The identification and semi-quantitative assessment of gastrointestinal nematodes in faecal samples using multiplex real-time PCR assays

. 2021 Aug 09 ; 14 (1) : 391. [epub] 20210809

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34372893

Grantová podpora
LTC19018 Ministerstvo Školství, Mládeže a Tělovýchovy

Odkazy

PubMed 34372893
PubMed Central PMC8351436
DOI 10.1186/s13071-021-04882-4
PII: 10.1186/s13071-021-04882-4
Knihovny.cz E-zdroje

BACKGROUND: The diagnosis of gastrointestinal nematode (GIN) infections in ruminants is routinely based on morphological/morphometric analysis of parasite specimens recovered by coprological methods, followed by larval culture (LC) techniques. Such an approach is laborious, time-consuming, requires a skilled expert, and moreover suffers from certain limitations. Molecular tools are able to overcome the majority of these issues, providing accurate identification of nematode species and, therefore, may be valuable in sustainable parasite control strategies. METHODS: Two multiplex real-time polymerase chain reaction (PCR) assays for specific detection of five main and one invasive GIN species, including an internal amplification control to avoid false-negative results, were designed targeting SSU rRNA and COI genetic markers, as well as established ITS1/2 sequences. The assays were optimized for analysis of DNA extracted directly from sheep faeces and verified for Haemonchus contortus, Teladorsagia circumcincta, Trichostrongylus colubriformis, Nematodirus battus, Chabertia ovina, and Ashworthius sidemi. Semi-quantitative evaluation of infection intensity was enabled using a plasmid construct and a dilution series of sheep faeces with a known number of nematode eggs. Assays were tested on 44 individually collected faecal samples from three farms, and results were compared to those from faecal egg counts (FEC) using the concentration McMaster technique and LC. RESULTS: Multiplex real-time PCR assays showed great specificity to target nematodes. During the analysis of faecal samples, the assays proved to have higher sensitivity in strongylid-type egg detection over FEC by revealing three false-negative samples, while showing moderate agreement in evaluation of infection intensity. The multiplex assays further clarified GIN species identification compared to LC, which had confused determination of Teladorsagia spp. for Trichostrongylus spp. CONCLUSIONS: Our multiplex assays proved to be a rapid and accurate approach enabling simultaneous and reliable GIN species identification from faeces and semi-quantitative estimation of the number of eggs present. This approach increases diagnostic value and may add a high degree of precision to evaluation of anthelmintic efficacy, where it is important to identify species surviving after treatment.

Zobrazit více v PubMed

Scott I, Sutherland I. Gastrointestinal nematodes of sheep and cattle: biology and control. 1. Hoboken: Wiley-Blackwell; 2009.

Zajac AM. Gastrointestinal nematodes of small ruminants: life cycle, anthelmintics, and diagnosis. Vet Clin North Am Food Anim Pract. 2006;22:529–541. doi: 10.1016/j.cvfa.2006.07.006. PubMed DOI

Herd RP. Epidemiology and control of nematodes and cestodes in small ruminants. Northern United States. Vet Clin North Am Food Anim Pract. 1986;2:355–362. doi: 10.1016/S0749-0720(15)31245-7. PubMed DOI

Kyrianova IA, Kopecky O, Slosarkova S, Vadlejch J. Comparison of internal parasitic fauna in dairy goats at conventional and organic farms in the Czech Republic. Small Ruminant Res. 2019;175:126–132. doi: 10.1016/j.smallrumres.2019.05.003. DOI

Hoste H, Torres-Acosta JFJ. Non chemical control of helminths in ruminants: adapting solutions for changing worms in a changing world. Vet Parasitol. 2011;180:144–154. doi: 10.1016/j.vetpar.2011.05.035. PubMed DOI

Kaplan RM. Drug resistance in nematodes of veterinary importance: a status report. Trends Parasitol. 2004;20:477–481. doi: 10.1016/j.pt.2004.08.001. PubMed DOI

