from (multiple) artefacts on JPEG images (0.1.0). (Zenodo). doi: 10.5281/zenodo.4527470 DOI

McLellan T., Endler J. A. (1998). The relative success of some methods for measuring and describing the shape of complex objects. System. Biol. 47, 264–281. doi: 10.1080/106351598260914 DOI

Minder A. M., Rothenbuehler C., Widmer A. (2007). Genetic structure of hybrid zones between Silene latifolia and Silene dioica (Caryophyllaceae): evidence for introgressive hybridization. Mol. Ecol. 16, 2504–2516. doi: 10.1111/j.1365-294X.2007.03292.x PubMed DOI

Mohana Rao P., Guignard J.-L., Duret S. (1988). An ultrastructural study of perisperm and endosperm in Silene alba Miller EHL Krause. Bull. la Société Botanique France. Lettres Botaniques 135, 123–130.

Møller A. P., Pomiankowski (1993). Fluctuating asymmetry and sexual selection. Genetica 89, 267–279. doi: 10.1007/BF02424520 DOI

Moraga C., Branco C., Rougemont Q., Veltsos P., Jedlicka P., Muyle A., et al. . (2023). The Silene latifolia genome and its giant Y chromosome. bioRxiv, 558754.

Nowak J., Eng R. C., Matz T., Waack M., Persson S., Sampathkumar A., et al. . (2021). A network-based framework for shape analysis enables accurate characterization of leaf epidermal cells. Nat. Commun. 12, 458. doi: 10.1038/s41467-020-20730-y PubMed DOI PMC

Ohnishi Y., Kawashima T. (2020). Plasmogamic paternal contributions to early zygotic development in flowering plants. Front. Plant Sci. 11, 871. doi: 10.3389/fpls.2020.00871 PubMed DOI PMC

Page P., Favre A., Schiestl F. P., Karrenberg S. (2014). Do flower color and floral scent of silene species affect host preference of Hadena bicruris, a seed-eating pollinator, under field conditions? PloS One 9, e98755. doi: 10.1371/journal.pone.0098755 PubMed DOI PMC

Popp M., Oxelman B. (2007). Origin and evolution of north american polyploid silene (Caryophyllaceae). Am. J. Bot. 94, 330–349. doi: 10.3732/ajb.94.3.330 PubMed DOI

POWO . (2022). Plants of the World Online. Facilitated by the Royal Botanic Gardens (Royal Botanic Gardens, Kew, UK: ).

R Development Core Team . (2023). R: A language and environment for statistical computing (Vienna, Austria: R Foundation for Statistical Computing; ).

Rodríguez-Lorenzo J. L., Martín-Gómez J. J., Tocino Á., Juan A., Janoušek B., Cervantes E. (2022). New geometric models for shape quantification of the dorsal view in seeds of Silene species. Plants 11, 958. doi: 10.3390/plants11070958 PubMed DOI PMC

Sayers E. W., Bolton E. E., Brister J. R., Canese K., Chan J., Comeau D. C., et al. . (2022). Database resources of the national center for biotechnology information. Nucleic Acids Res. 50, D20–d26. doi: 10.1093/nar/gkab1112 PubMed DOI PMC

Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., et al. . (2012). Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682. doi: 10.1038/nmeth.2019 PubMed DOI PMC

Sheidai M., Eftekharian R., Gholipoor A., Noormohammadi Z. (2011). Population diversity and polyploidy incidence in 3 Silene species. A cytological approach. Cytologia 76, 395–402.

Siroký J., Hodurkova J., Negrutiu I., Vyskot B. (1999). Functional and structural chromosome analyses in autotetraploid Silene latifolia . Ann. Bot. 84, 633–638. doi: 10.1006/anbo.1999.0958 DOI

Široký J., Lysák M. A., Doležel J., Kejnovský E., Vyskot B. (2001). Heterogeneity of rDNA distribution and genome size in Silene spp. Chromosome Res. 9, 387–393. PubMed

Slancarova V., Zdanska J., Janousek B., Talianova M., Zschach C., Zluvova J., et al. . (2013). Evolution of sex determination systems with heterogametic males and females in Silene . Evolution 67, 3669–3677. doi: 10.1111/evo.12223 PubMed DOI

Spillane C., Vielle-Calzada J., Grossniklaus U. (2002). “Parent-of-origin effects and seed development: Genetics and epigenetics,” Transgenic Plants Crops. in Khachatourians G. C., Hui Y. H., Scorza R., Nip W.-K. (Boca Raton; ). 109–135. doi: 10.1201/9780203910979 DOI

Statistics I. (2021). IBM Corp. Released 2021. IBM SPSS Statistics for Windows, Version 22.0 (Armonk, NY: IBM Corp; ).

