Analysis of pericentromere composition and structure elucidated the history of the Hieracium alpinum L. genome, revealing waves of transposable elements insertions
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
22-16651S
Grantová Agentura České Republiky
22-16651S
Grantová Agentura České Republiky
PubMed
39548580
PubMed Central
PMC11566620
DOI
10.1186/s13100-024-00336-7
PII: 10.1186/s13100-024-00336-7
Knihovny.cz E-zdroje
- Klíčová slova
- Asteraceae, Hieracium, Oxford Nanopore Technology sequencing, Pericentromeres, Plants, Satellite DNA, Transposable elements,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: The centromere is one of the key regions of the eukaryotic chromosome. While maintaining its function, centromeric DNA may differ among closely related species. Here, we explored the composition and structure of the pericentromeres (a chromosomal region including a functional centromere) of Hieracium alpinum (Asteraceae), a member of one of the most diverse genera in the plant kingdom. Previously, we identified a pericentromere-specific tandem repeat that made it possible to distinguish reads within the Oxford Nanopore library attributed to the pericentromeres, separating them into a discrete subset and allowing comparison of the repeatome composition of this subset with the remaining genome. RESULTS: We found that the main satellite DNA (satDNA) monomer forms long arrays of linear and block types in the pericentromeric heterochromatin of H. alpinum, and very often, single reads contain forward and reverse arrays and mirror each other. Beside the major, two new minor satDNA families were discovered. In addition to satDNAs, high amounts of LTR retrotransposons (TEs) with dominant of Tekay lineage, were detected in the pericentromeres. We were able to reconstruct four main TEs of the Ty3-gypsy and Ty1-copia superfamilies and compare their relative positions with satDNAs. The latter showed that the conserved domains (CDs) of the TE proteins are located between the newly discovered satDNAs, which appear to be parts of ancient Tekay LTRs that we were able to reconstruct. The dominant satDNA monomer shows a certain similarity to the GAG CD of the Angela retrotransposon. CONCLUSIONS: The species-specific pericentromeric arrays of the H. alpinum genome are heterogeneous, exhibiting both linear and block type structures. High amounts of forward and reverse arrays of the main satDNA monomer point to multiple microinversions that could be the main mechanism for rapid structural evolution stochastically creating the uniqueness of an individual pericentromeric structure. The traces of TEs insertion waves remain in pericentromeres for a long time, thus "keeping memories" of past genomic events. We counted at least four waves of TEs insertions. In pericentromeres, TEs particles can be transformed into satDNA, which constitutes a background pool of minor families that, under certain conditions, can replace the dominant one(s).
Czech Academy of Sciences Institute of Botany Zámek 1 CZ 252 43 Průhonice Czech Republic
Herbarium and Department of Botany Charles University Benátská 2 CZ 12801 Prague Czech Republic
Zobrazit více v PubMed
Jiang J, Birchler JA, Parrott WA, Dawe RK. A molecular view of plant centromeres. Trends Plant Sci. 2003;8(12):570–5. PubMed
Oliveira LC, Torres GA. Plant centromeres: genetics, epigenetics and evolution. Mol Biol Rep. 2018;45(5):1491–7. PubMed
Naish M, Henderson IR. The structure, function, and evolution of plant centromeres. Genome Res. 2024;34(2):161–78. PubMed PMC
Plohl M, Mestrovic N, Mravinac B. Centromere identity from the DNA point of view. Chromosoma. 2014;123(4):313–25. PubMed PMC
Henikoff S, Ahmad K, Malik HS. The centromere paradox: stable inheritance with rapidly evolving DNA. Science. 2001;293(5532):1098–102. PubMed
Thakur J, Packiaraj J, Henikoff S, Sequence. Chromatin and evolution of Satellite DNA. Int J Mol Sci 2021;22(9). PubMed PMC
Fukagawa T. Speciation mediated by centromeres. Dev Cell. 2013;27(4):367–8. PubMed
Ma J, Wing RA, Bennetzen JL, Jackson SA. Plant centromere organization: a dynamic structure with conserved functions. Trends Genet. 2007;23(3):134–9. PubMed
Zahn KH. Compositae – Hieracium. In: Das Pflanzenreich. Edited by A. E, vol. IV. Leipzig: W. Engelmann; 1921–1923: 280.
Majeský Ľ, Krahulec F, Vašut RJ. How apomictic taxa are treated in current taxonomy: a review. Taxon. 2017;66(5):1017–40.
