The structural diversity of CACTA transposons in genomes of Chenopodium (Amaranthaceae, Caryophyllales) species: specific traits and comparison with the similar elements of angiosperms
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
PubMed
35379321
PubMed Central
PMC8978399
DOI
10.1186/s13100-022-00265-3
PII: 10.1186/s13100-022-00265-3
Knihovny.cz E-zdroje
- Klíčová slova
- CACTA transposons, Chenopodium, Flowering plants, Genome evolution, Next generation sequencing,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: CACTA transposable elements (TEs) comprise one of the most abundant superfamilies of Class 2 (cut-and-paste) transposons. Over recent decades, CACTA elements were widely identified in species from the plant, fungi, and animal kingdoms, but sufficiently studied in the genomes of only a few model species although non-model genomes can bring additional and valuable information. It primarily concerned the genomes of species belonging to clades in the base of large taxonomic groups whose genomes, to a certain extent, can preserve relict and/or possesses specific traits. Thus, we sought to investigate the genomes of Chenopodium (Amaranthaceae, Caryophyllales) species to unravel the structural variability of CACTA elements. Caryophyllales is a separate branch of Angiosperms and until recently the diversity of CACTA elements in this clade was unknown. RESULTS: Application of the short-read genome assembly algorithm followed by analysis of detected complete CACTA elements allowed for the determination of their structural diversity in the genomes of 22 Chenopodium album aggregate species. This approach yielded knowledge regarding: (i) the coexistence of two CACTA transposons subtypes in single genome; (ii) gaining of additional protein conserved domains within the coding sequence; (iii) the presence of captured gene fragments, including key genes for flower development; and (iv)) identification of captured satDNA arrays. Wide comparative database analysis revealed that identified events are scattered through Angiosperms in different proportions. CONCLUSIONS: Our study demonstrated that while preserving the basic element structure a wide range of coding and non-coding additions to CACTA transposons occur in the genomes of C. album aggregate species. Ability to relocate additions inside genome in combination with the proposed novel functional features of structural-different CACTA elements can impact evolutionary trajectory of the host genome.
Czech Academy of Sciences Institute of Botany Zámek 1 CZ 252 43 Průhonice Czech Republic
Institute of Biotechnology HiLIFE University of Helsinki P O Box 65 FI 00014 Helsinki Finland
National Laboratory Astana Nazarbayev University 53 Kabanbay batyr Ave 010000 Nur Sultan Kazakhstan
Zobrazit více v PubMed
McClintock B. Mutable loci in maize. Carnegie Inst Wash Yr Bk. 1951;50:174–181.
Peterson PA. A mutable pale green locus in maize. Genetics. 1953;38:682–683.
McClintock B. Mutations in maize and chromosomal aberrations in Neurospora. Carnegie Inst Wash Yr Bk. 1954;53:254–260.
Vodkin LO, Rhodes PR, Goldberg RB. A lectin gene insertion has the structural features of transposable element. Cell. 1983;34(3):1023–1031. PubMed
Shirsat AH. A transposon-like structure in the 5′ flanking sequence of a legumin gene from Pisum sativum. Mol Gen Genet. 1988;212(1):129–133. PubMed
Inagaki Y, Hisatomi Y, Suzuki T, Kasahara K, Iida S. Isolation of a suppressor-mutator/enhancer-like transposable element, Tpn1, from Japanese morning glory bearing variegated flowers. Plant Cell. 1994;6(3):375–383. PubMed PMC
Motohashi R, Ohtsubo E, Ohtsubo H. Identification of Tnr3, a suppressor-mutator/enhancer-like transposable element from rice. Mol Gen Genet. 1996;250(2):148–152. PubMed
Han CG, Frank MJ, Ohtsubo H, Ohtsubo E. New transposable elements identified as insertions in rice transposon Tnr1. Genes Genet Syst. 2000;75(2):69–77. PubMed
Kapitonov VV, Jurka J. Molecular paleontology of transposable elements from Arabidopsis thaliana. Genetica. 1999;107:27–37. PubMed
Miura A, Yonebayashi S, Watanabe K, Toyama T, Shimada H, Kakutani T. Mobilization of transposons by a mutation abolishing full DNA methylation in Arabidopsis. Nature. 2001;411(6834):212–214. PubMed
Wicker T, Guyot R, Yahiaoui N, Keller B. CACTA transposons in Triticeae. A diverse family of high-copy repetitive elements. Plant Physiol. 2003;132(1):52–63. PubMed PMC
Kunze R, Saedler H, Lonning W-E. Plant transposable elements. Adv Bot Res. 1997;27:331–470.
