The slowdown of Y chromosome expansion in dioecious Silene latifolia due to DNA loss and male-specific silencing of retrotransposons

. 2018 Feb 20 ; 19 (1) : 153. [epub] 20180220

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid29458354

Grantová podpora
15-21523Y Grantová Agentura České Republiky - International
FIT-S-17-3964 Vysoké Učení Technické v Brně - International

Odkazy

PubMed 29458354
PubMed Central PMC5819184
DOI 10.1186/s12864-018-4547-7
PII: 10.1186/s12864-018-4547-7
Knihovny.cz E-zdroje

BACKGROUND: The rise and fall of the Y chromosome was demonstrated in animals but plants often possess the large evolutionarily young Y chromosome that is thought has expanded recently. Break-even points dividing expansion and shrinkage phase of plant Y chromosome evolution are still to be determined. To assess the size dynamics of the Y chromosome, we studied intraspecific genome size variation and genome composition of male and female individuals in a dioecious plant Silene latifolia, a well-established model for sex-chromosomes evolution. RESULTS: Our genome size data are the first to demonstrate that regardless of intraspecific genome size variation, Y chromosome has retained its size in S. latifolia. Bioinformatics study of genome composition showed that constancy of Y chromosome size was caused by Y chromosome DNA loss and the female-specific proliferation of recently active dominant retrotransposons. We show that several families of retrotransposons have contributed to genome size variation but not to Y chromosome size change. CONCLUSIONS: Our results suggest that the large Y chromosome of S. latifolia has slowed down or stopped its expansion. Female-specific proliferation of retrotransposons, enlarging the genome with exception of the Y chromosome, was probably caused by silencing of highly active retrotransposons in males and represents an adaptive mechanism to suppress degenerative processes in the haploid stage. Sex specific silencing of transposons might be widespread in plants but hidden in traditional hermaphroditic model plants.

Zobrazit více v PubMed

Hobza R, Kubat Z, Cegan R, Jesionek W, Vyskot B, Kejnovsky E. Impact of repetitive DNA on sex chromosome evolution in plants. Chromosom Res. 2015;23:561–570. doi: 10.1007/s10577-015-9496-2. PubMed DOI

Cegan R, Vyskot B, Kejnovsky E, Kubat Z, Blavet H, Jan S. Genomic diversity in two related plant species with and without sex chromosomes - Silene latifolia and S. vulgaris. PLoS One. 2012;7:e31898. doi: 10.1371/journal.pone.0031898. PubMed DOI PMC

Harkess A, Mercati F, Abbate L, McKain M, Pires JC, Sala T, et al. Retrotransposon proliferation coincident with the evolution of Dioecy in Asparagus. G3. 2016;6:2679–2685. doi: 10.1534/g3.116.030239. PubMed DOI PMC

Cermak T, Kubat Z, Hobza R, Koblizkova A, Widmer A, Macas J, et al. Survey of repetitive sequences in Silene latifolia with respect to their distribution on sex chromosomes. Chromosom Res. 2008;16:961–976. doi: 10.1007/s10577-008-1254-2. PubMed DOI

Steflova P, Tokan V, Vogel I, Lexa M, Macas J, Novak P, et al. Contrasting patterns of transposable element and satellite distribution on sex chromosomes (XY1Y2) in the dioecious plant Rumex acetosa. Genome Biol Evol. 2013;5:769–782. doi: 10.1093/gbe/evt049. PubMed DOI PMC

Sousa A, Bellot S, Fuchs J, Houben A, Renner SS. Analysis of transposable elements and organellar DNA in male and female genomes of a species with a huge Y-chromosome reveals distinct Y-centromeres. Plant J. 2016;88:387–396. doi: 10.1111/tpj.13254. PubMed DOI

Van Buren R, Ming R. Dynamic transposable element accumulation in the nascent sex chromosomes of papaya. Mob Genet Elements. 2013;3:e23462. doi: 10.4161/mge.23462. PubMed DOI PMC

Kubat Z, Zluvova J, Vogel I, Kovacova V, Cermak T, Cegan R, et al. Possible mechanisms responsible for absence of a retrotransposon family on a plant Y chromosome. New Phytol. 2014; 10.1111/nph.12669. PubMed

Lengerova M, Kejnovsky E, Hobza R, Macas J, Grant SR, Vyskot B. Multicolor FISH mapping of the dioecious model plant, Silene latifolia. Theor Appl Genet. 2004;108:1193–1199. doi: 10.1007/s00122-003-1568-6. PubMed DOI

Kejnovsky E, Kubat Z, Hobza R, Lengerova M, Sato S, Tabata S, et al. Accumulation of chloroplast DNA sequences on the Y chromosome of Silene latifolia. Genetica. 2006;128:167–175. doi: 10.1007/s10709-005-5701-0. PubMed DOI