Wolstenholme AJ, Fairweather I, Prichard R, von Samson-Himmelstjerna G, Sangster NC. Drug resistance in veterinary helminths. Trends Parasitol. 2004;20:469–476. doi: 10.1016/j.pt.2004.07.010. PubMed DOI

Roeber F, Jex AR, Gasser RB. A real-time PCR assay for the diagnosis of gastrointestinal nematode infections of small ruminants. In: Cunha MV, Inácio J, editors. Veterinary infection biology: molecular diagnostics and high-throughput strategies. New York: Humana Press; 2015. pp. 145–152. PubMed

Vercruysse J, Charlier J, Van Dijk J, Morgan ER, Geary T, von Samson-Himmelstjerna G, et al. Control of helminth ruminant infections by 2030. Parasitology. 2018;145:1655–1664. doi: 10.1017/S003118201700227X. PubMed DOI

Höglund J, Elmahalawy ST, Halvarsson P, Gustafsson K. Vet Parasitol X. 2019;2:100018. doi: 10.1016/j.vpoa.2019.100018. PubMed DOI PMC

Bott NJ, Campbell BE, Beveridge I, Chilton NB, Rees D, Hunt PW, et al. A combined microscopic-molecular method for the diagnosis of strongylid infections in sheep. Int J Parasitol. 2009;39:1277–1287. doi: 10.1016/j.ijpara.2009.03.002. PubMed DOI

Roeber F, Larsen JWA, Anderson N, Campbell AJD, Anderson GA, Gasser RB, et al. A molecular diagnostic tool to replace larval culture in conventional faecal egg count reduction testing in sheep. PLoS ONE. 2012;7:e37327. doi: 10.1371/journal.pone.0037327. PubMed DOI PMC

Höglund J, Engström A, von Samson-Himmelstjerna G, Demeler J, Tydén E. Real-time PCR detection for quantification of infection levels with Ostertagia ostertagi and Cooperia oncophora in cattle faeces. Vet Parasitol. 2013;197:251–257. doi: 10.1016/j.vetpar.2013.04.044. PubMed DOI

von Samson-Himmestjerna G, Harder A, Schnieder T. Quantitative analysis of ITS2 sequences in trichostrongyle parasites. Int J Parasitol. 2002;32:1529–1535. doi: 10.1016/S0020-7519(02)00163-7. PubMed DOI

van Wyk JA, Cabaret J, Michael LM. Morphological identification of nematode larvae of small ruminants and cattle simplified. Vet Parasitol. 2004;119:277–306. doi: 10.1016/j.vetpar.2003.11.012. PubMed DOI

Sweeny JPA, Robertson ID, Ryan UM, Jacobson C, Woodgate RG. Comparison of molecular and McMaster microscopy techniques to confirm the presence of naturally acquired strongylid nematode infections in sheep. Mol Biochem Parasitol. 2011;180:62–67. doi: 10.1016/j.molbiopara.2011.07.007. PubMed DOI

Roeber F, Jex AR, Campbell AJD, Nielsen R, Anderson GA, Stanley KK, et al. Establishment of a robotic, high-throughput platform for the specific diagnosis of gastrointestinal nematode infections in sheep. Int J Parasitol. 2012;42:1151–1158. doi: 10.1016/j.ijpara.2012.10.005. PubMed DOI

Harmon AF, Williams ZB, Zarlenga DS, Hildreth MB. Real-time PCR for quantifying Haemonchus contortus eggs and potential limiting factors. Parasitol Res. 2007;101:71–76. doi: 10.1007/s00436-006-0428-0. PubMed DOI

Zarlenga DS, Chute MB, Gasbarre LC, Boyd PC. A multiplex PCR assay for differentiating economically important gastrointestinal nematodes of cattle. Vet Parasitol. 2001;97:199–209. doi: 10.1016/S0304-4017(01)00410-1. PubMed DOI

Learmount J, Conyers C, Hird H, Morgan C, Craig BH, von Samson-Himmelstjerna G, et al. Development and validation of real-time PCR methods for diagnosis of Teladorsagia circumcincta and Haemonchus contortus in sheep. Vet Parasitol. 2009;166:268–274. doi: 10.1016/j.vetpar.2009.08.017. PubMed DOI