Mraz P, Zdvorak P. Reproductive pathways in Hieracium s.s. (Asteraceae): strict sexuality in diploids and apomixis in polyploids. Ann Bot. 2019;123(2):391–403. PubMed PMC
Chrtek jun J, Mráz P, Zahradníčk J, Mateo G, Szelag Z. Chromosome numbers and DNA ploidy levels of selected species ofHieracium s.str. (Asteraceae). Folia Geobotanica. 2007;42(4):411–30.
Fehrer J, Slavikova R, Pastova L, Josefiova J, Mraz P, Chrtek J, Bertrand YJK. Molecular evolution and Organization of Ribosomal DNA in the Hawkweed Tribe Hieraciinae (Cichorieae, Asteraceae). Front Plant Sci. 2021;12:647375. PubMed PMC
Fehrer J, Krak K, Chrtek J. Jr. Intra-individual polymorphism in diploid and apomictic polyploid hawkweeds (Hieracium, Lactuceae, Asteraceae): disentangling phylogenetic signal, reticulation, and noise. BMC Evol Biol. 2009;9:239. PubMed PMC
Belyayev A, Paštová L, Fehrer J, Josefiová J, Chrtek J, Mráz P. Mapping of Hieracium (Asteraceae) chromosomes with genus-specific satDNA elements derived from next-generation sequencing data. Plant Systematics and Evolution; 2017.
Mráz P, Filipaş L, Bărbos MI, Kadlecová J, Paštová L, Belyayev A, Fehrer J. An unexpected new diploid Hieracium from Europe: integrative taxonomic approach with a phylogeny of diploid Hieracium taxa. Taxon. 2019;68(6):1258–77.
Zagorski D, Hartmann M, Bertrand YJK, Pastova L, Slavikova R, Josefiova J, Fehrer J. Characterization and Dynamics of Repeatomes in closely related species of Hieracium (Asteraceae) and their synthetic and apomictic hybrids. Front Plant Sci. 2020;11:591053. PubMed PMC
Lin T, Xu X, Ruan J, Liu S, Wu S, Shao X, Wang X, Gan L, Qin B, Yang Y, et al. Genome analysis of Taraxacum kok-saghyz Rodin provides new insights into rubber biosynthesis. Natl Sci Rev. 2018;5(1):78–87.
Zhang B, Wang Z, Han X, Liu X, Wang Q, Zhang J, Zhao H, Tang J, Luo K, Zhai Z, et al. The chromosome-scale assembly of endive (Cichorium endivia) genome provides insights into the sesquiterpenoid biosynthesis. Genomics. 2022;114(4):110400. PubMed
Reyes-Chin-Wo S, Wang Z, Yang X, Kozik A, Arikit S, Song C, Xia L, Froenicke L, Lavelle DO, Truco MJ, et al. Genome assembly with in vitro proximity ligation data and whole-genome triplication in lettuce. Nat Commun. 2017;8:14953. PubMed PMC
Lin T, Xu X, Du H, Fan X, Chen Q, Hai C, Zhou Z, Su X, Kou L, Gao Q, et al. Extensive sequence divergence between the reference genomes of Taraxacum kok-saghyz and Taraxacum Mongolicum. Sci China Life Sci. 2022;65(3):515–28. PubMed
Xiong W, van Workum DM, Berke L, Bakker LV, Schijlen E, Becker FFM, van de Geest H, Peters S, Michelmore R, van Treuren R et al. Genome assembly and analysis of Lactuca virosa: implications for lettuce breeding. G3 (Bethesda) 2023;13(11). PubMed PMC
Wang K, Jin J, Wang J, Wang X, Sun J, Meng D, Wang X, Wang Y, Guo L. The complete telomere-to-telomere genome assembly of lettuce. Plant Commun 2024:101011. PubMed
Chrtek junJ. Taxonomy of theHieracium alpinum group in the sudeten Mts., the West and the Ukrainian East carpathians. Folia Geobotanica. 1997;32(1):69–97.
Wlodzimierz P, Rabanal FA, Burns R, Naish M, Primetis E, Scott A, Mandakova T, Gorringe N, Tock AJ, Holland D, et al. Cycles of satellite and transposon evolution in Arabidopsis centromeres. Nature. 2023;618(7965):557–65. PubMed
Novak P, Neumann P, Pech J, Steinhaisl J, Macas J. RepeatExplorer: a Galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads. Bioinformatics. 2013;29(6):792–3. PubMed
Mráz P, Chrtek J, Šingliarová B. Geographical parthenogenesis, genome size variation and pollen production in the arctic-alpine species Hieracium alpinum. Bot Helv. 2009;119(1):41–51.
Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28(12):1647–9. PubMed PMC
Benson G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 1999;27(2):573–80. PubMed PMC
Noe L, Kucherov G. YASS: enhancing the sensitivity of DNA similarity search. Nucleic Acids Res. 2005. 10.1093/nar/gki478. 33(Web Server issue):W540-543. PubMed PMC
Sujiwattanarat P, Thapana W, Srikulnath K, Hirai Y, Hirai H, Koga A. Higher-order repeat structure in alpha satellite DNA occurs in New World monkeys and is not confined to hominoids. Sci Rep. 2015;5:10315. PubMed PMC
Staton SE, Burke JM. Evolutionary transitions in the Asteraceae coincide with marked shifts in transposable element abundance. BMC Genomics. 2015;16(1):623. PubMed PMC
Llorens C, Futami R, Covelli L, Dominguez-Escriba L, Viu JM, Tamarit D, Aguilar-Rodriguez J, Vicente-Ripolles M, Fuster G, Bernet GP, et al. The Gypsy database (GyDB) of mobile genetic elements: release 2.0. Nucleic Acids Res. 2011;39(Database issue):D70–74. PubMed PMC
Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25(17):3389–402. PubMed PMC
Madeira F, Pearce M, Tivey ARN, Basutkar P, Lee J, Edbali O, Madhusoodanan N, Kolesnikov A, Lopez R. Search and sequence analysis tools services from EMBL-EBI in 2022. Nucleic Acids Res. 2022;50(W1):W276–9. 10.1093/nar/gkac240. PubMed PMC
Chaisson MJ, Raphael BJ, Pevzner PA. Microinversions in mammalian evolution. Proc Natl Acad Sci U S A. 2006;103(52):19824–9. PubMed PMC
Corbett-Detig RB, Said I, Calzetta M, Genetti M, McBroome J, Maurer NW, Petrarca V, Della Torre A, Besansky NJ. Fine-mapping complex inversion breakpoints and investigating somatic pairing in the Anopheles gambiae species Complex using proximity-ligation sequencing. Genetics. 2019;213(4):1495–511. PubMed PMC
Huang K, Rieseberg LH. Frequency, origins, and evolutionary role of chromosomal inversions in plants. Front Plant Sci. 2020;11:296. PubMed PMC
Ahmed HI, Heuberger M, Schoen A, Koo DH, Quiroz-Chavez J, Adhikari L, Raupp J, Cauet S, Rodde N, Cravero C, et al. Einkorn genomics sheds light on history of the oldest domesticated wheat. Nature. 2023;620(7975):830–8. PubMed PMC
Braun EL, Kimball RT, Han KL, Iuhasz-Velez NR, Bonilla AJ, Chojnowski JL, Smith JV, Bowie RC, Braun MJ, Hackett SJ, et al. Homoplastic microinversions and the avian tree of life. BMC Evol Biol. 2011;11:141. PubMed PMC
Fan W, Liu F, Jia Q, Du H, Chen W, Ruan J, Lei J, Li DZ, Mower JP, Zhu A. Fragaria mitogenomes evolve rapidly in structure but slowly in sequence and incur frequent multinucleotide mutations mediated by microinversions. New Phytol. 2022;236(2):745–59. PubMed
Walker CR, Scally A, De Maio N, Goldman N. Short-range template switching in great ape genomes explored using pair hidden Markov models. PLoS Genet. 2021;17(3):e1009221. PubMed PMC
Potapova NA, Kondrashov AS, Mirkin SM. Characteristics and possible mechanisms of formation of microinversions distinguishing human and chimpanzee genomes. Sci Rep. 2022;12(1):591. PubMed PMC
Gong Z, Wu Y, Koblizkova A, Torres GA, Wang K, Iovene M, Neumann P, Zhang W, Novak P, Buell CR, et al. Repeatless and repeat-based centromeres in potato: implications for centromere evolution. Plant Cell. 2012;24(9):3559–74. PubMed PMC
Kapitonov VV, Jurka J. Molecular paleontology of transposable elements from Arabidopsis thaliana. Genetica. 1999;107(1–3):27–37. PubMed
Sharma A, Wolfgruber TK, Presting GG. Tandem repeats derived from centromeric retrotransposons. BMC Genomics. 2013;14:142. PubMed PMC