Kubat Z, Hobza R, Vyskot B, Kejnovsky E. Microsatellite accumulation on the Y chromosome in Silene latifolia. Genome. 2008;51:350–356. doi: 10.1139/G08-024. PubMed DOI

Hobza R, Lengerova M, Svoboda J, Kubekova H, Kejnovsky E, Vyskot B. An accumulation of tandem DNA repeats on the Y chromosome in Silene latifolia during early stages of sex chromosome evolution. Chromosoma. 2006;115:376–382. doi: 10.1007/s00412-006-0065-5. PubMed DOI

Hobza R, Kejnovsky E, Vyskot B, Widmer A. The role of chromosomal rearrangements in the evolution of Silene latifolia sex chromosomes. Mol Gen Genomics. 2007;278:633–638. doi: 10.1007/s00438-007-0279-0. PubMed DOI

Dolezel J, Greilhuber J, Suda J. Estimation of nuclear DNA content in plants using flow cytometry. Nat Protoc. 2007;2:2233–2244. doi: 10.1038/nprot.2007.310. PubMed DOI

Dolezel J, Bartos J, Voglmayr H, Greilhuber J. Nuclear DNA content and genome size of trout and human. Cytometry Part A. 2003;51A:127–128. doi: 10.1002/cyto.a.10013. PubMed DOI

Andrews S. FastQC A Quality Control tool for High Throughput Sequence Data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/.

Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC

Novák P, Neumann P, Macas J. Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data. BMC Bioinformatics. 2010;11:378. doi: 10.1186/1471-2105-11-378. PubMed DOI PMC

Novák P, Neumann P, Steinhaisl J. RepeatExplorer : a galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next gen- eration sequence reads. Bioinformatics. 2013;29:792–793. doi: 10.1093/bioinformatics/btt054. PubMed DOI

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–410. doi: 10.1016/S0022-2836(05)80360-2. PubMed DOI

Macas J, Kejnovský E, Neumann P, Novák P, Koblížková A, Vyskot B. Next generation sequencing-based analysis of repetitive DNA in the model dioecious plant Silene latifolia. PLoS One. 2011;6:e27335. doi: 10.1371/journal.pone.0027335. PubMed DOI PMC

Zhang Z, Schwartz S, Wagner L, Miller W. A greedy algorithm for aligning DNA sequences. J Comput Biol. 2000;7:203–214. doi: 10.1089/10665270050081478. PubMed DOI

Marchler-Bauer A, Bryant SH. CD-search: protein domain annotations on the fly. Nucleic Acids Res. 2004;32:327–331. doi: 10.1093/nar/gkh454. PubMed DOI PMC

Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, et al. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28:1647–1649. doi: 10.1093/bioinformatics/bts199. PubMed DOI PMC

Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–780. doi: 10.1093/molbev/mst010. PubMed DOI PMC

Langmead B, Salzberg SL. Fast gapped-read alignment with bowtie 2. Nat Methods. 2012;9:357–359. doi: 10.1038/nmeth.1923. PubMed DOI PMC

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:2078–2079. doi: 10.1093/bioinformatics/btp352. PubMed DOI PMC

Rozen S, Skaletsky HJ. Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol. 2000;132:365–386. PubMed

Bůžek J, Koutníková H, Houben A, Říha K, Janoušek B, Široký J, et al. Isolation and characterization of X chromosome-derived DNA sequences from a dioecious plant Melandrium album. Chromosom Res. 1997;5:57–65. doi: 10.1023/A:1011693603279. PubMed DOI

Qiu S, Bergero R, Guirao-Rico S, Campos JL, Cezard T, Gharbi K, et al. RAD mapping reveals an evolving, polymorphic and fuzzy boundary of a plant pseudoautosomal region. Mol Ecol. 2016;25:414–430. doi: 10.1111/mec.13297. PubMed DOI

Kejnovsky E, Kubat Z, Macas J, Hobza R, Mracek J, Vyskot B. Retand : a novel family of gypsy-like retrotransposons harboring an amplified tandem repeat. Mol Gen Genomics. 2006;276:254–263. doi: 10.1007/s00438-006-0140-x. PubMed DOI

Kralova T, Cegan R, Kubat Z, Vrana J, Vyskot B, Vogel I, et al. Identification of a novel retrotransposon with sex chromosome-specific distribution in Silene latifolia. Cytogenet. Genome Res. 2014;143:87–95. doi: 10.1159/000362142. PubMed DOI

Mastenbroek O, Van Brederode J. The possible evolution of Silene Pratensis as deduced from present day variation patterns. Biochem Syst Ecol. 1986;14:165–181. doi: 10.1016/0305-1978(86)90058-X. DOI