Tian P-F. Progress in plant CACTA elements. Acta Gen Sinica. 2006;33(9):765–774. PubMed
Buchmann JP, Löytynoja A, Wicker T, Schulman AH. Analysis of CACTA transposases reveals intron loss as major factor influencing their exon/intron structure in monocotyledonous and eudicotyledonous hosts. Mob DNA. 2014;5:24. PubMed PMC
Yuan Y-W, Wessler SR. 2011. The catalytic domain of all eukaryotic cut-and-paste transposase superfamilies. Proc Natl Acad Sci U S A. 2011;108(19):7884–7889. PubMed PMC
Feschotte C, Pritham EJ. DNA transposons and the evolution of eukaryotic genomes. Annu Rev Genet. 2007;41:331–368. PubMed PMC
Zabala G, Vodkin L. The wp mutation of Glycine max carries a gene-fragment-rich transposon of the CACTA superfamily. Plant Cell. 2005;17(10):2619–2632. PubMed PMC
Raskina O, Belyayev A, Nevo E. Activity of the en/Spm-like transposons in meiosis as a base for chromosome repatterning in a small, isolated, peripheral population of Aegilops speltoides Tausch. Chromosom Res. 2004;12(2):153–161. PubMed
Zabala G, Vodkin L. Novel exon combinations generated by alternative splicing of gene fragments mobilized by a CACTA transposon in Glycine max. BMC Plant Biol. 2007;7:38. PubMed PMC
Chu G-L, Mosyakin SL, Clemants SE, et al. Chenopodiaceae. In: Wu Z, et al., editors. Flora of China 5. St. Louis: Missouri Botanical Garden Press; 2003. pp. 351–414.
Mandák B, Krak K, Vít P, Pavlíková Z, Lomonosova MN, Habibi F, Lei W, Jellen EN, Douda J. How genome size variation is linked with evolution within Chenopodium sensu lato. Perspect Plant Ecol Evol System. 2016;23:18–32.
Mandák B, Krak K, Vít P, Lomonosova MN, Belyayev A, Habibi F, Wang L, Douda J, Storchova H. Hybridization and polyploidization within the Chenopodium album aggregate analyzed by means of cytological and molecular markers. Mol Phylogenet Evol. 2018;129:189–201. PubMed
Takhtajan AL. Systema Magnoliphytorum. Leningrad: Nauka; 1987.
Cronquist A. The evolution and classification of flowering plants. 2. Bronx, NY: New York Botanical Garden; 1988.
Angiosperm Phylogeny Group An update of the angiosperm phylogeny group classification for the orders and families of flowering plants: APG IV. Bot J Linn Soc. 2016;181(1):1–20.
Kuykendall D, Shao J, Trimmer K. Coe1 in Beta vulgaris L. Has a Tnp2-domain DNA Transposase gene within putative LTRs and other Retroelement-like features. Int J Plant Genom. 2008;360874. PubMed PMC
Jacobs G, Dechyeva D, Menzel G, Dombrowski C, Schmidt T. Molecular characterization of Vulmar1, a complete mariner transposon of sugar beet and diversity of mariner- and en/Spm-like sequences in the genus Beta. Genome. 2004;47(6):1192–1201. PubMed
Suzuki M, Miyahara T, Tokumotob H, Hakamatsuka T, Goda Y, Ozeki Y, Sasaki N. Transposon-mediated mutation of CYP76AD3 affects betalain synthesis and produces variegated flowers in four o’clock (Mirabilis Jalapa) J Plant Physiol. 2014;171(17):1586–1590. PubMed
Sasaki N, Nishizaki Y, Uchida Y, Wakamatsu E, Umemoto N, Momose M, Okamura M, Yoshida H, Yamaguchi M, Nakayama M, Ozeki Y, Itoh Y. Identification of the glutathione S-transferase gene responsible for flower color intensity in carnations. Plant Biotechnol. 2012;29(3):223–227.
Belyayev A, Josefiová J, Jandová M, Mahelka V, Krak K, Mandák B. Transposons and satellite DNA: on the origin of the major satellite DNA family in the Chenopodium genome. Mob DNA. 2020;11:20. PubMed PMC
Mátés L, Chuah MKL, Belay E, Jerchow B, et al. Molecular evolution of a novel hyperactive sleeping beauty transposase enables robust stable gene transfer in vertebrates. Nat Genet. 2009;41(6):753–761. PubMed
Marsh JA, Teichmann SA. How do proteins gain new domains? Genome Biol. 2010;11(7):126. PubMed PMC
Wicker T, Matthews DE, Keller B. TREP: a database for Triticeae repetitive elements. Trends Plant Sci. 2002;7(12):561–562.
