Adaptive changes of the autosomal part of the genome in a dioecious clade of Silene
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35306886
PubMed Central
PMC8935319
DOI
10.1098/rstb.2021.0228
Knihovny.cz E-zdroje
- Klíčová slova
- Silene, autosome evolution, dioecy, genome evolution, sex chromosome,
- MeSH
- chromozomy rostlin MeSH
- Magnoliopsida * MeSH
- molekulární evoluce MeSH
- pohlavní chromozomy MeSH
- Silene * genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The genus Silene brings many opportunities for the study of various processes involved in the evolution of dioecy and young sex chromosomes. Here we focus on a dioecious clade in Silene subgenus Silene and closely related species. This study provides improved support for monophyly of this clade (based on inclusion of further dioecious species) and a new estimate of its age (ca 2.3 million years). We observed a rise in adaptive evolution in the autosomal and pseudoautosomal parts of the genome on the branch where dioecy originated. This increase is not a result of the accumulation of sexually antagonistic genes in the pseudoautosomal region. It is also not caused by the coevolution of genes acting in mitochondria (despite the possibility that dioecy along this branch could have evolved from a nucleo-cytoplasmic male sterility-based system). After considering other possibilities, the most parsimonious explanation for the increase seen in the number of positively selected codons is the adaptive evolution of genes involved in the adaptation of the autosomal part of the genome to dioecy, as described in Charnov's sex-allocation theory. As the observed coincidence cannot prove causality, studies in other dioecious clades are necessary to allow the formation of general conclusions. This article is part of the theme issue 'Sex determination and sex chromosome evolution in land plants'.
Zobrazit více v PubMed
Renner SS, Müller NA. 2021. Plant sex chromosomes defy evolutionary models of expanding recombination suppression and genetic degeneration. Nat. Plants 7, 392-402. (10.1038/s41477-021-00884-3) PubMed DOI
Charlesworth D. 2019. Young sex chromosomes in plants and animals. New Phytol. 224, 1095-1107. (10.1111/nph.16002) PubMed DOI
Deegan DF, Engel N. 2019. Sexual dimorphism in the age of genomics: how, when, where. Front. Cell. Dev. Biol. 7, 186. (10.3389/fcell.2019.00186) PubMed DOI PMC
Zhou P, Zhang X, Fatima M, Ma X, Fang H, Yan H, Ming R. 2020. DNA methylome and transcriptome landscapes revealed differential characteristics of dioecious flowers in papaya. Hortic. Res. 7, 81. (10.1038/s41438-020-0298-0) PubMed DOI PMC
Charnov EL. 1982. The theory of sex allocation. Monogr. Popul. Biol. 18, 1-355. (10.1515/9780691210056) PubMed DOI
Balounova V, et al. 2019. Evolution of sex determination and heterogamety changes in section Otites of the genus Silene. Sci. Rep. 9, 1045. (10.1038/s41598-018-37412-x) PubMed DOI PMC
Muyle A, et al. 2018. Genomic imprinting mediates dosage compensation in a young plant XY system. Nat. Plants 4, 677-680. (10.1038/s41477-018-0221-y) PubMed DOI
Martin H, Carpentier F, Gallina S, Godé C, Schmitt E, Muyle A, Marais GAB, Touzet P. 2019. Evolution of young sex chromosomes in two dioecious sister plant species with distinct sex determination systems. Genome Biol. Evol. 11, 350-361. (10.1093/gbe/evz001) PubMed DOI PMC
Zemp N, Widmer A, Charlesworth D. 2018. Has adaptation occurred in males and females since separate sexes evolved in the plant Silene latifolia? Proc. R. Soc. B 285, 20172824. (10.1098/rspb.2017.2824) PubMed DOI PMC