Vellekoop P, Buntjer JB, Maas JW, van Brederode J. Can the spread of agriculture in Europe be followed by tracing the spread of the weed Silene latifolia. A RAPD study Theor Appl Genet. 1996;92:1085–1090. doi: 10.1007/BF00224053. PubMed DOI

Laporte V, Filatov DA, Kamau E, Charlesworth D. Indirect evidence from DNA sequence diversity for genetic degeneration of the Y-chromosome in dioecious species of the plant Silene: the SlY4/SlX4 and DD44-X/DD44-Y gene pairs. J Evol Biol. 2005;18:337–347. doi: 10.1111/j.1420-9101.2004.00833.x. PubMed DOI

Marais GAB, Nicolas M, Bergero R, Chambrier P, Kejnovsky E, Monéger F, et al. Evidence for degeneration of the Y chromosome in the dioecious plant Silene latifolia. Curr Biol. 2008;18:545–549. doi: 10.1016/j.cub.2008.03.023. PubMed DOI

Cegan R, Marais GA, Kubekova H, Blavet N, Widmer A, Vyskot B, et al. Structure and evolution of Apetala3, a sex-linked gene in Silene Latifolia. BMC Plant Biol. 2010;10:180. doi: 10.1186/1471-2229-10-180. PubMed DOI PMC

Nishiyama R, Ishii K, Kifune E, Kazama Y, Nishihara K, Matsunaga S, et al. Sex chromosome evolution revealed by physical mapping of SlAP3X/Y in the dioecious plant Silene latifolia. Cytologia. 2010;75:319–25.

Bergero R, Qiu S, Charlesworth D. Gene loss from a plant sex chromosome system. Curr Biol. 2015;25:1234–1240. doi: 10.1016/j.cub.2015.03.015. PubMed DOI

Blavet N, Blavet H, Muyle A, Käfer J, Cegan R, Deschamps C, et al. Identifying new sex-linked genes through BAC sequencing in the dioecious plant Silene latifolia. BMC Genomics. 2015;16:546. doi: 10.1186/s12864-015-1698-7. PubMed DOI PMC

Kuhl JC, Havey MJ, Martin WJ, Cheung F, Yuan Q, Landherr L, et al. Comparative genomic analyses in asparagus. Genome. 2005;48:1052–1060. doi: 10.1139/g05-073. PubMed DOI

Matsunaga S, Hizume M, Kawano S, Kuroiwa T. Cytological analysis in Melandrium album: genome size, chromosome size and fluorescence in situ hybridization. Cytologia. 1994;59:135–141. doi: 10.1508/cytologia.59.135. DOI

Papadopulos AST, Chester M, Ridout K, Filatov DA. Rapid Y degeneration and dosage compensation in plant sex chromosomes. Proc Natl Acad Sci. 2015;112:13021–13026. doi: 10.1073/pnas.1508454112. PubMed DOI PMC

Kejnovský E, Michalovova M, Steflova P, Kejnovska I, Manzano S, Hobza R, et al. Expansion of microsatellites on evolutionary young Y chromosome. PLoS One. 2013;8:e45519. doi: 10.1371/journal.pone.0045519. PubMed DOI PMC

Ishii K, Nishiyama R, Shibata F, Kazama Y, Abe T, Kawano S. Rapid degeneration of noncoding DNA regions surrounding SlAP3X/Y after recombination suppression in the dioecious plant Silene latifolia. G3. 2013;3:2121–2130. doi: 10.1534/g3.113.008599. PubMed DOI PMC

Steflova P, Hobza R, Vyskot B, Kejnovsky E. Strong accumulation of chloroplast DNA in the y chromosomes of Rumex acetosa and Silene latifolia. Cytogenet Genome Res. 2013;142:59–65. doi: 10.1159/000355212. PubMed DOI

Bergero R, Forrest A, Charlesworth D. Active miniature transposons from a plant genome and its nonrecombining Y chromosome. Genetics. 2008;178:1085–1092. doi: 10.1534/genetics.107.081745. PubMed DOI PMC

Filatov DA, Moneger F, Negrutiu I, Charlesworth D. Low variability in a Y-linked plant gene and its implications for Y-chromosome evolution. Nature. 2000;404:388–390. doi: 10.1038/35006057. PubMed DOI

Filatov DA, Laporte V, Vitte C, Charlesworth D. DNA diversity in sex-linked and autosomal genes of the plant species Silene Latifolia and Silene Dioica. Mol Biol Evol United States. 2001;18:1442–1454. doi: 10.1093/oxfordjournals.molbev.a003930. PubMed DOI

Chibalina MV, Filatov DA. Plant Y chromosome degeneration is retarded by haploid purifying selection. Curr Biol. 2011;21:1475–1479. doi: 10.1016/j.cub.2011.07.045. PubMed DOI