Steven J. C., Anderson I. A., Brodie Iii E. D., Delph L. F. (2020). Rapid reversal of a potentially constraining genetic covariance between leaf and flower traits in Silene latifolia . Ecol. Evol. 10, 569–578. doi: 10.1002/ece3.5932 PubMed DOI PMC

Stevens A., Nicotra A., Godfree R., Guja L. K. (2020). Polyploidy affects the seed, dormancy and seedling characteristics of a perennial grass, conferring an advantage in stressful climates. Plant Biol. 22, 500–513. doi: 10.1111/plb.13094 PubMed DOI

Storchova H. (2011). “Genome structure and gene expression variation in plant mitochondria, particularly in the Genus Silene ,” in Evolutionary Biology–Concepts, Biodiversity, Macroevolution and Genome Evolution (Berlin Heidelberg GmbH: Springer-Verlag; ), 273–289.

Taylor D. R. (1994). Sex ratio in hybrids between Silene alba and Silene dioica: evidence for Y-linked restorers. Heredity 73, 518–526. doi: 10.1038/hdy.1994.150 PubMed DOI

Thompson P. (1981). Variations in seed size within populations of Silene dioica (L.) Clairv. in relation to habitat. Ann. Bot. 47, 623–634.

Thompson K. A., Urquhart-Cronish M., Whitney K. D., Rieseberg L. H., Schluter D. (2021). Patterns, predictors, and consequences of dominance in hybrids. Am. Nat. 197, E72–E88. doi: 10.1086/712603 PubMed DOI

Van Nigtevecht G. (1966). Genetic studies in dioecious melandrium. I: Sex-linked and sex-influenced inheritance in Melandrium album and Melandrium dioicum . Genetica 37, 281–306. doi: 10.1007/BF01547140 DOI

Vercken E., Fontaine M. C., Gladieux P., Hood M. E., Jonot O., Giraud T. (2010). Glacial refugia in pathogens: European genetic structure of anther smut pathogens on Silene latifolia and Silene dioica . PloS Pathog. 6, e1001229. doi: 10.1371/journal.ppat.1001229 PubMed DOI PMC

Warmke H. E., Blakeslee A. F. (1939). Sex mechanism in polyploids of Melandrium . Science 89, 391–392. doi: 10.1126/science.89.2313.391 PubMed DOI

Westergaard M. (1946). Structural changes of the Y chromosome in the offspring of polyploid Melandrium . Hereditas 32, 60–64. doi: 10.1111/j.1601-5223.1946.tb02771.x PubMed DOI

Ye D., Installé P., Ciupercescu D., Veuskens J., Wu Y., Salesses G., et al. . (1990). Sex determination in the dioecious Melandrium: I. First lessons from androgenic haploids. Sex. Plant Reprod. 3, 179–186. doi: 10.1007/BF00205227 DOI

Yildiz K., Cirpici A. (1998). Seed morphological studies of Silene L., from Turkey. Pakistan J. Bot. 30, 173–188.

Yue J., Krasovec M., Kazama Y., Zhang X., Xie W., Zhang S., et al. . (2023). The origin and evolution of sex chromosomes, revealed by sequencing of the Silene latifolia female genome. Curr. Biol. 33, 2504–2514 e2503. doi: 10.1016/j.cub.2023.05.046 PubMed DOI

Zluvova J., Zak J., Janousek B., Vyskot B. (2010). Dioecious Silene latifolia plants show sexual dimorphism in the vegetative stage. BMC Plant Biol. 10, 208. doi: 10.1186/1471-2229-10-208 PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...