Muyle A, et al. 2021. Dioecy is associated with high genetic diversity and adaptation rates in the plant genus Silene. Mol. Biol. Evol. 38, 805-818. (10.1093/molbev/msaa229) PubMed DOI PMC
Slancarova V, et al. 2013. Evolution of sex determination systems with heterogametic males and females in Silene. Evolution 67, 3669-3677. (10.1111/evo.12223) PubMed DOI
Jafari F, Zarre F, Gholipour A, Eggens F, Rabeler RK, Oxelman B. 2020. A new taxonomic backbone for the infrageneric classification of the species-rich genus Silene (Caryophyllaceae). Taxon 69, 337-368. (10.1002/tax.12230) DOI
Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler A, Lanfear R. 2020. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530-1534. (10.1093/molbev/msaa015) PubMed DOI PMC
Chernomor O, von Haeseler A, Minh BQ. 2016. Terrace aware data structure for phylogenomic inference from supermatrices. Syst. Biol. 65, 997-1008. (10.1093/sysbio/syw037) PubMed DOI PMC
Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. 2017. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587-589. (10.1038/nmeth.4285) PubMed DOI PMC
Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. 2010. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307-321. (10.1093/sysbio/syq010) PubMed DOI
Huelsenbeck JP, Ronquist F. 2001. MRBAYES: Bayesian inference of phylogeny. Bioinformatics 17, 754-755. (10.1093/bioinformatics/17.8.754) PubMed DOI
Ronquist F, Huelsenbeck JP. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572-1574. (10.1093/bioinformatics/btg180) PubMed DOI
Ronquist F, et al. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539-542. (10.1093/sysbio/sys029) PubMed DOI PMC
Casimiro-Soriguer I, Buide ML, Narbona E. 2015. Diversity of sexual systems within different lineages of the genus Silene. AoB Plants 7, plv037. (10.1093/aobpla/plv037) PubMed DOI PMC
Pagel M, Meade A, Barker D. 2004. Bayesian estimation of ancestral character states on phylogenies. Syst. Biol. 53, 673-684. (10.1080/10635150490522232) PubMed DOI
Haas BJ, et al. 2013. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 8, 1494-1512. (10.1038/nprot.2013.084) PubMed DOI PMC
Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357-359. (10.1038/nmeth.1923) PubMed DOI PMC
Garrison E, Marth G. 2012Haplotype-based variant detection from short-read sequencing. arXiv 1207.3907.
Patterson M, Marschall T, Pisanti N, van Iersel L, Stougie L, Klau GW, Schönhuth A. 2015. WhatsHap: weighted haplotype assembly for future-generation sequencing reads. J. Comput. Biol. 22, 498-509. (10.1089/cmb.2014.0157) PubMed DOI
Quinlan AR, Hall IM. 2010. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841-842. (10.1093/bioinformatics/btq033) PubMed DOI PMC
Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772-780. (10.1093/molbev/mst010) PubMed DOI PMC
Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL. 2009. BLAST+: architecture and applications. BMC Bioinf. 10, 421. (10.1186/1471-2105-10-421) PubMed DOI PMC
Bouckaert R, Heled J, Kühnert D, Vaughan T, Wu C-H, Xie D, Suchard MA, Rambaut A, Drummond AJ. 2014. BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 10, e1003537. (10.1371/journal.pcbi.1003537) PubMed DOI PMC
Ogilvie HA, Bouckaert RR, Drummond AJ. 2017. Starbeast2 brings faster species tree inference and accurate estimates of substitution rates. Mol. Biol. Evol. 34, 2101-2114. (10.1093/molbev/msx126) PubMed DOI PMC
De La Torre AR, Li Z, Van de Peer Y, Ingvarsson PK. 2017. Contrasting rates of molecular evolution and patterns of selection among gymnosperms and flowering plants. Mol. Biol. Evol. 34, 1363-1377. (10.1093/molbev/msx069) PubMed DOI PMC