Qiu S, Bergero R, Forrest A, Kaiser VB, Charlesworth D. Nucleotide diversity in Silene latifolia autosomal and sex-linked genes. Proc R Soc B Biol Sci. 2010;277:3283–3290. doi: 10.1098/rspb.2010.0606. PubMed DOI PMC

Muir G, Bergero R, Charlesworth D, Filatov DA. Does local adaptation cause high population differentiation of Silene Latifolia y chromosomes? Evolution. 2011;65:3368–3380. doi: 10.1111/j.1558-5646.2011.01410.x. PubMed DOI

Filatov DA, Howell EC, Groutides C, Armstrong SJ. Recent spread of a retrotransposon in the Silene latifolia genome, apart from the Y chromosome. Genetics. 2009;181:811–817. doi: 10.1534/genetics.108.099267. PubMed DOI PMC

Reinders J, Mirouze M, Nicolet J, Paszkowski J. Parent-of-origin control of transgenerational retrotransposon proliferation in Arabidopsis. EMBO Rep. 2013;14:823–828. doi: 10.1038/embor.2013.95. PubMed DOI PMC

Gehring M, Bubb KL, Henikoff S. Extensive demethylation of repetitive elements during seed development underlies gene imprinting. Science. 2009;324:1447–1451. doi: 10.1126/science.1171609. PubMed DOI PMC

Hsieh T-F, Ibarra CA, Silva P, Zemach A, Eshed-Williams L, Fischer RL, et al. Genome-wide demethylation of Arabidopsis endosperm. Science. 2009;324:1451–1454. doi: 10.1126/science.1172417. PubMed DOI PMC

Slotkin RK, Vaughn M, Borges F, Tanurdžić M, Becker JD, Feijó JA, et al. Epigenetic reprogramming and small RNA silencing of transposable elements in pollen. Cell. 2009;136:461–472. doi: 10.1016/j.cell.2008.12.038. PubMed DOI PMC

Calarco JP, Borges F, Donoghue MTA, Van Ex F, Jullien PE, Lopes T, et al. Reprogramming of DNA methylation in pollen guides epigenetic inheritance via small RNA. Cell. 2012;151:194–205. doi: 10.1016/j.cell.2012.09.001. PubMed DOI PMC

Ibarra CA, Feng X, Schoft VK, Hsieh T-F, Uzawa R, Rodrigues JA, et al. Active DNA demethylation in plant companion cells reinforces transposon methylation in gametes. Science. 2012;337:1360–1364. doi: 10.1126/science.1224839. PubMed DOI PMC

Martinez G, Choudury SG, Slotkin RK. tRNA-derived small RNAs target transposable element transcripts. Nucleic Acids Res. 2017;45:5142–5152. doi: 10.1093/nar/gkx103. PubMed DOI PMC

Fultz D, Choudury SG, Slotkin RK. Silencing of active transposable elements in plants. Curr Opin Plant Biol. 2015;27:67–76. doi: 10.1016/j.pbi.2015.05.027. PubMed DOI

Cuerda-Gil D, Slotkin RK. Non-canonical RNA-directed DNA methylation. Nat Plants. 2016;2:16163. doi: 10.1038/nplants.2016.163. PubMed DOI

Sigman MJ, Slotkin RK. The first rule of plant transposable element silencing: location, location. Location Plant Cell. 2016;28:304–313. doi: 10.1105/tpc.15.00869. PubMed DOI PMC

Gent JI, Ellis NA, Guo L, Harkess AE, Yao Y, Zhang X, et al. CHH islands: de novo DNA methylation in near-gene chromatin regulation in maize. Genome Res. 2013;23:628–637. doi: 10.1101/gr.146985.112. PubMed DOI PMC

Diez CM, Meca E, Tenaillon MI, Gaut BS. Three groups of transposable elements with contrasting copy number dynamics and host responses in the maize (Zea mays Ssp. mays) genome. PLoS Genet. 2014;10:e1004298. doi: 10.1371/journal.pgen.1004298. PubMed DOI PMC

Gent JI, Madzima TF, Bader R, Kent MR, Zhang X, Stam M, et al. Accessible DNA and relative depletion of H3K9me2 at maize loci undergoing RNA-directed DNA methylation. Plant Cell. 2014;26:4903–4917. doi: 10.1105/tpc.114.130427. PubMed DOI PMC

Li Q, Gent JI, Zynda G, Song J, Makarevitch I, Hirsch CD, et al. RNA-directed DNA methylation enforces boundaries between heterochromatin and euchromatin in the maize genome. Proc Natl Acad Sci. 2015;112:14728–14733. doi: 10.1073/pnas.1514680112. PubMed DOI PMC

Creasey KM, Zhai J, Borges F, Van Ex F, Regulski M, Meyers BC, et al. miRNAs trigger widespread epigenetically activated siRNAs from transposons in Arabidopsis. Nature. 2014;508:411–415. doi: 10.1038/nature13069. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...