Roeber F, Jex AR, Campbell AJD, Campbell BE, Anderson GA, Gasser RB. Evaluation and application of a molecular method to assess the composition of strongylid nematode populations in sheep with naturally acquired infections. Infect Genet Evol. 2011;11:849–854. doi: 10.1016/j.meegid.2011.01.013. PubMed DOI

Roeber F, Morrison A, Casaert S, Smith L, Claerebout E, Skuce P. Multiplexed-tandem PCR for the specific diagnosis of gastrointestinal nematode infections in sheep: an European validation study. Parasites Vectors. 2017;10:226. doi: 10.1186/s13071-017-2165-x. PubMed DOI PMC

Milhes M, Guillerm M, Robin M, Eichstadt M, Roy C, Grisez C, et al. A real-time PCR approach to identify anthelmintic-resistant nematodes in sheep farms. Parasitol Res. 2017;116:909–920. doi: 10.1007/s00436-016-5364-z. PubMed DOI

Roeber F, Jex AR, Gasser RB. Next-generation molecular-diagnostic tools for gastrointestinal nematodes of livestock, with an emphasis on small ruminants: a turning point? Adv Parasitol. 2013;83:267–333. doi: 10.1016/B978-0-12-407705-8.00004-5. PubMed DOI PMC

ten Hove RJ, Verweij JJ, Vereecken K, Polman K, Dieye L, van Lieshout L. Multiplex real-time PCR for the detection and quantification of Schistosoma mansoni and S. haematobium infection in stool samples collected in northern Senegal. Trans R Soc Trop Med Hyg. 2008;102:179–185. doi: 10.1016/j.trstmh.2007.10.011. PubMed DOI

Roepstorff A, Nansen P. Epidemiology, Diagnosis and Control of Helminth Parasites of Swine: No.3. (FAO Animal Health Manual. Rome: FAO; 1998.

van Wyk JA, Mayhew E. Morphological identification of parasitic nematode infective larvae of small ruminants and cattle: a practical lab guide. Onderstepoort J Vet Res. 2013;80:539. PubMed

Reslova N, Skorpikova L, Slany M, Pozio E, Kasny M. Fast and reliable differentiation of eight Trichinella species using a high resolution melting assay. Sci Rep. 2017;7:16210. doi: 10.1038/s41598-017-16329-x. PubMed DOI PMC

Skorpikova L, Reslova N, Magdalek J, Vadlejch J, Kasny M. The use of high resolution melting analysis of ITS-1 for rapid differentiation of parasitic nematodes Haemonchus contortus and Ashworthius sidemi. Sci Rep. 2020;10:15984. doi: 10.1038/s41598-020-73037-9. PubMed DOI PMC

Rodríguez A, Rodríguez M, Córdoba JJ, Andrade MJ. Design of primers and probes for quantitative real-time PCR methods. In: Basu C, editor. PCR primer design. New York: Humana Press; 2015. pp. 31–56. PubMed

Mikel P, Vasickova P, Tesarik R, Malenovska H, Kulich P, Vesely T, et al. Preparation of MS2 phage-like particles and their use as potential process control viruses for detection and quantification of enteric RNA viruses in different matrices. Front Microbiol. 2016;7:1911. doi: 10.3389/fmicb.2016.01911. PubMed DOI PMC

Reslova N, Huvarova V, Hrdy J, Kasny M, Kralik P. A novel perspective on MOL-PCR optimization and MAGPIX analysis of in-house multiplex foodborne pathogens detection assay. Sci Rep. 2019;9:2719. doi: 10.1038/s41598-019-40035-5. PubMed DOI PMC

Vadlejch J, Kopecky O, Kudrnacova M, Cadkova Z, Jankovska I, Langrova I. The effect of risk factors of sheep flock management practices on the development of anthelmintic resistance in the Czech Republic. Small Ruminant Res. 2014;117:183–190. doi: 10.1016/j.smallrumres.2014.01.003. DOI