Wang D, Zhang Y, Zhang Z, Zhu J, Yu J. 2010. KaKs_Calculator 2.0: a toolkit incorporating gamma-series methods and sliding window strategies. Genom. Proteom. Bioinform. 8, 77-80. (10.1016/S1672-0229(10)60008-3) PubMed DOI PMC
Yang Z. 2007. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586-1591. (10.1093/molbev/msm088) PubMed DOI
Newcombe RG. 1998. Two-sided confidence intervals for the single proportion: comparison of seven methods. Stat. Med. 17, 857-872. (10.1002/(sici)1097-0258(19980430)17:8<857::aid-sim777>3.0.co;2-e) PubMed DOI
Wilson EB. 1927. Probable inference, the law of succession, and statistical inference. J. Am. Stat. Assoc. 22, 209-212. (10.1080/01621459.1927.10502953) DOI
Wertheim JO, Murrell B, Smith MD, Kosakovsky Pond SL, Scheffler K. 2015. RELAX: detecting relaxed selection in a phylogenetic framework. Mol. Biol. Evol. 32, 820-832. (10.1093/molbev/msu400) PubMed DOI PMC
Pond SLK, Frost SDW, Muse SV. 2005. HyPhy: hypothesis testing using phylogenies. Bioinformatics 21, 676-679. (10.1093/bioinformatics/bti079) PubMed DOI
Pond SLK, et al. 2020. HyPhy 2.5—A customizable platform for evolutionary hypothesis testing using phylogenies. Mol. Biol. Evol. 37, 295-299. (10.1093/molbev/msz197) PubMed DOI PMC
Mugal CF, Wolf JB, Kaj I. 2014. Why time matters: codon evolution and the temporal dynamics of dN/dS. Mol. Biol. Evol. 31, 212-231. (10.1093/molbev/mst192) PubMed DOI PMC
Wrigley F. 1986. Taxonomy and chorology of Silene section Otites (Caryophyllaceae). Ann. Bot. Fenn 23, 69-81.
Rice WR. 1996. Sexually antagonistic male adaptation triggered by experimental arrest of female evolution. Nature 381, 232-234. (10.1038/381232a0) PubMed DOI
Charlesworth D, Laporte V. 1998. The male-sterility polymorphism of Silene vulgaris: analysis of genetic data from two populations and comparison with Thymus vulgaris. Genetics 150, 1267-1282. (10.1093/genetics/150.3.1267) PubMed DOI PMC
Lahiani E, Dufaÿ M, Castric V, Le Cadre S, Charlesworth D, Van Rossum F, Touzet P. 2013. Disentangling the effects of mating systems and mutation rates on cytoplasmic [correction of cytoplamic] diversity in gynodioecious Silene nutans and dioecious Silene otites. Heredity 111, 157-164. (10.1038/hdy.2013.32) PubMed DOI PMC
Touzet P, Delph L. 2009. The effect of breeding system on polymorphism in mitochondrial genes of Silene. Genetics 181, 631-644. (10.1534/genetics.108.092411) PubMed DOI PMC
Štorchová H, Stone JD, Sloan DB, Abeyawardana OAJ, Müller K, Walterová J, Pažoutová M. 2018. Homologous recombination changes the context of cytochrome b transcription in the mitochondrial genome of Silene vulgaris KRA. BMC Genom. 19, 874. (10.1186/s12864-018-5254-0) PubMed DOI PMC
Garraud C, Brachi B, Dufay M, Touzet P, Shykoff JA. 2011. Genetic determination of male sterility in gynodioecious Silene nutans. Heredity 106, 757-764. (10.1038/hdy.2010.116) PubMed DOI PMC
Zluvova J, Lengerova M, Markova M, Hobza R, Nicolas M, Vyskot B, Charlesworth D, Negrutiu I, Janousek B. 2005. The inter-specific hybrid Silene latifolia x S. viscosa reveals early events of sex chromosome evolution. Evol. Dev. 7, 327-336. (10.1111/j.1525-142X.2005.05038.x) PubMed DOI
Geber MA, Dawson TE, Delph LF (eds). 1999. Gender and sexual dimorphism in flowering plants. Berlin, Heidelberg: Springer Berlin Heidelberg.
Correns C. 1928. Bestimmung, Vererbung und Verteilung des Geschlechtes bei den hoheren Pflanzen. Handbuch der Vererbungswissenschaft, vol. 2, pp. 1-138. Berlin, Germany: Gebruder Borntraeger.
Soldaat LL, Lorenz H, Trefflich A. 2000. The effect of drought stress on the sex ratio variation of Silene otites. Folia Geobot. 35, 203-210. (10.1007/BF02803098) DOI
Sexy ways: approaches to studying plant sex chromosomes
figshare
10.6084/m9.figshare.c.5879843