Meštrović N, Mravinac B, Pavlek M, Vojvoda-Zeljko T, Šatović E, Plohl M. Structural and functional liaisons between transposable elements and satellite DNAs. Chromosome Res. 2015;23(3):583–96. PubMed
Belyayev A, Josefiova J, Jandova M, Mahelka V, Krak K, Mandak B. Transposons and satellite DNA: on the origin of the major satellite DNA family in the Chenopodium genome. Mob DNA. 2020;11:20. PubMed PMC
Talbert PB, Henikoff S. What makes a centromere? Exp Cell Res. 2020;389(2):111895. PubMed
Satovic-Vuksic E, Plohl M. Satellite DNAs-From localized to highly dispersed Genome Components. Genes (Basel) 2023;14(3). PubMed PMC
Salser W, Bowen S, Browne D, el-Adli F, Fedoroff N, Fry K, Heindell H, Paddock G, Poon R, Wallace B, et al. Investigation of the organization of mammalian chromosomes at the DNA sequence level. Fed Proc. 1976;35(1):23–35. PubMed
Southern EM. Base sequence and evolution of Guinea-pig α-Satellite DNA. Nature. 1970;227(5260):794–8. PubMed
Belyayev A. Bursts of transposable elements as an evolutionary driving force. J Evol Biol. 2014;27(12):2573–84. PubMed
Chumová Z, Belyayev A, Mandáková T, Zeisek V, Hodková E, Šemberová K, Euston-Brown D, Trávníček P. The relationship between transposable elements and ecological niches in the Greater Cape Floristic Region: a study on the genus Pteronia (Asteraceae). Frontiers in Plant Science 2022;13. PubMed PMC
Comai L, Maheshwari S, Marimuthu MPA. Plant centromeres. Curr Opin Plant Biol. 2017;36:158–67. PubMed
Bennetzen JL, Wang H. The contributions of transposable elements to the structure, function, and evolution of plant genomes. Annu Rev Plant Biol. 2014;65:505–30. PubMed
SanMiguel P, Tikhonov A, Jin YK, Motchoulskaia N, Zakharov D, Melake-Berhan A, Springer PS, Edwards KJ, Lee M, Avramova Z, et al. Nested retrotransposons in the intergenic regions of the maize genome. Science. 1996;274(5288):765–8. PubMed
Belyayev A, Josefiova J, Jandova M, Kalendar R, Mahelka V, Mandak B, Krak K. The structural diversity of CACTA transposons in genomes of Chenopodium (Amaranthaceae, Caryophyllales) species: specific traits and comparison with the similar elements of angiosperms. Mob DNA. 2022;13(1):8. PubMed PMC
Kapustova V, Tulpova Z, Toegelova H, Novak P, Macas J, Karafiatova M, Hribova E, Dolezel J, Simkova H. The Dark Matter of large cereal genomes: long Tandem repeats. Int J Mol Sci 2019;20(10). PubMed PMC
SanMiguel P, Gaut BS, Tikhonov A, Nakajima Y, Bennetzen JL. The paleontology of intergene retrotransposons of maize. Nat Genet. 1998;20(1):43–5. PubMed
Iwata A, Tek AL, Richard MM, Abernathy B, Fonseca A, Schmutz J, Chen NW, Thareau V, Magdelenat G, Li Y, et al. Identification and characterization of functional centromeres of the common bean. Plant J. 2013;76(1):47–60. PubMed
Kilian N, Gemeinholzer B, Lack HW. Cichorieae. In: Systematics, evolution and biogeography of Compositae. Edited by Funk VA, Susanna A, Stuessy TE, Bayer RJ. Vienna, Austria: IAPT; 2009: 343–383.
Panero JL, Crozier BS. Macroevolutionary dynamics in the early diversification of Asteraceae. Mol Phylogenet Evol. 2016;99:116–32. PubMed
Mandel JR, Dikow RB, Siniscalchi CM, Thapa R, Watson LE, Funk VA. A fully resolved backbone phylogeny reveals numerous dispersals and explosive diversifications throughout the history of Asteraceae. Proc Natl Acad Sci U S A. 2019;116(28):14083–8. PubMed PMC
Kalitsis P, Choo KH. The evolutionary life cycle of the resilient centromere. Chromosoma. 2012;121(4):327–40. PubMed