Santos LL, Salgado JA, Drummond MG, Bastianetto E, Santos CP, Brasil B, et al. Molecular method for the semiquantitative identification of gastrointestinal nematodes in domestic ruminants. Parasitol Res. 2020;119:529–543. doi: 10.1007/s00436-019-06569-3. PubMed DOI

Halvarsson P, Höglund J. Sheep nemabiome diversity and its response to anthelmintic treatment in Swedish sheep herds. Parasites Vectors. 2021;14:114. doi: 10.1186/s13071-021-04602-y. PubMed DOI PMC

Avramenko RW, Redman EM, Lewis R, Yazwinski TA, Wasmuth JD, Gilleard JS. Exploring the gastrointestinal "nemabiome": deep amplicon sequencing to quantify the species composition of parasitic nematode communities. PLoS ONE. 2015;10:e0143559. doi: 10.1371/journal.pone.0143559. PubMed DOI PMC

Avramenko RW, Redman EM, Lewis R, Bichuette MA, Palmeira BM, Yazwinski TA, et al. The use of nemabiome metabarcoding to explore gastro-intestinal nematode species diversity and anthelmintic treatment effectiveness in beef calves. Int J Parasitol. 2017;47:893–902. doi: 10.1016/j.ijpara.2017.06.006. PubMed DOI

Vadlejch J, Kyrianova IA, Rylkova K, Zikmund M, Langrova I. Health risks associated with wild animal translocation: a case of the European bison and an alien parasite. Biol Invasions. 2017;19:1121–1125. doi: 10.1007/s10530-016-1306-z. DOI

Kotrlá B, Kotrlý A, Koždoň O. Studies on the specifity of the nematode Ashworthius sidemi Schulz, 1933. Acta Vet Brno. 1976;45:123–126.

Moskwa B, Bien J, Cybulska A, Kornacka A, Krzysiak M, Cencek T, et al. The first identification of a blood-sucking abomasal nematode Ashworthius sidemi in cattle (Bos taurus) using simple polymerase chain reaction (PCR) Vet Parasitol. 2015;211:106–109. doi: 10.1016/j.vetpar.2015.04.013. PubMed DOI

van Doorn R, Klerks MM, van Gent-Pelzer MPE, Speksnijder A, Kowalchuk GA, Schoen CD. Accurate quantification of microorganisms in PCR-inhibiting environmental DNA extracts by a novel internal amplification control approach using Biotrove OpenArrays. Appl Environ Microbiol. 2009;75:7253–7260. doi: 10.1128/AEM.00796-09. PubMed DOI PMC

Kainz P, Schmiedlechner A, Strack HB. Specificity-enhanced hot-start PCR: addition of double-stranded DNA fragments adapted to the annealing temperature. Biotechniques. 2000;28:278–282. doi: 10.2144/00282st04. PubMed DOI

Zhu KY, Clark JM. Addition of a competitive primer can dramatically improve the specificity of PCR amplification of specific alleles. Biotechniques. 1996;21:586–590. doi: 10.2144/96214bm04. PubMed DOI

Stürzenbaum SR. Transfer RNA reduces the formation of primer artifacts during quantitative PCR. Biotechniques. 1999;27:50–52. doi: 10.2144/99271bm08. PubMed DOI

Elmahalawy ST, Halvarsson P, Skarin M, Höglund J. Droplet digital polymerase chain reaction (ddPCR) as a novel method for absolute quantification of major gastrointestinal nematodes in sheep. Vet Parasitol. 2018;261:1–8. doi: 10.1016/j.vetpar.2018.07.008. PubMed DOI

Berrie DA, East IJ, Bourne AS, Bremner KC. Differential recoveries from faecal cultures of larvae of some gastro-intestinal nematodes of cattle. J Helminthol. 1988;62:110–114. doi: 10.1017/S0022149X00011330. PubMed DOI

Weerakoon KG, McManus DP. Cell-free DNA as a diagnostic tool for human parasitic infections. Trends Parasitol. 2016;32:378–391. doi: 10.1016/j.pt.2016.01.006. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...