Geer LY, Domrachev M, Lipman DJ, Bryant SH. CDART: protein homology by domain architecture. Genome Res. 2002;12(10):1619–1623. PubMed PMC
Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, Chitsaz F, Geer LY, et al. CDD: NCBI's conserved domain database. Nucl Ac Res. 2015;43(Database issue):D222–D226. PubMed PMC
Novak P, Neumann P, Pech J, Steinhaisl J, Macas J. RepeatExplorer: a galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next generation sequence reads. Bioinformat. 2013;29(6):792–793. PubMed
Eickbush TH, Jamburuthugoda VK. The diversity of retrotransposons and the properties of their reverse transcriptases. Virus Res. 2008;134(1–2):221–234. PubMed PMC
Zabala G, Vodkin L. A putative autonomous 20.5 kb-CACTA transposon insertion in an F3’H allele identifies a new CACTA transposon subfamily in Glycine max. BMC Plant Biol. 2008;8:124. PubMed PMC
Jiao Y, Wickett NJ, Ayyampalayam S, Chanderbali AS, Landherr L, Ralph PE, et al. Ancestral polyploidy in seed plants and angiosperms. Nature. 2011;473(7345):97–100. PubMed
Rawlings ND, Bateman A. Origins of peptidases. Biochimie. 2019;166:4–18. PubMed PMC
Cui Y, Brugière N, Jackman L, Bi YM, Rothstein SJ. Structural and transcriptional comparative analysis of the S locus regions in two self-incompatible Brassica napus lines. Plant Cell. 1999;11(11):2217–2231. PubMed PMC
Vicient CM, Casacuberta JM. Additional ORFs in plant LTR-Retrotransposons. Front Plant Sci. 2020;11:555. PubMed PMC
Apic G, Gough J, Teichmann SA. An insight into domain combinations. Bioinformat. 2001;17(1):S83–S89. PubMed
Fong JH, Geer LY, Panchenko AR, Bryant SH. Modeling the evolution of protein domain architectures using maximum parsimony. J Mol Biol. 2007;366(1):307–315. PubMed PMC
Lisch D. Epigenetic regulation of transposable elements in plants. Annu Rev Plant Biol. 2009;60:43–66. PubMed
Muyle A, Seymour D, Darzentas N, Primetis E, Gaut BS, Bousios A. Gene capture by transposable elements leads to epigenetic conflict in maize. Mol Plant. 2021;14(2):237–252. PubMed
Talbert LE, Chandler VL. Characterization of a highly conserved sequence related to mutator transposable elements in maize. Mol Biol Evol. 1988;5(5):519–529. PubMed
Kawasaki S, Nitasaka E. Characterization of Tpn1 family in the Japanese morning glory: en/Spm-related transposable elements capturing host genes. Plant Cell Physiol. 2004;45(7):933–944. PubMed
Catoni M, Jonesman T, Cerruti E, Paszkowski J. Mobilization of pack-CACTA transposons in Arabidopsis suggests the mechanism of gene shuffling. Nucl Ac Res. 2019;47(3):1311–1320. PubMed PMC
Rubin E, Levy AA. Abortive gap repair: underlying mechanism for ds element formation. Mol Cell Biol. 1997;17(11):6294–6302. PubMed PMC
Ellison AM, Gotelli NJ. Energetics and the evolution of carnivorous plants--Darwin’s ‘most wonderful plants in the world’. J Exp Bot. 2009;60(1):19–42. PubMed
Haughn GW, Somerville CR. Genetic control of morphogenesis in Arabidopsis. Dev Genet. 1988;9:73–89.
Drews GN, Bowman JL, Meyerowitz EM. Negative regulation of the Arabidopsis homeotic gene AGAMOUS by the APETALA2 product. Cell. 1991;65(6):991–1002. PubMed
Morgante M, Brunner S, Pea G, Fengler K, Zuccolo A, Rafalski A. Gene duplication and exon shuffling by helitron-like transposons generate intraspecies diversity in maize. Nat Genet. 2005;37(9):997–1002. PubMed
Belyayev A, Jandová M, Josefiová J, Kalendar R, Mahelka V, Mandák B, Krak K. The major satellite DNA families of the diploid Chenopodium album aggregate species: arguments for and against the ‘library hypothesis’. PLoS One. 2020;15(10):e0241206. PubMed PMC
Vít P, Krak K, Trávníček P, Douda J, Lomonosova MN, Mandák B. Genome size stability across Eurasian Chenopodium species (Amaranthaceae) Bot J Linn Soc. 2016;182(3):637–649.
Belyayev A, Josefiová J, Jandová M, Kalendar R, Krak K, Mandák B. Natural history of a satellite DNA family: from the ancestral genome component to species-specific sequences, concerted and non-concerted evolution. Int J Mol Sci. 2019;20(5):1201. PubMed PMC
Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, et al. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformat. 2012;28(12):1647–1649. PubMed PMC
Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35(6):1547–1549. PubMed PMC
Tamura K. Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G + C-content biases. Mol Biol Evol. 1992;9(4):678–687. PubMed
Noe L, Kucherov G. YASS: enhancing the sensitivity of DNA similarity search. Nucl Ac Res. 2005;33:W540–W543. PubMed PMC
Stanke M, Waack S. Gene prediction with a hidden Markov model and a new intron submodel. Bioinformat. 2003;19(2):ii215–ii225. PubMed